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HOW TO DEFINE SINGULAR SOLUTIONS

BY SHYUICHI IZUMIYA AND JIANMING YU

Abstract

We shall give a rigorous definition of singular solutions of ordinary
differential equations of the form F(x,y,dy/dx)—0. Our main result clarifies
the geometric meaning of such a definition. All arguments are elementary.

0. Introduction.

How to define singular solution? We shall consider this philosophical and
stimulative question. However, we stick to ordinary differential equations of
the form F(x, y, dy/dx)=0. Even for such elementary differential equations,
the above question is still significant.

In classical treatises of equations (Caratheodory [2], Courant-Hilbert [3],
Forsyth [4], [5], Ince [2], Petrovski [9]) the discussions of equations with
singular solutions are informal. In these, a "general solution" of the differential
equation F(x, y, dy/dx)—0 is defined to be an one-parameter family of solutions
and a "singular solution" is a solution which is not contained in the "general
solution". However, this definition of singular solutions is very confused as the
following example shows:

Example 0.1. Consider the equation y=2p-x — p2, where p—dyldx. In [7]
the "general solution" is given by

y=2p-x-p\

where c is a parameter. It is clear that y=0 is also a solution, but it is not
contained in the "general solution". Then y=0 must be the "singular solution".

On the other hand, we have a two parameter family of solutions:

If we fix />(0)=d^0 and put c=c2c
2
u then we have x=(2/3)p+(c/p*) and
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y—2p'X — p2. But, if we fix />(O)=Ci=O, then we have y=0. Moreover, if we
consider this family of solutions around a point (#„, 0, 0), xQφ0, then we have
the relation x(0)=(2/3)Cι+cz=x0f so that, we have an one-parameter family of
"solutions" around (x0, 0, 0):

Of course, ;y=0 is contained in this family of solutions.

In this note we intend to give a rigorous definition of singular solutions of
first order ordinary differential equations of the form F(x, y, dy/dx)=Q. In [6]
M. and T. Fukuda tried to give a rigorous definition of singular solutions of
higher order ordinary differential equations. Their definition is nearly correct,
however the definition of singular solutions is strongly depend on the definition
of general solutions. The vagueness of the definition of singular solutions is
caused by that of general solutions, so that we should begin to define "general
solutions" in the correct way. The main results of this note can be generalized
to the case of partial differential equations ([8], [10]). In these articles, we
need some techniques of contact geometry. Here, we shall only use a purely
elementary method; most of the arguments are contained in the course of ad-
vanced calculus in the university.

All functions and mappings considered here are differentiable of class C°°,
unless stated otherwise.

1. Basic notions.

We consider a first order ordinary differential equation of the form
F(x, y, dy/dx)=0. If we put p=dy/dx, we may consider F as a function of
(χ> y> P) and assume that F is a smooth function defined on an open subset U
in R3 such that grad FΦ0 at any point (x, y, P)<ΞU. Then S=F" 1(0) is a smooth
surface in U.

We now define the notion of solutions. A smooth solution of F = 0 is a
smooth function y=f(x) defined on an interval (α b)czR such that F(x, f(x),
f'(x))=0. This is the classical notion of solutions of the equation F=0. The
following is the geometric generalization of the notion of solution due to Lie.
A geometric solution of F— 0 is a smooth regular curve γ: (α b)-^F~\0) such
that y'{t)—p(t)x'{t) and ϊ(t)=(x(t), y(f), p(f))ϊn the canonical coordinates system
of R\ Here, we say that γ is regular if 7"(0=(*'(0, 3>'(0, P'(t))Φ(0, 0, 0) at
any t^(a b). In the terminology of contact geometry, the above curve is called
a Legendrian curve (see [1]). Then we can prove the following simple lemma
(just an exercise for students).

L E M M A 1.1. Let γ: (a b)->F~\0) be a geometric solution. Suppose that x'(t)

φQ at any t<Ξ(a b). Then there exist real numbers c, d, diffeomorphism φ:(c d)
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>(α b) and a smooth function f defined on (c d) such that ϊ°φ(x)=(x, f{x), / '(

According to the above property, we may define the notion of singular
point of solutions. We say that tQ is a geometric singular point of the solution
y if x /(ίo)=θ. Thus γ is multivalued around the geometric singular point. It
is clear that £0 is a geometric singular point of y if and only if (x'(f0), y'(fo))=
(0, 0).

On the other hand, there exists a notion of the Legendrian transformation
by which a dual relationship can be set up between one equation and another.
We adopt another coordinate system (X,Y,P) of R* by X—p, Y—x-p—y,
P—x. We refer to the diffeomorphism *L:R3-+R* defined by *L(x, y, p)=
(P, x-p—y, x) as a Legendre transformation. By the definition, we have
*L-\Xf Y, P)=(P, X P-Y, X). If we apply the Legendre transformation to
our equation, we obtain a new equation

F*(X, Y, P)=Fo^L)-ί(X} Y, P)=F(Pt X-P-Y, X)=0

in the new coordinate system (X, Y, P).
If we calculate partial derivatives at the point (Xo, Yo> Po) corresponding to

(*o> yo> Po)> we can show the following:

r 0 , Po)=(Fx+p-Fy)(xo, y0, p0)

FKXo, Yo, Po)=-Fy(xQ, y0, p0)

FKXo, Yo, Po)=(Fp + x-Fy)(xQ, y0, p0).

The following lemma is quite simple but important in the later section.

LEMMA 1.2. (1) Let γ:(a b)-*F-\0) be a geometric solution of F=0. Then
*L°γ: (a b)-*F*'K0) is a geometric solution of F * = 0 .

(2) // t0 is a geometric singular point of y, then tQ is a geometric non-
singular point of *L°y.

If the equation F = 0 satisfies FpΦθ at (x0, y0, p0), then we can locally re-
write this equation in the form p—f{xf y), where / is a smooth function by
the implicit function theorem. This form is far more convenient than the
original one, because there exists the classical existence theorem of solutions.
By the above argument, if F=0 satisfies Fx+p-Fyψ§ at (#„, yQ, pQ), then the
Legendre transformed equation F * = 0 of F=0 satisfies F$Φθ so that we get a
solution of F*—0. Since F=F*°(*L), then we have a geometric solution of
F=0 by Lemma 1.2. Then the point (x0, y0, pQ) at which F=Fp=0 or F=FP=
Fx + p'Fy=0 are satisfied has special meanings. We call (x0, yo, po) a π-smgular
point of F=0 if F=Fp=0 at (x0, y0, p0) and a contact singular point of F=0 if
F=Fp-Fx^rp'Fy=0. We denote Σπ{F) as the set of τr-singular points, ΣC(F)
as the set of contact singular points and DF — π(Σπ(F)) as the discriminant set
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of F=Q, where π(x, y, p)—(xy y). The following lemma shows the importance
of the contact singular set Σe(F).

LEMMA 1.3. Let γ:(a b)-*F-\Q) be a smooth regular curve. If I m a g e d
ΣC(F), then γ is a geometric solution.

Proof. Denote γ(t)=(x(t), y(f), p(t)), then we have

(*) F(x(f), y(t), p(t))=Fp(x(t), y(t), p(t))=(Fx+p FvXx(t), y(t), p(t))=O.

If Fy=0 at γ(t), then Fp=Fx=0 at γ(f) by the above equality. This contradicts
to the assumption that gradF^O, so that we have Fv(x(t), y(f), p(f))Φθ. Cal-
culating the derivative of F(x(t), y(t), />(*))=0 with respect to t, we have

), y(t)y p(t)) x'(t)+Fy(x(jt), y(t), p(t))>y'(t)=O.

It follows that

). y(f)>
^ w " Fv(x(t), y(t), p(t)) Λ W *

By the relation (*), we have

M)=z Fx(x(t), y(f), Pit))
A ] Fyixit), yit), Pit))'

so that we have the relation y'(t)=p(t) x'(t).

2. Results.

In order to avoid the confusion as in Example 0.1, we now introduce the
following notion. Let Γ:ia b)Xia β)-»F~1(0) be an one-parameter family of
geometric solutions of F=0. We say that Γ is a complete solution if

(xt yt Pt\
rank = 2

\Xc yc pj

at any point (f, c)e(α b)x(a β), where Γ(t, c)=(x(t, c), yit, c), pit, c)) and c is
a parameter. If the image of Γ contains a point (x0, y*, poϊ^F-^O), we call it
a complete solution around (xo> 3Ό, Po)> In some classical textbooks (cf. [9]), the
above term is used in a different sense. However, we adopt the above defini-
tion according to the terminology in the theory of first-order partial differential
equations ([2], [3]). We say that an equation F = 0 is completely integrable
around (jt0, yQ) pϋ) if there exists a complete solution of F=Q around (xo> y0, p0).
The equation in Example 0.1 is not completely mtegrable around the origin.
We now state a basic property of complete mtegrable equations.

PROPOSITION 2.1. Suppose that F = 0 is completely integrable around ix0, y0, Po)>
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then (x0, y0, po)^Σc(F) or ΣC(F) is an l-dimensιonal submanifold around (x0, 3Ό, Po)>

Proof. Let Γ: (a b)X(a β^F-'φ) be a complete solution of F=0 around
(*o, yQ, Po). Suppose that (x0, y<>, PO)ΪΞΣC(F), then FyΦθ at (*0, y0, p0) by the
same reason as that in the proof of Lemma 1.3.

We now differentiate the both sides of the equality F(x(f, c), y(t, c), p(t, c))
=0 with respect to c, where Γ(t, c)=(x(t, c), y(t, c), p(t, c)) and c is a para-
meter. Then we have Fx xc+Fy yc+Fp pe=0. It follows from the definition
that Γ(t, c)^Σc(F) if and only if Fy'(yc-p'Xc)=0. Since FυΦθ at Γ(t, c), the
above equality is equivalent to yc(t, c)—p{t, c) xc{t, c)=0. Thus we have

Σe(F)={(x(t, c\ y(f, c), p(t, c))\yc(t, c)-p(t, c)-xc(t, c)=0}.

Since Γ is a complete solution, we have yt(f, c)=p(t, c) xt(t, c), so that
ytc(t, c)=pc(t, c) xt(t, c)+p(t, c)-xtc(t, c).

On the other hand, Γ'\Σe(F)) is defined by the equation f(f, c)=yc(t, c) —
p(t, c). Xc(t, c)=0. If we have ft(t, c)=yct(t, c)-pt(t, c)-xc(t, c)+p(t, c)-xet(t, c)
=0, then pt(t, c) xc(t, c)—pc(t, c) xt(t, c)=Q. This contradicts to the fact that

(xt yt Pt\

rank 1=2.
\^β yc pel

Hence, ft(t, c)Φθ at (f, c)^Γ~\Σc(F)). This completes the proof.

If FpΦθ at (x0, y0, p0), it is already mentioned in §1 and that there exists
a unique solution of F = 0 by the classical existence theorem and this gives a
complete solution around (x0, yOf p0). We can also have a complete solution of
F = 0 around (x0, y0, po)£Σc(F) by the argument about the Legendre transfor-
mation in §1. In fact, we can prove local uniqueness of complete solutions
around any points, however we do not need this fact. Then we omit the
proof.

We now give a rigorous definition of singular solutions. Let γ: (a b)-+
F~\0) be a geometric solution such that Γ(*o)=(*o, yo, ίo) We say that γ is a
singular solution of F = 0 around (xOf yQ, pQ), if it is never contained in any
complete solution around (x0, yo, Po)> We also say that γ is a singular solution
of F=0 in the strict sense around (x0, y0, p0) for any open subinterval (c d)a
(a b), y\(c d) is never contained in any complete solutions of F— 0.

Returning to the equation y=2p-x — p2 in Example 0.1, we can easily show
that ΣC(F)= {(0, 0, 0)}. By Proposition 2.1, this equation is not completely inte-
grable around (0, 0, 0). It follows that the solution y—0 is the singular solution
around (0, 0, 0). However, it is not a singular solution in the strict sense. The
following theorem describes the relation between singular solutions and singular
solutions in the strict sense.

THEOREM 2.2. For an equation F=0 and a geometric solution γ: (α b)—>
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F~ι(0) such that γ(to)=(xo, yQ, p0), the following are equivalent.
(0) F = 0 is completely integrable around (x0, yQ, p0) and γ is a singular solu-

tion of F=0 around (xQ, y0, p0).
(1) γ is a singular solution of F—0 in the strict sense.
(2) There exists a complete solution around any point of γ((a b)) such that

each member is transverse to y.
(3) Image γ^Σc(F).

Proof. (3)=K2). By the same reason as that of the proof of Lemma 1.3,
we have Fyφ0 at γ(0). By the implicit function theorem, the equation F = 0
can be rewritten as y = h(x, p) around γ(fo)f so that, we have

Σc(y-h(x, p))={(x, h(x, p), p)\hp{x, p)=hx{x, p)-p=0\.

Then we may distinguish two cases:
(a) hxp(x, p)-l=0,
(b) hxp(x, p)-lΦθ.
Case (a). Since hxp=hpx=lφ0 at (x(t0), P(t0)), the set

Σπ(y-h(x, p))={(x, h(x, p), p)\hp=0}

is a smooth curve, γ is also a smooth curve, then we have γ((a b))=Σc(y — h(x, p))
—Σπ(y — h{xy p)). It follows that there exists a smooth function μ around
(x(t0), p(to)) such that μ does not vanish on such a neighbourhood and hx — p
^μ-hp.

We now consider a vector field on the (x, jf))-plane defined by

dx μ' dp'

By the same reason as in Example 0.1, the flows of the vector field V gives a
complete solution of y — h(x, />)=0 around γ(t0).

On the other hand, by the previous arguments, the curve (x(t), p(t)) is given
by the equation hp—0 near (x(t0), p(t0)). If we calculate the canonical inner
product of grad hp and V, then we have

<grad/ip, V>=l-μ-hpp.

Differentiate the equation hx — p—μ-hp with respect to p, then we have μ hpp

=0 at (*(*„), p(t0)). It follows that <grad Ap, V}Φθ at (x(U), p(tύ))> so that V
does not tangent to 7. This means that each member of the complete solution
is transverse to γ around p(f0).

Case (b). In this case the set {(x, h(x, p), p)\hx{x, ρ)—ρ=zQ} is a smooth
curve near (*(f0), y(U), p(t0)). By the same reason as that of the case (a), there
exists a smooth function λ around (x(t0), p(tQ)) which never vanish and satisfies
hpz=χ.(hx-p). We adopt a vector field V=λ-d/dx—d/dp on (x, />)-plane, so
that the flow of V gives a required complete solution.
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If y is not a singular solution in the strict sense, then there exist
an intervals (α' b')cz(a b), (a' β')^{a β) and a complete solution Γ:(a' b')X
(a' β')-+F-ι(0) such that ΓCo=γ for some co^(a' β'). By Proposition 2.1 and
the previous proof, there exists ί o e ( α ' b') such that Γ(U, cQ)£Σc(F). By the
local uniqueness of the complete solution outside of ΣC(F), the complete solution
Γ is equal to the original complete solution on some open neighbourhood of
Γ(to, Co) which is given by the condition (2). However, each member of this
complete solution must be transverse to γ=ΓCo. This gives a contradiction.

(1H(3). If Image γφΣe(F), then there exists to^(a b) such that y(to)£Σc(F).
It follows that FpφQ or Fx+p-FyΦθ at γ(t0). In both cases, there exists a
unique complete solution of F = 0 which contains γ around γ(t0). This contradicts
to the definition of singular solutions in the strict sense.

Here, we only proved that Image y tzΣc(F) instead of the condition (3), how-
ever, by the previous proof and Proposition 2.1, we can assert that Image y—
ΣC(F).

(0)=H3). Let Γ: (a b)X(a i8)->F"1(0) be a complete solution of F = 0 around
(*o, 3>o, po)^Σc(F). If ImageyφΣc(F)y then there exists to^(a b) such that
y(tQ)(£Σc(F). It follows that FpΦθ or Fx+p-FyΦθ at γ(f0). In both cases, there
exists a unique complete solution of F=0 which contains y around y(t0). This
complete solution is equal to Γ around y(t0). Hence, Image γ=-Image ΓCQ around
t0, where ΓC(β)—Γ(t, c0). This solution eventually reaches (xOf y0, p0), so that
it is contained in Γ around (xQ, y0, p0). This contradicts to the definition of
singular solutions.

It is clear that (1) and (2)=H0). This completes the proof.

The following is a classical example of an equation with singular solution.

Example 2.3. The Clairaut equation: y = x p+f(p).
The singular solution is Σc(F)=Σπ(F) and the discriminant set DF is the

envelope of the complete solution y = x-c+f(c).

In classical treatises, it has been considered that Σπ(F) was a strong can-
didate for the singular solution as the Clairaut equation shows. However,
Theorem 2.2 asserts that ΣC(F) is the singular solution in the strict sense.

Example 2.4. y = x-

We can calculate that Σπ(F)= {(x, y, p)\y = x-p2+ps and p (2x+3p)=0} and

Σc(F)={(x, y, p)\y:=p=0]. By Theorem 2.2, this equation is completely inte-
grable around (0, 0, 0) and the singular solution is given by y = p=0.
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