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§1. Introduction.

Let M and N be two compact connected Riemannian manifolds. A smooth
mapping F: M — N is called harmonic if it is an extremal of the energy.
Moreover, if harmonic mapping F: M—N is an isometric immersion, then F
is a minimal immersion. An isometric immersion F: M —N is called totally
geodesic if F carries every geodesic of M to a geodesic of N. A totally
geodesic immersion is especially minimal. The existence and construction of
minimal immersions and harmonic mappings are interesting and important
problems in various situations. In the previous paper [1], we construct har-
monic mappings and minimal immersions from compact Riemannian homogeneous
spaces into Grassmann manifolds. In this paper, we study different construction
of harmonic mappings, minimal and totally geodesic immersions of compact
Riemannian homogeneous spaces into Grassmann manifolds (see Theorem A
and B).

The author would like to express his hearty thanks to Professors Tsunero
Takahashi, Katsuya Mashimo and Hiroyuki Tasaki who gave him valuable
advice during the preparation of this note.

§2. A construction of harmonic mappings and minimal immersions of
compact Riemannian homogeneous spaces into Grassmann manifolds.

Let G be a compact connected Lie group with Lie algebra g and K be a
closed subgroup of G with Lie algebra f. Take a bi-invariant Riemannian
metric <, > on G and denote also by <, > the induced Ad(G)-invariant inner
product on m=*¥f. Thus M=(M", <, >)=G/K is a compact Riemannian homo-
geneous space. The subspace m of g is naturally identified with the tangent
space T.(M) of M at o=n(e), where =: G—M is a natural projection.

Take a nontrivial real spherical representation (p, V) of (G, K), that is,
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(0, V) is a nontrivial real irreducible representation of G, and there exists a
nonzero vector v,V such that

o(RYve=1, for each keK.
Take a G-invariant inner product {, > on V. Put
Ve=Ruv,,
Vi=p(my,,
V,=the orthogonal projection of span{p(X)p(Y)v,; X, Y €m}
2.0 to (Vo+V+,
V=the orthogonal projection of span{p(X,)::p(X,)ve; X4, -+, XrEm}
to (Vo+ - +Vi)*,

ey

where we denote the differential representation of p of G by the same symbol
0. Since p is irreducible, there exists an integer m such that

V= g]on (the orthogonal direct sum of K-invariant subspaces),
V.+ {0} for 0<i<m.

Since p is nontrivial, we get m=1. Put Sn=1{0, ---, m}. For subsets P(+ @),
Q(+@) with S,=PuUQ (disjoint union), put Ve =33,epVp, Vo= eV a=
dimVp, b =dimV,. Then V+4Vp+4V, (orthogonal direct sum of K-invariant
subspaces). Put

(2.2) F: M=G/K — G, ,(R)=S0(a+b)/S(0(a)xO0®));
gK— p(2)V p=p(g)S(0(a)XO(b)).

We call G,,,(R) the Grassmann manifold consisting of all a-dimensional subs-
paces in V.

We explain that F is R-full. Let V7 and V§ be subspaces of V» and V,
respectively. Put a’=dimVp and b’=dimVg. Then SO(a’+b’) is considered
as a closed subgroup of SO(a-+b) in a natural manner. So G, , (R) is a totally
geodesic submanifold of G, ,(R). The mapping F is said to be R-full when
the image F(M) is not contained in these totally geodesic submanifolds G-, (R)
with a’+b’<a+b. From the irreducibility of (p, V), the mapping F defined
in (2.2) is clearly R-full.

We prove the following theorem.
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THEOREM A. F is a nonconstant R-full equivariant harmonic mapping. If
the isotropy action of K is irreducible, then F is a mummal immersion. In parti-
cular, of we put P={0}, Q={1, ---, m}, then F is a minimal immersion of M
into a projective space.

In order to prove this, we prepare a few lemmas. First, we note that
omV,.cVo+ -+ +V4yy for k=0, ---, m, where we put V,.,={0}.

LEMMA 2.1.
oV, CV  +V e +Viin for k=0, 1, -, m, where we put V_,={0}.

Proof. We prove this by induction on k. It is clear when £=0. We
assume that this lemma holds until 2. For 0<:<k—1, by the hypothesis of
induction, we get <p(m)V 4.1, V0=V 41, p(m)V >={0}. Q.E.D.

We denote an orthonormal basis of m and f by {E;}is,<» and {E,.;}i<js1
respectively. We remark that the Casimir operator

n+l
C=3 o(Byy

of p is a scalar operator because C is a G-invariant symmetric transformation
and p is irreducible. For v=V, we denote the V,-component of v by vy,.

LEMMA 2.2. X7.0(E)(eE W)y, EVe+Vii for each v, €V,

Proof. We have

VisCv= EP(EI)(p(Ez)vk)Vk-i- g p(E.) (10(15'1)111»)11,,_,-i—:;E)r:p(Ez)(p(El)vk)V,z,L1 .
Hence we have by Lemma 2.1

3 OB OE Dy EV itV b

Since V', is K-invariant, we get the conclusion. Q.E.D.

The Lie algebra u of SO(a+b) acts on V, naturally. Put {=Lie(S(O(a)X
O®)) and p= {Teu; TVpcV,y, TVec<Vpt. Then u=I+p is the canonical

decomposition of u. For T'=u, we denote the p(resp. I)-component of T by
T(resp. T).

LEMMA 2.3. 7.1 (0(E ) e(E.),+p(E)pe(£.))=0.
Proof. For each v,€V,, we have

n l
E P(Ez)2vk=cvk—]§ O(Eni ) €V
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Since
3 p(E)'= 33 (0B )ip(E s+ 0EDpEN)+ 3 (0E)p(E)i+pE)0(E Ny,
we get the conclusion. Q.E.D.

Proof of Theorem A. Let Hep denote the tension of F at 0. Then by
homogeneity F is harmonic if and only if H=0. By (4.1) in [1], we have
H=31_[p(E) p(E,)]. From Lemma 2.3, we have

H=2 3 p(B)ip(E)y=—2 3 p(E)yp(E.):

If 0,1=Por 0, 1=Q, then we have Hy,=0 by p(E,)w,=0. If 0P, 1€Q or
0=Q, 1P, then we have Hy,=0 by p(E,)w,=0. Hence we have H|V,=0.
We assume that H|(V,+ -+ +V;)=0. We will prove H|V,,,;=0. Clearly, we
have HV,,,=X}f}V,. By the hypothesis, we have
J J
0=(H BV, Vye)=—( BV, HV,.0).

Hence we have HV .,V ,.1+V .0+ V,.s. We define two maps Xp, Xo: Sn— 10, 1}
as follows:

1 (keP) 1 (k€Q)
xp<k>={ Lok ={

0 (k=Q), 0 (keP).

For each v,,,<V,.;, we have by Lemma 2.1 and the hypothesis of induction

(lé P(Et)IP(Ei)p)UJH

k+1

=X(i+D Z 1o 5 | 3

=11 -1

XQ(I)(P(Ez)(P(Ei)U;+1)V,,)Vl

k+1

HU+D 2 1) 3 3T OB PE I, ),
=2r(i+De(+2) 2 (0B OE Iy )v 10 1o,
H A+ DU +2+3) 2 (OENOE 1)y v 1

LU+ DEG+2) 2 (PENOE v 12 v 0,

FLeU ARG +DAG+3) 2 (OB PE I, 12)v 127 115
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(Z pENPE )0,

e

1

=%+ S 10 3 3

=11 -1

xQ(l)(P(Ez)(P(Ez)VJ+1)V,,)Vl

D B X E 3

1=11 -1

-

oo (ENO(E Y0, v v,

=1p(+ DAl +2) 2 (PENOE D, v 1o )v s
LG+ D (+2+3) 2 (BN OE N Dv 1 Jv 1
Aol + DX (+2) 3 (PENOE I s)v 1)1 1o,

+Xe(G+ 1)759(1'+2)7CIA>(]'+3)§l (EEXOE V47117 44 -

Hence, if j+1, j4+2€P or j+1, j+2€Q, then we have (27-,0(E.)0(E))ws=
0. If j41=P, j+2=Q or j+1=Q, j+2= P, then we have by Lemma 2.2

(2 pE Lo EDJori= 3 OEOEN v, )7 11, Y yoa,

(2 0E)OED,y01= 2 (I OE I, 1)v50)r515=0.

Hence we have H|V,,,;=0. Therefore F is a nonconstant harmonic mapping.
We show that F is an isometric immersion if the isotropy action of K is
irreducible. We define a symmetric linear transformation A of T,(M) by

X, AY >)=(F:X, FyY) for X,YeTM),

where (, ) denote a SO(a-+b)-invariant Riemannian metric on G, ,(R). Since
A is a K-homomorphism, A is a scalar operator by the irreducibility of (G, K).
The scalar is clearly nonnegative. So if F were not an isometric (more
precisely, homothetic) immersion, then F,=0. This means that Vp, andV, are
G-invariant (see (2.1) in [1]). This is a contradiction. Hence F is an isometric
immersion. Q.E.D.

Remark 2.4. Put
F: M=G/K— S"'={eV; |v|=|vll} (cV=R"); gK— p(g)v,.

Then we can prove that F is a harmonic mapping into a sphere in the same
way of the proof of this Theorem (see [2] and [3], Proposition 8.1, p.21). =

Remark 2.5. Let (p, V) be a complex (resp. quaternion) spherical representa-
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tion of (G, K). Put
Ve={eV; plklv=v for each k= K}(+1{0}).
If there exists a nonzero vector v,&V x such that
2.3) {p(@e, vo)ER for each g=G,

then we can construct a harmonic mapping from M into a complex (resp. qua-
ternion) Grassmann manifold in the same way of Theorem A. Condition (2.3)
means

PROPOSITION 2.6. A complex (resp. quaternoin) spherical representation (p, V)
is satisfied with (2.3) if and only if there exists a real spherical representation
(z, W) of (G, K) such that

24 (o, V)=(z, W)°(resp. (z, W)™),

where (t, W)© (resp. (z, W)#) denote the complex (resp. quaternion) representation
of G obtained by extension of the coefficient field of (r, W) to C(resp. H).

Proof. Clearly (2.4) implies (2.3). Conversely we assume (2.3). If we put
=R-linear span of {p(g)v,; g=G},
then (2.4) is concluded. Q.E.D.

If (G, K) is a compact symmetric pair (see §3 for definition) of rank one,
then every complex (or quaternion) spherical representation (p, V) of (G, K) is
satisfied with (2.3) (see [3], p. 25, Cor. 8.2 and [1], §3, Lemma 3.3 (3)).

We prepare a few lemmas for use later (§3).

LEMMA 2.7. (XD p(Xe)vo = pX:y) -+ 0Xzerr)vo (mod Vot - +Vy) for
X, o, XpEm, 1=6,, where we denote the symmetric group of degree k by S,.

Proof. We have
X1 p(X )X 1) 0(X #)vo
=pX 1) pX,-1) X+ ) 0(X)p(X 1 42) (X )00
+oX) - p(Xi-)o([Xsy X1 DX 1s2) - 0(X ),
Hence we get the conclusion Q.E.D.
LEMMA 2.8.

Vw=the orthogonal projection of span{p(X)*vy; Xem} to (Vo+--+Vii)*.
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Proof. We prove this- by induction on %. It is clear when £=0. We
assume that this lemma holds for k. From this, we get

Vr+1=the orthogonal projection of span{p(X)p(Y)*v,; X, Y =em}
to (Vo+ - +V)t.
From Lemma 2.7, we have

oX+T Y= (FH

=) )l*p(X)zul_sqo(Y)-*rv0 (mod Vot -+ +V,)
for (=1, 2, -, k+2. By the formula of Van der Monde, we have
1 1 1
det 20 o1 ... QR+l = I (—#=0.
: : " : 15ty Sk +2
(k+2)° (k+2)1 e (BA4-2)E41

Hence the vector o(X)p(Y)*v, is a linear combination of o(X-+Y)**y,, -
PX+(R+2)Y )y (mod Vo+ -+ +V,). Q.E.D.

’

§3. A construction of totally geodesic immersions of compact irreducible
Riemannian symmetric spaces into Grassmann manifolds.

Let (G, K) be a compact irreducible symmetric pair, that is, G is a compact
connected Lie group with Lie algebra g, K is a closed subgroup of G with Lie
algebra f, and there exists an involutive automorphism @ of G such that K lies
between the identity component (Ky), of K, and Ky={g=G; 6(g)=g}. And
the adjoint action of K on m is irreducible.

An Ad(G) and #-invariant inner product <, > on g naturally induces a G-
invariant Riemannian metric on M=G/K. M is a compact Riemanniau sym-
metric space with respect to the G-invariant Riemannian metric. Since @ is an
involutive automorphism, we have a canonical orthogonal decomposition of g:

g=t+m.
Put F as in §2 with P={even}, @= {odd}, then we have the following theorem.
THEOREM B. F is a totally geodesic immersion.
In order to prove this, we prepar the following lemma.
LEMMA 3.1.
o)V, Vs 4 Vs for k=0, 1, -, m, where we put V_,=V n.,={0}.

Proof. We prove this by induction on k. It is clear when k=0. We
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assume that this lemma holds until 2. From Lemma 2.1, it is sufficient to
prove {p(m)V iy, Vierd=1{0}. When k is even, put k=2/. For X<m, by the
hypothesis of induction, we get

oXw.eV,,
X)), €V, +V,,
X))V +Vot - +V 4,
PXPH eV + Vst - + V.
For Yem, we get
-1
P NP0y = 0P 0~ T oV NP 0,

By the hypothesis of induction, we get

lg,: o)X 00y, EVot Vot - +Var.
For each Z=m, we have
<p(Y)p(X)**1ve, p(Z2)**1ve)
=00 (O™ 0y 33 00O 01y 2 (D 00y,

=W N ) O 00 )

=¥ )XY o)y 4y (0@ V0)vyy, >
From Lemma 2.8, it is sufficient to prove
() p(X)2 2, p(Z2)**we»=0  for each X,Y, Zem.

For X,, -+, Xo142, Yy, -+, Yyu€Em, 6=6,,.,, by the hypothesis of induction and
[m, m]ct, we have

<,0(X1) P(le+z)vo: P(Yl) P(Y21+x)vo>
=<P(Xa(x)) P(Xa<zz+z))vo, p(Y,) P(Yez+1)vo> .

Hence we have
oW )H*2,, p(Z)+ley=Lp(W )21+ p(Z)vs, p(Z)* p(W)ve)
=LoW)* 0(Z)*vo, p(Z)* 7 p(W)*ve)

={eW)! 1 p(Z)"*'ve, p(2)' p(W)** 00>
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={p(2) o) 1o, 0(2) o) 00>

=0 for each W, Zem.
Hence we have

0=<p(Y +mX)***v,, p(Z2)**'vy>

2l+2

— 2 (le‘2 )mt<p(Y)zl+2-tp(X)tvo, p(Z)zl+1vo>

1=0
for X, Y, Zem, m=1, ---, 20+3.
By the formula of Van der Monde, we have
1 1 - 1
det 2° 20 22 =TI (j—5H#0.
1s1<j520+8
214+3)° (21+3) -+ (21+3)2t+2

Hence we have <o(Y)p(X)**'v,, p(Z)**'vy»=0. When k£ is odd, we can prove
this in the same way. Q.E.D.

Proof of Theorem B. We have p(m)cp by Lemma 3.1. Hence F is a
totally geodesic immersion. Q.E.D.

Remark 3.2. Let (p, V) be a complex (resp. quaternion) spherical represen-
tation satisfied with (2.3). Then we can construct a totally geodesic immersion
of M into a complex (resp. quaternion) Grassmann manifold in the same way
of Theorem B.

The next example is not contained in Theorem 3.1, [1].

Example. (G, K)=(SUn), SO(n)) (nz=3).

Since G acts on C™ naturally, G acts on a complex vector space W=(ag, W)
=S*C™")=span{u-v=1/2(u@v+vQ@u); u, veC"}. Let {e;}1s.s» denote the can-
onical basis of C*. Put v,=3"_,e2cW. Then we have o(k)vo=v, for each
k=K. Put (p, V)=(g, W)g. Then (p, V) is a nontrivial real spherical repre-
sentation of (G, K) (see Lemma 3.5). The canonical inner product on C"=R?"
natually induces a G-invariant inner product on V. We define K-invariant
subspaces V, as in (2.1). Then we have

VOZRUO’
Vi= 2 RV=lece/t{ X xv=let; xeR (sisn), 3 =0},
1gi<fsn {=1 i=1

Vo= 2 Rei-eﬂ-{ixief; xR (1<Kign), ixi=0},
1s1ljsn 1=1 =1
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Vs_——R‘V "‘lvo,
V=3V,.
=0

Put F as in (2.2), then F is a minimal immersion. Since V.=V, V,2V,
(K-isomorphic), this example is not contained in Theorem 3.1, [1].
In order to prove the irreducibility of (o, V), we prepare a few lemmas.

LEMMA 3.3. Let (g, W) be a complex 1rreducible representation of a compact
connected Lie group G. If there exists a weight A of (g, W) such that —2 is not
a weight of (a, W), then (¢, W)g is a real irreducible representation of G.

Proof. If (e, W)r were not irreducible, then there exists a real representa-
tion (o, V) of G such that (g, W)=(p, V) by Lemma 2.2, [1]. Let J denote
the conjugation of W with respect to V. Then J is a conjugate G-linear map-
ping with J2=1. Let T be a maximal torus of G with Lie algebra t{. Let v;
be a nonzero weight vector of A, that is,

o(Hy,=~—1A(H)w; for each Het.
Since J is conjugate G-linear, we have
oH)Jv,=—~—1A(H)Jv; for each Het.

Since —2 is not a weight, we have fv;=0. Since /J?=0, this is a contradic-
tion. Q.E.D.

LEMMA 3.4. (o, W) is a complex irreducible representation of G.

Proof. We first let E,, denote the matrix, whose 7-th row and s-th column
are given by d;.0,;, i.e., E,, has a 1 in the s-th row and j-th column and zeros
elsewhere.

It is sufficient to prove that the complexification 8!(n, C) of 3u(n) acts on
W irreducibly. Suppose W,(+ {0}) is an 8l(n, C)-invariant subspace of W. In
order to prove W,=W, first we show v,&W,. Let v=icezisn@ri0r :EW,.
Put i=min{k; a,,#0}, jJ=min{/; a,;#0}. We may assume (7, j) % (n, n). If
i=j(<n), then we have W, > a(E,;)v = 2ae:. If /<y, then we have W,>
0(Er)v=2,s1s1010:-¢,. Hence, if i<j=n, then we have W,>a,,ei. If :<j
<n, then we have W,od(E,;)0(E,.)v=a,je:. Hence we get e2cW,. For 1<
i<n—1, we have W,D0a(E,,)%e% = 2¢2. Hence we have v,&W,. Since W=
span{p(G)v,}, we have W,=W. Q.E.D.

LEMMA 35. (p, V) is a real irreducible representation of G.

Proof. Put
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T=SUQ)x--xU()

n-times

and

t= {\/‘_‘Idiag{xl, oy Xaby xR (1Si<n), éxizo}_

Then T is a maximal torus of G with Lie algebrat. For H=+/—1diag{x,, -,
X} €t, we have o(H)(e,-e;)=+—1(x;+x;)e;-e,. Since n=3, this shows that
(p, V) is irreducible by Lemma 3.3 and 3.4. Q.E.D.
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