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Introduction

Harmonic Gauss sections are critical points of the vertical energy through
arbitrary vertical variations with respect to some fixed tangential splitting of
a target Grassmann manifold bundle (definition in [11], [12]). On the other
hand, Yang-Mills connections are critical points of the square norm of curvature
form through arbitrary variations in the connection forms. There is a rela-
tionship between these variational solutions which is previously observed by
C.M. Wood in [1],

Let G be a Lie group which admits a bi-invariant Riemannian metric and
P be a right principal G-bundle over a Riemannian manifold M. The hori-
zontally lifted metric on P by a right connection form @ makes the fibration
wp: P-M into a Riemannian submersion with totally geodesic fibers [10]. The
Yang-Mills equation for a single connection form w is translated into the har-
monic section equation for the Gauss section yp=[P>u—Ker (d7p),CT,P] on
P with the w-horizontally lifted metric [12]. In fact, C. M. Wood obtained :

THEOREM. Let w be a right connection form on P. Then

(i) o is flat (resp. Yang-Mills) if and only if
rp is a horizontal (resp. harmonic) section with respect to tV,

(ii) ® is parallel if yp is a covariantly horizontal section with respect to TV,
where TV is the Riemannian connection of P.

In this paper we study several characterizations of Yang-Mills connections
in terms of harmonic Gauss sections, each of which is a generalization of the
theorem of C.M. Wood. Our results extend the lists of similarities between
theories of harmonic maps and Yang-Mills connections by J. P. Bourguignon [1].

Let Q be a left principal G-bundle over a Riemannian manifold N and %
be a left connection form on @, where the left G-action in the definition of
left --- is the reciprocal of the right G-action in that of right.--. The joint
space P-Q (definition in § 1) also has the horizontally lifted metric by the joint
form w&n (definition in § 1) which makes the fibration 7p.q: P-Q—MXN into
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a Riemannian submersion with totally geodesic fibers.

A pair of the Yang-Mills equations for w and 7 is translated into the har-
monic section equation for the Gauss section yp.q=[P-Q>u-v—Ker (d7p.g)y.»C
TuoP-Q)] on P-Q with the Oy-horizontally lifted metric:

THEOREM A. Let w, n be a right connection form on P and a left connection
form on Q, respectively. Then
(i) ® and 7n are both flat (vesp. Yang-Mills) if and only if
Tp.q 1S a horizontal (resp. harmonic) section with respect to £-9V,
(ii) @ and n are both parallel if
Tp.q 1S a covariantly horizontal section with respect to T2V,
where P9V is the Riemannian connection of P-Q.

In the case of N=M, Q=P and n=w™!, where P! (resp. o™!) is the
inverse of P (resp. w) [5], we have immediately the following:

COROLLARY B. Let w be a right connection form on P. Then
(i) w is flat (resp. Yang-Mills) if and only if

7p.p-1 1S a horizontal (resp. harmonic) section with respect to ¥*F7'V.
(ii) o is parallel if

Tp.p-1 1S a covariantly horizontal section with respect to £*P7'V.

By pulling-back rp.p-1 along the object inclusion map e(definition in § 1), the
Gauss section yp.p-1=[MDx—Ker (d7p.p-1)ex) " Te(x)(P-P71)] is induced and
the above relation (ii) is improved (Theorems 4.7, 4.14, 4.16):

THEOREM C. Let w be a right connection form on P. Then @ 1s flat, par-
allel or Yang-Mills if and only if
¢rp.p-1 1S a horizontal, covariantly horizontal or harmonic section with respect to
“(B-PTlY), respectively,
where “(P*P7'V) is the mnduced connection from £F7V vig .

e(M) is a totally geodesic submanifold of P-P~! (Proposition 2.16) so that
*(P'P7'y) splits into the Riemannian connection *V of M and the normal con-
nection V() with respect to . On the other hand, *yp.p-1 can be reduced to
rbp-1=[M>x—Ker (dxp.p-1)es) T E{D)], where E{), is the —1-eigenspace of
the differential of the inversion of P-P~!, which is also the orthogonal comple-
ment of (de),T M in Tey(P-P7Y).

THEOREM D (Theorem 5.12). Let w be a right connection form on P. Then
o 1s flat, parallel or Yang-Mills if and only if
*r&b-1 i a horizontal, covariantly horizontal or harmonic section
with respect to V), respectively.
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§1. Joints of Principal Bundles and Connection Forms

Let G be a Lie group and PEM (resp. QﬁN) be a right (resp. left)
principal G-bundle over a C=-manifold M (resp. N). G acts on PXQ as fol-
lows; P¢R: PXQXG — PxXQ; (u, v), g—(ug, g7'v) (resp. P*°L: GXPxXQ —
PxQ; (g, (u, v))—(ug™, gv).) We denote the quotient topological space of the
right (resp. left) G-space (PXQ, P*°R) (resp. (PXQ, *?L)) by P-Q and the
quotient map by jp.o: PXQ—P-Q; (4, v)»u-v. The map 7mp.o: P-Q—MXN;
u-v—(mp(u), mo(v)) is well-defined. By [3, Chapter 5, Section 2, Proposition 1],
P-Q is given a C=-manifold structure (which is called the joint space of P
and Q).

(PXQ, PXQR)ﬂ P-Q (resp. (PXQ, PXQL)]—P;‘?) P-Q) is a right (resp. left)

principal G-bundle. P-Q e M XN is a C=-fiber bundle. The canonical pro-
jection pp: (PXQ, P*°R)— P; (u, v)—u (resp. pg: (PXQ, T*°L)— Q; (u, v)—v)
is a right (resp. left) principal G-bundle homomorphism. Throughout the follow-
ing sections, (PxQ, ?*2R) will be simply abbreviated to PXQ. Let (G, Adg, g)
be the adjoint representation of G. Ker dzp (resp. Ker dmy) is isomorphic to
the trivial vector bundle PXxg (resp. gXx@). Similarly we observe the fol-
lowing :

PROPOSITION 1.1.
Ker djp.q —> PXQXg; Al n=(Af, —A}) — ((u, v), A) and
Ker dmp.q —> (PXQ)adg 85 (d7p.@)a w(Af, AY)— [(u, v), A]

are both vector bundle isomorphisms,
where A%=d/dl| - u(exptA), Al=d/dt|,-(exptA (Asg) e.t.c..

Let w (resp. ) be a right (resp. left) connection from on P (resp. Q).
Then from Proposition 1.1, pfw and — p§y are both right connection forms on
Px@Q and therefore a tensorial form of type (G, Adg, g) (c.f. [6]).

PROPOSITION 1.2. Let 6=R.

(i) (A—0)ppw—0pEn is a right connection form on PXQ.

(i) (1—0)p¥w+0psn s a tensorial 1-form on PXQ of type (G, Ade, 9) if
and only if 0=1/2.

We write shortly w7 instead of 1/2(pfw— pn). On the other hand, from
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the above proposition, 1/2(pfw+ p§7) can be reduced to a 1-form on P-Q taking
values in (PXQ)Xaq, 8, Which is denoted by w{» (which is called the joint form

of w and 7).

For any ueP, veQ, Ker(0kn)w,»n=(Ker 0.P0,)D{(AL, A))|A€g}D0.D
Ker 7,), where (Ker w,0,)®0.PKern,) is the wky-horizontal lift of
Ker (@On)y.» and {(A%, A))|A=g} is the wky-horizontal lift of Ker (dzp.g)u-o
On the other hand, Ker @0 is a horizontal distribution relative to 7p.q:

PROPOSITION 1.3. T(P-Q)=Ker dzp.oPKer 0y.

Proof. For each ueP, ve@, the restriction of surjective linear map
(@ON)uw: Tuo P-Q)—=(PX Q)X adg 8)u-v to Ker (d7p.g)u., coincides with the linear
isomorphism in Proposition 1.1.

The above proposition implies that @Oy plays the same role of a connec-
tion form. Let “*7d (resp. “*7D) be the exterior covariant differentiation on

P-Q (resp. PxXQ) with respect to wk.
PROPOSITION 1.4. For any ueP, vel, X, Y eKer (@O9)y.v,
@*1d(@ON))u-ol X, Y)=[(u, v), 1/2((pE)*Q+(pE) 1) * 1 HHP X, @*1H#EOY )],

where ®Q (resp. 18) is the curvature form of @ (vesp. n) and “*THH? : Ty.o( P-Q)
—Ker (@k9)w,w» s the wkn-horizontal lifting.

Proof. By the structure equations for w and % (c.f. [6]),

Peed( 5 (phart pm)) =5 (DB dart (5% )
1 1 1
= {p(*2+ 5 Lwnw))+ (12— 5 o A7)}
1
= (DB Q+(#512)~ 7 ([P0 Pl p7 A pin]

1
= 2 (PR Q-+ (P81~ 5 (P B A (Dbt m)

1/2((pE)*R+(p¥)78) is a tensorial 2-form on PXQ so that “*7D(1/2(pfw+ p§n))
=1/2((pF)*2+(p5)72).

COROLLARY 1.5. @ and 0 are both flat if and only if Ker @Oy is an involu-
tive distribution on P-Q.

In the case of N=M, Q=P '=Px ;G which is called the inverse of P in
[5] defined by the left G-action A: GXG—G; (g, g.)—8.87", for the diffeo-
morphism 7: P-»P™'; u—u'=[u, ¢], we denote —(:")*w by w™! which is a left
connection form on P!, where ¢ is the identity element of G. Note that
o 1Q=—(j71)%e,
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COROLLARY 1.6. ® is flat if and only if Ker oOw™ is an involutwe distri-
bution on P-P71.

P-P~' is the Lie groupoid associated to PZE M and Tp.p-1: P-P'—MXM is
the anchor of P-P~!' [8, Chapter 1, Example 1.10]. Let Ay: M—MXM be the
diagonal map of M and A(P-P7') be the pull-back fiber bundle over M via
Ay which is the wnner subgroupoid of P-P~.

A;#(P-P7') is isomorphic to the automorphism bundle PXaq G. In fact,
because Aj'(P-P7') can be identified with {(x, u-v")e MXP-P'|wp(u)=x=
wp(v)}, therefore, the following map is well-defined and gives a fiber bundle
isomorphism ; A} (P-P )—PXaqa G; (x, u-v')—[u, g] v=ug, gG).

Let Ay: PXaqaG—P-P™' be the induced fiber bundle homomorphism from
Ay and e: M—PXaq G be the canonical section which assigns x to the identity
element e, of the fiber over x, then their composite e=Ayce: M—P-P™! is a
C~-map, which is called the object inclusion map of P-P~' and 7p.p-1ce=Ay.

Let ¢ }(PX P™') be the pull-back principal G-bundle over M via &-&¢ " '(PXP™?)
is isomorphic to P. Actually we have a principal bundle homomorphism
§: P>PXP™'; u—(u, u™*) such that jp.p-10éd=comp and é*(wkw !)=w. Because
for xeM, u, veP, e(x)=u-v' if and only if u=venrnz!(x), then e (PXP™?)
can be identified with {(x, (u, u ™)) e MXPX P 'lucsnp'(x)} so that the map
e (PXPYH)—P;(x, (u, u"))—u is well-defined and gives a right principal G-
bundle isomorphism.

PROPOSITION 1.7. & Y(PXP™')Xaag8 1S isomorphic to the adjoint bundle
PXadg8.

The notion of general groupoid includes its inversion. In the case of
P- P71, its inversion is ¢: P-P'—P-P~'; u-v~'—w-u~!, which is obviously well-
defined and ¢e¢c=id.p.p-1. ¢ is also given by e(x)=u-u"! (uezwp'(x)) so that
toe=¢, therefore, the differential d¢: T(P-P')—T(P-P7!) induces a vector
bundle involutive automorphism of ¢ 'T(P-P~!') and a splitting (e 'T(P-P7Y)),
=T (P-PY=E)) &2, for each xe M, where E{{), is the +1-eigenspace
of (de)e(z). e 'E™= HMEég‘;) is a vector subbundle of ¢ 'T'(P- P~')and ¢ !T(P-P)

zTE

= EO@e EC.

Let “HY (resp. *"'H*™"): T.M—Ker 0, (resp. Ker w;!) be the w-(resp. w'-)
horizontal lifting. Note that for ueszp!(x), g€CG, XeT.M,

(d].P~P-1>(ug, g-lu—l)(wH:gX, iw_lHi—lu—IX)
=(djp.p-Dwu-n(*HEX, +*'HLX).

We write shortly 02 ' X instead of (djp.p-1)cu,u-n(*HEX, £ HL'X).
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PROPOSITION 1.8. For any x&M,
(1) (de)(X)=20*"'X® for all X&T .M, therefore,

(de)o(T-M)=E = {0 X | XeT .M},

(ii) E$h=Ker(dmp.p-1)exy®{®0°' X | XET M},
(iii) Ker(@wCw ™). y=(de)(T - M)P{*0* ' X | XeT M}.

COROLLARY 1.9. For any e, ¢¥(@Ow™1)=0, therefore, ¢ 1s an wlw '-hori-
zontal lift of Ay.

§2. Horizontally Lifted Metrics by the Joint Forms

In this section, we assume that a Lie group G admits a bi-invariant Rie-
mannian metric {,>. Let M (resp. N) be a Riemannian manifold with a Rie-
mannian metric *g (resp. Vg). For a right (resp. left) principal G-bundle

PEZMm (resp. @ < N) with a right (resp. left) connection form w (resp. 7), the
w-(resp. y-)horizontally lifted metric 5g (resp. ?g) is defined as follows:

Pe=(x)g+<w, w> (resp. Jg=(xH)Vg+<{n, 7).

mp: (P, 5g)—(M, ™g) (resp. my: (Q, 2g)—(N, Yg)) is a Riemannian submersion
with totally geodesic fibers since the w-(resp. 7-) parallel translations between
fibers are isometries in the above metric [10, Theorem 3.5]. We denote the
canonical projection by py (resp. pn): MXN—M (resp. N); (x, y)—w (resp. y).
The joint form @<y lifts the Riemannian product metric ¥*¥ g=(p%) g+ (p%)¥g
to the metric 53¢ on P-Q defined by 5:9g=(n}.9)" ¥ g+2{w{n, wOn)>. From
[10, Theorem 3.5], we have =#f:(P-Q, 520 —(M, ¥g); u-vonpu), nf:
(P-Q, 5822)—(N, ¥g); u-v—me(v) and 7p.q: (P-Q, 5:3g)—=(MXN, **¥g) are Rie-
mannian submersions with totally geodesic fibers.

Let P*eg=(pp)hg+(p})2g be the Riemannian product metric on PXQ. Then
PxQg coincides with the w%y-horizontally lifted metric from 53¢ :

PROPOSITION 2.1. P*Qg=(7§.9)58g+2{wkn, wk7).

Throughout the following sections, the wx7-horizontally lifted vector
won ] will be abbreviated to U or (U)” for UeT,..(P-Q). Let 79V be
the Riemannian connection of {jgﬁyg. We denote the associated projections in
Proposition 1.3 by p:T(P-Q)— Kerdnp.q; X— X7, p*: T(P-Q)— Ker 0y ;
X=Xt POU=[(X, V)W Y )+ (W .Y +)7] is called the O’Neill’s tensor
A on (P-Q, 55?7g) [9, Lemma 2], and we have immediately the following :

PROPOSITION 2.2. For any uceP, ve, X, YET,..(P-Q),

(@07l X, V=[x, v), — 5 (PH"Q+(57 XX, 7).
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Let “®7V be the covariant differentiation on P-Q with respect to w7 in
(PXQ)Xady8 and #*2V be the induced differentiation on P-Q with respect to
“*1V and £V in T*(P-Q)Q(PXQ)Xaq, 8. The Riemannian connection of {g,
9g or ©*9g is denoted by ©V, @V or £*9V, respectively.

COROLLARY 2.3. For any ueP, ve@, X, Y, Z€T,..(P-Q),

BT(@OD) "X, ¥, 2=, 0), — F BBV R+ VI, T, 2]

Proposition 1.4 implies the following lemma:
LEMMA 2.4.
(*1d(@ON))uo(X, Y)=0
for all ueP, ve@, XeT,.(P-Q), Y €Ker (d7p.g)y.o
LEMMA 2.5. For any X, YeX(P-Q),
(@OPE W .Y )=2*1V 4 . (@O ).

Proof. Since each fiber of P-Q is totally geodesic and the decomposition
in Proposition 1.3 is orthogonal with respect to the lifted metric,

(@ON)(F eVt X H)=(0On)(P*Vyr X *)*)=0
therefore (@O Wy Y T)=(wOn)[X*, YT]). By Lemma 2.4,
0=(“*7d(@Om)X ", ')
= —;— {“*V £ (@O TN = * 1V ((@OnNX ) —(@On)([ X+, YT}

= (Y (@O )~ (@O, YD)

Hence (@On)(FV ¢V T)=2*1V 1 ((0n)(V ).
LEMMA 2.6. For any usP, ve@, X, Y, ZeKer (0On)y-»,

(@On)=(POVF D)ol X, Y, Z)=FXV(@On) 7 M))uo(X, Y, Z).

From Corollary 2.3 and Lemma 2.6, we have
PROPOSITION 2.7. For any uceP, ve@, X, Y, ZeKer (0On)u,
(@O lX, Y, D)= (1), =3 (PEFT*Q+(pHUVIX, T, 2]

o (resp. n) is called a parallel connection if FV°Q(Ker w, Ker w, Ker @)=0
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(resp. “V702(Ker 7, Ker 5, Ker )=0). For instance, in the canonical fibration
over a Riemannian symmetric space, the canonical invariant connection with
respect to its symmetric pair is a parallel connection [4].

COROLLARY 2.8. ® and 7 are both parallel if and only if
(@ON) TP, (X, Y, Z)=0 for all ucP,veQ, X,Y, ZeKer (0ON)y.v.

Let “D (resp. 7D) be the exterior covariant differentiation on P (resp. Q)
with respect to o (resp. ») and “D* (resp. 7D*) be the exterior covariant co-
differentiation on P (resp. @) of “D (resp. 7D).

PROPOSITION 2.9. For any usP, veQ, ZeKer (0O9)y.v

Trace (@O7) eV 2A),.(p*, p*, Z)=[(u, V), %((pﬁ)“’D*“’Q+(P$)”D*”Q)(Z)].

o (resp. n) is called a Yang-Mills connection if  (resp. 3) satisfies the
Yang-Mills equation : *D**Q=0 (resp. 7D*7Q=0) (c. f. [2]). For instance, parallel
connections are Yang-Mills connections.

COROLLARY 2.10. ® and 7 are both Yang-Mills 1f and only of
Trace (@ON) PP eU),..(p*, p*, Z2)=0 for all ue P, veQ, ZeKer (0On)y.o.

Notice that we can describe a pair of the Yang-Mills equations for w and
7 in terms of the Ricci curvature tensor ?Ric of (P-Q, £:58).

PROPOSITION 2.11. For any ucsP, ve@, ZeKer (0On)y.v
((w<>v)°P'QRiC)u.v(Z)=[(u, v), -;—((ﬁi'é)"’D*“’Q+(172§)”D*”Q)(Z)] .

A pair of the Yang-Mills equations for w and 7 is a necessary condition
for the Einstein equation with respect to (P-Q, £:9¢) as an analog to the relation
between the Yang-Mills equation for w and the Einstein with respect to (P, 2g)
[12, Corollary 2.197.

COROLLARY 2.12.
(i) @ and n are both Yang-Mills if and only if

PQRjc(Ker dmp.q, Ker oOn)=0.
(i) If (P-Q, 553g) is an Ewnstein space, then w and 7 are both Yang-Mills.

In the case of N=M, Q=P and p=w"!, the inversion i: (P, pg)— (P,
#7ig) is an isometry. Therefore we have immediately the followings:

COROLLARY 2.13. @ 1s parallel if and only if
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(@O@™) PP VPP L) i(X, Y, Z)=0
for all u,veP, X,Y, ZeKer (@Cw™)y.p-1.
COROLLARY 2.14. w s Yang-Mills if and only if
Trace (@O0 ™) P 7'V P )ypa(pt, p*, 2)=0
for all u, veP, ZeKer (@O0 )y.p-1.

COROLLARY 2.15.
(i) @ s Yang-Mills if and only if ©'P7'Ric (Ker dnp.p-1, Ker 0w )=0.
(ii) If (P-P7, ZsECig) s an Einstemn space, then ® is Yang-Mills.

The diagonal map Ay : (M, 2%g)—(MXxXM, ***g) is a totally geodesic iso-
metric embedding so that Corollary 1.19 implies the following :

PROPOSITION 2.16. &: (M, 2% g)—(P- P!, B:PZig) 1s a totally geodesic isometric
embedding for any connection form w on P.

COROLLARY 2.17.
(i) e*PP'U=0, equivalently, for any xeM, X, YT .M, uers'(x),

(@O@™ )PP g)(eow™ X (1) woe™ly (0)=(),
(i) For any xeM, X, YT .M, ucsnps'(x),
(@O @) P Pl ) (@00 ' X () wow~ly (m)=()
Under the identification ¢ *(PX P *)= P, we observe the following:
PROPOSITION 2.18. For any xeM, X, YT M, usrps'(x),
(@O@ )PP gy(eoe™! X 0, woe™lY O)=[u, —“Q (“HiX, “HLY)].
COROLLARY 2.19. s flat if and only if
(((0<>(l)_1)°P'P_1J)(mOw_1X(+), tu()u)"li/(-—))___o
for all xeM, X, YT M, ucrpi(x), equivalently,
(@O0 )PP )(de). T M, Ker (@O0 Vez))=0, for all xeM.

By using the fact that the inversion : is an isometry, we get

LEMMA 2.20. For any xeM, X, Y, Z€T .M, uszns'(x),
((wow—I)OP-P“IVP'P—IJ)(wOaJ—l‘X(+)’ wow“y’(ﬂ’ wow—lz(ﬂ):o ,

(@@ L) P PTIPP P! )(000™l X () 00wy () wow~l Z(h))=()
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(@O@™ )P PTIPPPT g)(@00Tl X () @00ty () 00w~ Z()—=()

(@O@™)oP PV P (000l X () wouly () wow™l Z()=(),

((w()w_l)aP'P-IVP'P—IJ)(‘"OW_IX(*)’ wow*y(ﬂ, wom-lz(—))
=[u, —(*V°Q("H:X, “HYY, “H}Z)],

((wow—1)°P-P-lvP-P—IJ)(mow“l){(—), wow~1y<—), a)Om‘lZ(—))
:l:u) —(vag)u(ngXy ngYy wH‘Lz‘Z)] )

((wow—l)oP-P‘JVP-P'luQ)(wOw“lX(+)’ wow—l)/(—)’ w<>w—lz<+))
=[u, (VD (*HYX, *HYY, *H}Z)],

((a)<>w‘l)o”‘P"lV"'P"J)(“’O“"‘X<‘>, wow*ly(ﬂ, wow~1Z(+))
=[u, —(*V°Q)(“HiX, “H%Y, “H%Z)] .

Proposition 1.16 and the above lemma imply the followings:

PROPOSITION 2.21. For any x&M, usnz'(x), the following three conditions
are equivalent ;

(1) (@O@™)LFIVEEAN(de). T oM, (de);T:M, Ker (@O0™).(2))=0,

(ii) (@O@ )PPV P )(Ker(@Oo Ve x), Ker(@Ow™Vea), Ker(@Ow™).(z))
=0,

(iii) (*veQ).(Ker w,, Ker o, Ker w,)=0.
COROLLARY 2.22. ® 1s parallel if and only if
(@O@™) PP VELTU)(de)s To M, (de)sT M, Ker (@O®™)ex))=0
for all xeM.

Let {E}™, be an orthonormal basis for (T.M, 2"g), then {“°*T'E(",
woo!F(1m s an orthonormal basis for (Ker (0@ Y. (ay, &E-1g) where m=
dim M. The following lemma is obtained from Lemma 2.20:

LEMMA 2.23. For any xeM, Z&T .M, uenrp'(x),

(@@ PIYEPTl (@00 E, wouT B(h, 00wt 7)),

Mz

7

1

((wow_l)op.p—1VP.p-1J)(w<>w-1E§—)’ wow'lEi-), w<>w-12<+>)=(),

Ms

1=1
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(((0()(0_1) PP~ 1vPP IJ)((»O(D lE(+) wow~1E(+) 0o~ IZ( ))

Mz

1
— T (o D)o oLJu
[u, G eDeuCHD) ],
53 (@Ow ™o PPy (euT B, w0, 0wt 20y
1=1

(v, 5D eH:2)).
Proposition 1.9 and the above lemma imply the following:

PROPOSITION 2.24. w s Yang-Mills if and only if

‘_Z (@O@ )PP gP P ) (de) By, (de) E,, Ker (000, 2))=0
for all xeM.

§ 3. Gauss Sections on the Joint Spaces

Let G(T(P-Q)> P-Q be the Grassmann bundle associated to T(P-Q)
which typical fiber is the real Grassmann manifold of the »-dimensional planes,
where »=dim G. When we choose the Riemannian metric {:3g, G.(T(P-Q))
can be identified with the O(r)xO(m+n)-quotient space O(T(P-Q), 5:32)/0(r)
><O(m+n) of the orthonormal frame bundle O(T(P-Q), 552¢) of T(P-Q) with re-
spect to 53¢, where m=dim M, n=dim N. The quotient map of O(T(P-Q), 55}g
onto G.(T(P-Q)) is denoted by {, which is a right principal O(r)XO(m—l—n)
fibration. Since the structure group of z 'T(P-Q) is reduced to O(r)XO(m+n),
the O(r)XO(m-+n)-submodule splitting R™*™*""=(R", 0n.2)P0,, R™*") induces
the vector subbundle splitting 7z 'T(P-Q)=KPK* where

¢
K [O(T(P Q)y mo;yg) - GT(T(P Q))]XU(R 0m+n)
4
K*=[O0(T(P-Q), £3%g) —> G (T(P-Q))1X,0,, R"*") and

g:0@F)X0O(m+n)CGL(R™™*") is the natural linear
representation of O(»)XO(m—+n).

On the other hand, the Riemannian connection #-9V of 53¢ induces the splitting
T(G(T(P-Q))=Ker dnD(Ker dn)* so that the differential dy of y=7p.o splits
into (dy)” and (dy)¥ where the former is the vertical differential of y with re-
spect to P9V [11], [12]. 7 is called a horizontal section with respect to '@V
if (d7)"=0. The vertical energy density of 7 is the C>=-function e"(y): P-Q—R
defined by e"(7)(u-v)=|(dy)"|2., (uEP, vEQ).

Let X be the vector subbundle {(¢, —«")|tcHom(K, K*)} of Hom(K, K+)P
Hom (K*, K) where «' is the adjoint of k. C.M. Wood has introduced in [11] an
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isomorphism I=(x, —&"): Ker da= X ; (dQ)rAf—E-Ar-E™ (E€O(T(P-Q), 5:5382),
Aeo(r+m—+n)) where A is the f-component of A and ¥ is the orthogonal com-
plement of o(»)Xo(m-+n) in o(r+m-+mn) with respect to the Killing-Cartan form
of O@#+m+n) which is denoted by 1/2¢,). «:Kerdx—Hom(K, K*) and
k' : Ker dr—Hom (K*, K) are vector bundle isomorphisms. The metric is taken
to be that derived from 1/2{,)» under the O(r)XO(m+n)-quotient map
O(r+m+n)—G,.(R™*™**), Thus I is 2-homothetic and «' is an isometry [12].
Note that y 'K=Ker dwp.q, 77 K*=Ker w7,

77 Hom (K, K*)=Hom (Ker dnp.q, Ker o{n) and
y*Hom (K*, K)=Hom (Ker w{n, Ker drp.q) .

We denote also the induced vector bundle isomorphisms via y by I: 7y ' Kerdn
—7r7'K, k:7'Kerdrm— Hom (Kerdnmp.q, Kerw®yn) and «':77'Kerdr—
Hom (Ker @), Ker dmp.y) for convenience of notation. (dy)” is evaluated in
Hom (Ker w7, Ker dmp.q) as the O’Neill’s tensor £9.i:

PRrOPOSITION 3.1.
(1) K@r)Y)=PUy=[W—CUY, W), for any u€ P, v€Q, Y ET 4.o(P-Q).
(i) 2e"(r)(u-v)=1"%A4l3., for any ueP, ve@.

Proof. (i) By the Gauss’s and the Weingarten’s formulas,
POV W) =(POV W)L, (P OV, W )T =(P- 07, W 4)T
since each fiber is totally geodesic. From [12, Corollary 1.9],
L((@D)'Y)=[W— (VW )T+ OV, W) ]
=W (P gyt W) (P Oy W) 1= [W 20Uy, W) .
(ii) It follows from (i).

COROLLARY 3.2.
(1) &dD)VY)=p-FWUlyiop*, for any ueP, veQ, YET ,.o(P-Q).
(i) e'(u-v)=llpF%Uorcp*lin, for any usP, veqQ.

PROPOSITION 3.3.
(i) For any ueP, veQ, YET . (P-Q), WeKer (0 9)y.v

@O VW)=](w, 1), 5 (PEQ+EE DT, W)].
(W) e (P n=1/21"Q1i+1"Q1), for any ueP, v=Q.

Proof. (i) It follows from Proposition 2.2 and Corollary 3.2. (ii) Let
{YE,} 1, {YE;}}-. be orthonormal bases for (T M, *g), (T ,N, ¥g), respectively,
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we set
P.QEtZ(d]PuQ)(u.v)(a)HgMEn Ov); P‘QEmw:(d]P-Q)(u,v)(Ou, ”H;’NE])-

{£*@E,} 74 is an orthonormal basis for (Ker (@O )y, £7%2).  (d1)y.oKer(d@wp.g)u o
=0 so that

e’ (N-v)="2 1[N "Ll b= 3 I8 L s

= 2 IR BT 0=2 3] (@O (D) T OB E b
=5 S IR Q-+ DL, ("B o= SR+ Q1)

THEOREM 3.4. ® and 7 are both flat if and only if yp.q 1S a horizontal sec-
tion with respect to T:9V.

COROLLARY 3.5. w s flat ¢f and only if rp.p-1 ts a horizontal section with
respect to TPV,

PROPOSITION 3.6.
(i) For any xeM, uers'(x), X, YT .M,

(@O )& (d7 p.p-1)" 00T X D)200 Y (9)=(),

(@O@ ™)K (dyp.p-1) 0T X D)oY O)=[u, —*Q(*HEX, *HEY)],
(@@ (dyp.pr) #00 X Y000~y )=y 9Q(HEX, VHEYY],
(@O )& (AT p.p-1) @007 X )oY 2)=0.

(ii) ”(dTP-P-l)Vwa—lXH)”z(x):”(dTP-P-l)VwOwﬂlX(—)”%(r) for any xeM, Xe
T.M.

(iii) € (rp.p-)(e(x) =25 (drp.p-1)V ' EP |2y = [|°Q1l% for anv xEM,
uenpl(x).

Proof. (i) It follows from Corollary 2.17. (ii) From (i), we get

”(drp-p-—l)vwow_lXH)H?(I): %1”/CT((dTBP—l)Vwow_lX(+))w<>a)_lE1(,_)”3(1‘)

=1

m . 1 »
3 =R HX, “HYE )= 52 1°QHYX, *HYE)|

o

- gl [£1((dyp.p-)7 0T X )00 B2 oy =][(d7p.p-1)V 0T X T )20 .

(iii) It follows from (ii).
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Let V¥ be the induced connection in Ker dx from -9V and #(©'9V) be the
induced connection in 7 !T(P-Q) from 9V and #V be the induced connection
in X from *(*'9V). Notice that I:(Kerdr, VV)—(X, 4V) is not connection-
preserving but I: (y' Ker d=x, 'V")—(y ' X, 77'4V) is connection-preserving, where
"V (resp. 77'*V) is the induced connection via 7 in 77! Ker dx (resp. 7 '.X) from
V¥ (resp. *V) [12, Theorem 1.5, Corollary 1.6].

PROPOSITION 3.7. For any X, Y €X(P-Q),
(i) I(VH(AD Y )="""4VE Uy,
(i) £OVE(D)'Y ) =pFVE Uy p*.

LEMMA 3.8. For any X, Y, Wex(P-Q),
(oo (P VE )y p )W )=(poT "N VE Uy 0 Y W)= A((F OV 1Y), WH).

Let "V¥(d7y)” be the vertical second fundamental form of y with respect to
P-Qy (definition in [117). 7 will be called a covariantly horizontal section with
respect to 79V if "VV(dr)"=0.

PROPOSITION 3.9. For any ucsP, veQ, X, Y, WeT,.o(P-Q),
(1) V)X, Y HW)=FWeuX, Y, W),
(i) &(VVdY(XT, Y ) (W)=0.

Proof. (i) From Proposition 3.7 and Lemma 3.8,
£V (X, YW =£VE(@DYY D) —£1(@7) (VY )W)
=(p" VR Uy e 01 )W) — (07 p. gy yvo 0 )W)
=(po7 Vg Upe 0 )W) —(Z ATV Y, WH)T
=(poT T HVECUye 0L YIW)—F (P OV 1V ), W)
=(0+(P"V5 ey 0 )W).

(ii) It follows from (i) and [9, Lemma 4].
Notice that "VV(d7)"(X7, Y*)and "V"(dy)"(X*, Y7) de not vanish, in general.

COROLLARY 3.10. For any ucP, veQ, X, YET,.(P-Q), WeKer (0O n)y-v
(@O w1V D)V (X, YIIW))
=[(w, v), — TR+ (VX T, W).
Proof. It follows from Propositions 2.7 and 3.9.

THEOREM 3.11.
(i) ® and 7 are both parallel 1f and only if
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V(dr)Y (Ker (@O9)y.0, Ker (@O9)y.0)=0, for all ueP, vEQ.

(ii) If 7p.q s a covariantly horizontal section with respect to £V, then w
and 7 are both parallel.

COROLLARY 3.12.
(1) w is parallel if and only if

PTGV (A p. 1) (Ker (@001, Ker (@00 )ueo)=0 for all u, vEP.

(ii) If 7p.p-1 is a covariantly horizontal section with respect to T'P7'V, then
® 1s parallel.

Let 77(7)=Trace’VV(dy)" be the vertical tension field of y with respect to
PQY. 7 is called a harmonic section (or vertical harmonic map) with respect to
P-QY if y satisfies the harmonic section equation: ¥ (y)=0.

PROPOSITION 3.13. For any ucsP, veQ, WeKer (@O N)y.n

(@O &' (T (W) =| (1, V), —l—((P’s‘?)“D*‘”Q+(P2§)”D*”Q)(W)) .
2

Proof. From Proposition 3.9 (ii),
£t (P)(W)=Trace &'V (d7)" (o, p))W)+Trace £'("V"(dy)"(p*, )W)
=Trace '("V"(d71)"(p*, p* )W)
so that

@OTXRE PII)=Trace |, v), = 3 (P V"Q+(PHV1F*, 7 )]
=[w, »), 5 (BDH@+(ppyDH Q).

THEOREM 3.14. @ and 7 are both Yang-Mills if and only if rp.q 2s a har-
monic section with respect to £'9V.

COROLLARY 3.15. @ 7s Yang-Mills if and only if yp.p-1 1S a harmonic section
with respect to TF7'V.

§4. Gauss Sections along Object Inclusion Map

In this section, we prepare a general argument on the pull-back Gauss sec-
tions via a C*-map and an application to the object inclusion map ¢ : M—P- P,
Let M and L be C~-manifolds and ¢: M—L bea C~-map. For a real C~-

vector bundle & L of rank r+s+1(<+x), we denote the induced vector
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Cre
bundle from & via ¢ by ¢'¢ —> M. The Grassmann bundle of the r-dimen-
TG, (8)
sional planes associated to &€ is denoted by G,(&) —> L. Let F be a vector
subbundle with rank » of & and y¢=[L 2/—F,C¢&,] be the corresponding Gauss
section into G.(&).

The induced fiber bundle ¢™'G.(&)

TG, (p=1E)

G (p7'&)———— M. Let §: G, (¢p'€)—G,(€) be the induced fiber bundle homo-
morphism with 7c-g=¢-¢m.-¢'F is naturally identified with a vector sub-
bundle of ¢~'& so that y,-ig maps M into G.(¢™'€) and Gy -19=7g°¢.

P76,&) . . . .
M is naturally identified with

Te
Let (&, hg)— L be a real C=-vector bundle with a fiber metric ke and

TOE, )
0(&, he) — L be the orthonormal frame bundle of (&, hs). For the induced

Pre
vector bundle (¢p7'&, #he) —> M, the orthonormal frame bundle O(¢™'€, ?he) is

$roce,
naturally identified with ¢~'0(E, he) —— > M. Let €€ (resp. *~'éC) be the

quotient map O(&, he)—G.(€) (resp. O(¢7'€, “he)—G . (¢7*€)), which is a right
principal O(r)XO(s+t)-fibration. The pull-back vector bundle (7¢, ()€ —
G(&) (resp. (7a, (p-16)) 9 '€)—G (¢ '€)) splits via 7g () (resp. 7g,(p-10)) into
CKDPK* (resp. ¢ 'CK®? '¢K*) where

& &
EK=[0(E, he) = G EIXART, 04,1), CK*=[0(&, he)=> G(E)IXA0,, R+
(resp. ¥ CK=[0(p71€, *he) > G (9~ E)] X (R, Os),

i,
PICRA=[0(p7'E, *he) — Go(@ ' E)IX (0, R**Y)

and ¢: O(r)XO(s+1H)CGL(R™:*%) is the natural linear representation of O(r)
XO(s+1). There are natural vector bundle isomorphisms; ¢ Y(°K)=¢"'¢K,
FIEK =K, 37 End (g, ) ' €)=ZEnd((Tg , (p-10) (@71 E)).

As in §3, we set *X={(r, —«")|k€Hom (K, °K*)},

¢71 K ={(k, —&") | k&Hom (* 'K, *T¢K )},

Under the natural identification ¢‘1("’JC)E9°"€JC, there is no confusion when
we write ¢: KX —CK. €I and ¢7'¢I are defined by

°I': Ker dmg )= K ; (d°Q)pAf— E- A E™,
07T Ker dmtg, pm1e)2? 705 (A9 AL > Eo Ao B

(E€0(&, he), ENEO(¢"8, ?he), Aso(r+s+1)), respectively, where A¢ is the f-
component of A and f is the orthogonal complement of o(¥)Xo(s+i{) in o(r+s+¢)
with respect to the Killing-Cartan form of O(»+s+1). C=-fiber bundle homo-
morphism &: G.(¢™'€)—G,(€) maps each fiber of G.(p~'€) onto that of G,(&)
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so that the differential dg: TG, (¢™'&)—TG (€) maps Ker dzm, ,-1¢) to Kerdag (o).
Let (d¢)V: Kerdmg (p-1ey—Ker dmg (e, be the restriction of d@ to Ker dng (-1
Then €I:(d@)V=@,* ‘I

The induced linear homomorphisms between C*=-sections are denoted by €I,
7¢I @, and (d@)™.

Let (&, he, €V, Yw) be a system of a C*-vector bundle with a fiber metric
he, a covariant differentiation ¢V compatible to 4 and the connection form Ve
of ¢V. The induced system via ¢ is denoted by (p7'&, %he, #(°V), ¢¢Dg).
Notice that

(d¢)¢-;gc(g)(Kerﬂa"“’V’w,,,_;gc(g))cKerEVa);(?_lgC(g)) for any E€0(p™€, *he)
and (d@)Ve(dy,-19)"=(d74) o dep .
PROPOSITION 4.1.
i) (d@):T-M)=0  for all x€M
if and only if y,-13 is a horizontal section with respect to ¢(°V).
In the case of L=P-P~!, $=Ker dmp.p-1 and p=¢, we have
COROLLARY 4.2.
(drp.p-)in(de).T-M)=0  for all x&M
if and only if *Yp.p-1 is a horizontal section with respect to ¢(**F7'V).

From Proposition 3.6 and the above corollary, we have

THEOREM 4.3. ® is flat if and only if yp.p-1 is a horizontal section with
respect to <(F'P7'V).

Henceforth let (M, 2¥g) be a Riemannian manifold. Proposition 3.6 implies
that :

PROPOSITION 4.4,
1
e”(erp.p-z)(x):?e"(rp.p-l)(s(x)) for any x&M.

Let g be a Riemmanian metric on L. G,(&) (resp. G.(¢7'€)) has the
horizontally lifted metric by Vo (resp. ?‘®Vw) and its Riemannian connection
V (resp. #V). Let V¥ (resp. #V”) be the induced connection in Ker dz¢_s) (resp.
Ker d7g (,-1¢)) from V (resp. #V) and 79V" (resp. 7¢-1*V") be the pull-back con-
nection via yg (resp. 7,-1g) from V” (resp. V?).

Note that ?(¥(¢I))=7¢-1%(P(°I)) is connection-preserving [12, Theorem 8(2)].
Let 7¢-1%(d@)V be the induced linear isomorphism between C=-sections via 7,-1g.
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LEMMA 4.5. 7e-19(d@)VeTo-197V =To-13(3(V"))oTo-19(d 5)V.

By a straightforward computation using the above lemma, we have the
following formulas analogous to [2, Proposition 2.20]:

PROPOSITION 4.6.
(1) 7o 3(d@) V(e 17V (d7,-19)"(X, V)
=(dra)" (*(*V)d@)o(X, Y )+17V"(d19)" (d@)= X, (d).Y)
for any xeM, X, Y&T .M, where LV is the Riemmanian connection of Lg.
(i) 7o 7(de)V(tV (1 -19)z)
=(d79)(e(@))+ 3V (dre) (dg)s ., (d9):E.)
for any xeM, where {E,}T, is an orthonormal basis for (T .M, 2" g).

Proof. (i) Extend X and Y to local vector fields. The above lemma im-
plies that

o= (d @) V(e IV (dy,-19) (X, V)
=Te13(d @)V 1 #VH(d 7o -10)" Y ) ~Te 15 (d @)V (dy p-1a) MV xY )
=¢7TIVE(dr9) (d@)Y )—(d19)" (d@)(*VxY))
=71V dra) (d)Y )+(dra) (?(V)x(d@)Y )—(dr2)" (d@)(*V£Y))
=TTV x(d72) (d)Y )+ (d18)" (*(*V)x(d@)Y ) —(d )"V Y))
="V"(drs)"(d@)X, (d@)Y)+(dra)"(* HVde) X, Y)).
(ii) It follows from (i).
COROLLARY 4.7. If ¢ is totally geodesic, then
(1) Te=1 % (d@)V (-1 IVV(dy,-18)" (X, Y)N="TV(dra)" (d). X, (d¢):Y))
for any xeM, X, YT .M,
(i) TRV (1p10)0)= D7TV(Ars) (dg)sE,, (dp):E)
for any xM.
Even if ¢ is totally geodesic, vertical harmonicity of 7,-i¢ generally fails

to inherit from that of ys. But an exceptional success lies in the case of p=¢,
g=Ker dﬂ.’p.P~1.
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PROPOSITION 4.8.
(1) TPP YA V(TP (A pp-1) (X, Y)=TPPTVY(dyp.p-1) (d€):X, (de)2Y)
for any xeM, X, YT M.
(ii) E“"P"(de')cv(f"(erp-p—x)x)zé PP (drp.p-0)"((d€) E,, (de):E.)
for any x&M where {E,}[~ is an orthonormal basis for (T .M, 2"g).
COROLLARY 4.9.
PPV (dyp 1) ((d8), T oM, (de): T-M)=0  for all x€M
if and only if rp.p-1 ts a covariantly horizontal section with respect to *(*F7'V).

THEOREM 4.10.  ¢s parallel if and only if *yp.p-1 is a covariantly hori-
zontal section with respect to *(£*P7'V).

COROLLARY 4.11.

% TPPIGV(dypp-1)'(de)2E,, (de)sE)=0  for all x&€M

1=1

if and only if *7p.p-1 is a harmonic section with respect to (©*P7'V).

THEOREM 4.12.  is Yang-Mills if and only if *rp.p-1 is a harmonic section
with respect to <(F*F7'V).

§5. Reduction of Target Fibers

Let H be a Lie group which admits a bi-invariant metric and H, be a closed
subgroup of H. We consider a right principal H-bundle ¢ over a Riemannian
manifold M, a principal H,-subbundle Q, a reduction map of structure group
i:0—% and a right connection form @ which is reducible with respect to i.
The @- (resp. i*@-) horizontally lifted metric on @ (resp. Q) is denoted by %sg

(resp. fiag).
PROPOSITION 5.1.
(i) (@DuS"=(dD}S, (dD),ST=(dD¥S for any vEQ, SETQ.
(ii) 7:(0, %sg)—(@, £g) is an isometric embedding.
(iii) (Vdi(S, T") =0, for all vEQ, S, TETQ.

Proof. (i), (ii) trivial. (iii) Extend S and T to local vector fields. The
restriction of i to each fiber of Q is a totally geodesic embedding into a fiber
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of @ so that ((Vdi(S”, T"))V=0. On the other hand, from (i) and [12, Lemma
1.4],

&(Vdi(SE, T")=&(*V (a1,su(dD) TV —(dD)(“VsuT"))
=2d (ap,sH(@(dD)TY)—a(di)VsuT") =" (T d)sun(*®)T")—@*w)(“VsuT")
=04 su(@*@)T")—2d su(@*@)T")=0.

Let H,, be another closed subgroup of H and Q/H,NH,, ¢/H, be the H,N\H;-
orbit spase of Q, the H-orbit space of P, respectively. The canonical quotient
maps are denoted by %z, :Q—Q/HNH, %x : 2—P/H,. 1 is right H,-
(therefore H,NH,-) equivariant so that there uniquely exists i: Q/H,\H,—2/H,
such that iem,p nu, =% /m L.

Note that Qmynm,, P/u, is associated to Q, ®, and let §/HonHig, 2ihg be
the horizontally lifted metrics on Q/H,NH,, ®/H, by i*®, @, respectively.

PROPOSITION 5.2.

(1) @Dyaypnn,mZ" =005 npnm,wZ, (@Dynnn,wZ?=ADE npnnwZ,
for any v€Q, ZETnnm,(Q/HiNH,).

(i) i:(Q/HNH,, Y nHig)—(P/H,, £1™1g) is an isometric embedding.

These metrics make 7,5z, (Q, ,58)—(Q/HN\H,, YFHnE1g) and 7y, :

(@, £g)—(@/H,, £/%1g) into Riemannian submersions with totally geodesic fibers.
We write the associated orthogonal splittings as follows:

To=Ker d7,pn,BKer d7/ppnn)* 5 S=Sa+Sa,
Te=Kerdn,z,OKerdm/z ) ; V=Vo=V4.

PROPOSITION 5.3.
(dDpSar=(d0)pS)ev, (dD)ySa=((dD)sS)s, for all vEQ, SETQ.

We denote the horizontal lifts of ZeT(Q/H,NH,), UeT(®/H,), by 4 Z,
KU, respectively.

PROPOSITION 5.4.
(1) KZV=(XZ)Y, AZP=(KZ)", for all v€Q, ZETynn,w(@/HiNH,).
(ii) HU"=HUY, JUR=(HU), for all ueP, UET yu,w(P/H,).
(i) H( @Dz ynm, W =(dDIW, H (At oty dWE=(dD) AW,
for all veQ, WeT . nypnu,m(Q/HNH)).
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PROPOSITION 5.5.
(Vdi(Z, W"))'=0, for all v€Q, Z, WETrnnmr,w(Q/HNH,).

Proof. Extend Z, W to local vector fields. From Propositions 5.1, 5.3, 5.4
and [9, Lemma 1],

H(OVAUZ, W) =(H P (44, dDOWY ) — (I (di)(QHon Iy WV )Y
=((*VacanzI(dOW?)50) —(di) I (A HonE1y W)V
=((*Veapaz(@DIWY ) g0)” —(dD) OV sz W) )"
=((*Vian az(dDIW —(dD)V 4z HWY) ) o
=(((Vdi(KZ, IW"))a=04=0.

Let 7,: M—Q/H,NH, be a C~-section (if exists). 7,=i-y,: M—2®/H, is also
a C=-section.

PROPOSITION 5.6.

(1) @r)'Y=(di);,x(d7)"Y), for all xeM, YET M.

(i) e"(ro=e"(ro.

(iii) "VY(dr)"(X, Y)=(di)yo (VY (d1)"(X, Y)) for all xeM, X, YET .M.
(iv) 7)) =dDro) (" (r0)z) for all x&M.

Proof. (i) It follows from Proposition 5.2 (i). (ii) From (i) and Proposi-
tion 5.2 (ii). (iii) Extend X, Y to local vector fields. From (i) and Proposi-
tion 5.5,

NV (dr)V (X, V)=V ) x(d7)"Y —(dr)MV Y)Y
=PV (s carg x(AD(AT0)TY ) —(di)(d 1)’ "V Y )"
=V (arp x(di)(d70)"Y ) —(di)(O 1Y (40, x(d 7)Y )Y
F((di)(QHNY 410 x(dT0) V) —(di)dT0) MV 5Y)
='Vdi(d7,X, (d7)"Y)+di(V (d1o)" (X, Y N=di(V"(d7.)" (X, V).
(iv) It follows from (iii).

COROLLARY 5.7. 7, #s a horizontal, covariantly horizontal or harmonic section
if and only if 7, is a horizontal, covariantly horizontal or harmonic section, re-
spectively.

Let (&, he), O(&, he) be a system of a C>-vector bundle of rank »+s+1¢
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and the orthonormal frame bundle of (&, he), whose structure group is
O(r+s+t). For a vector subbundle S of rank r+s, the inclusion is denoted
by i¢:S—&. The orthogonal splitting £=8@S* induces the adapted (c.f. [7])
orthonormal frame bundle O(SPS*, hsPhs.), whose structure group is O(r+s)
X O(t), where hs, hs, are the restrictions of h. to S, S*, respectively. The
inclusion 2i%: O(SPS*, hsBhs,)—O0(&, he) is right O(r+s)XO(t)-equi-variant.

O@r+s)XO0WNOF) X O(s+1)=0(r) X O(s) X O(t)

so that %% is reduced to the inclusion ¢77§: G.(S)—G.(€) which assigns r-plane
F, in S, to 1§F, in &, for x&M. A vector subbundle & of S (if exists) defines
the Gauss sections:

18 M—>G(S); x—F s, 761 M— G (&); x —1i5F,.

Let ¢V be a connection in & compatible with k., which preserves all C>-
sections of S (therefore S*).

PROPOSITION 5.8. e"(78)=€"(7&).

PrOPOSITION 5.9.

15 is a horizontal, covariantly horizontal or harmonic section with respect to
SV if and only if

1§ is a horizontal, covariantly horizontal or harmonic section with respect to
€Y, respectively.

In the case of r=p, s=t=m, €=¢ 'T(P-P), S=¢'E, ¢V=PP'}) G=
e 'Ker dmp.p-1, 78=°r5b-1 and r§=°7p.p-1, from Proposition 2.16 and [7, Chapter
VII], we have the followings:

PROPOSITION 5.10. €"(°75:p-1)=€"(°rp.p-1).

PROPOSITION 5.11.

r$p-1 s a horizontal, covariantly horizontal or harmonic section with respect
to V) if and only if

‘rp.p-1 1S a horizontal, covariantly horizontal or harmonic section with respect
to *(P'P7'V), respectively.

By combining Theorems 4.3, 4.10, 4.12 and the above proposition and corol-
lary, we obtain the main theorem :

THEOREM 5.12 (THEOREM D).
(i) $I*QUi=e"G)®) for all xEM, uems(x).

(ii) s flat, parallel or Yang-Mills if and only if *y5h-1 is a horizontal,
covariantly horizontal or harmonic section with respect to V7, respectively.



(8]
[9]

[10]
(11]

(12]
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