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MARGOLIS HOMOLOGY AND MORAVA K-THEORY FOR
COHOMOLOGY OF THE DIHEDRAL GROUP

By Jun-siMm CHA

Abstract

In this paper, we note that the Margolis homology H(H*(BG ; Z/9), Q)
relates deeply the Morava K-theory K(n)*(BG). In particular we compute
K(n)*(BD) for the dihedral group D by using Atiyah-Hirzebruch spectral
sequence.

§0. Introduction.

Let G be a finite group and H*(BG; Z/p) be the cohomology of G with
the coefficient Z/p for a prime number p. Since the restriction map to a sylow
p-group S of G is injective, it is important to know the cohomology of p-groups.
However it seems a very difficult problem to compute H*(BS; Z/p) when S is
a nonabelian p-group. In this paper we consider the case p=2. The smallest
nonabelian 2-groups S have the order 2°, which have two types D and @ ; the
dihedral and the quaternion groups. The cohomology H*(BG; Z/p), G=D, Q
are determined by Atiyah, Evens respectively [A], [E].

In this paper we first study the Margolis homology H(H¥BD; Z/2), Q,)
for the dihedral group D and next study Morava K-theory K(n)*(BD) where
K(n)*(—) is the cohomology theory with the coefficient K(n)*=Z/p[v,, va'].
Such K(n)*(BD) are given by Tezuka—Yagita [T-Y2] using BP-theory. How-
ever we use here only Atiyah—Hizebruch spectral sequence for K(n)* theory.
In particular we correct some inaccuracy of results in Tezuka—Yagita [T-Y2].

Quite recently I J. Leary decided the muliplicative structure of H*QBG s Z/P)
for groups of order p* [Ly2] by using the cohomology of group G which is
the central product of G and 1-dimensional sphere S'. The cohomology ring
H*(BD; Z/2) is very easy. But its Margolis homology seems not so easy.
Hence we first study Margolis homology of H*(Bﬁ; Z/2) and next consider
that of H*(BD; Z/2). 1 thank Nobuaki Yagita who introduced me to these
problems.
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§1. The nonabelian p-group of the order 8.

Let G be a nonabelian group of |G|=8. Then G is one of the following
groups

D={a, b|a*=b*=1, [a, b]=a®), dihedral group,
Q=(a, b|[a*=b*=1, [a, b]=a*=b%), quaternion group.
For each group G, there is a central extension
1D 1—Z/2—G—Z/20Z/2 —1
which induces the spectral sequence
EY*=H*B(Z/2®Z/2; Z/2), HXB(Z/2; Z/2))) — H*(BG ; Z/2) .

where E¥*=S,QZ/2[z] and S,=Z/2[x,, x.].
It is known that ([Ls], [Q]) that

XX for G=D
d22=
Xy, X+ xi4x% for G=Q
Then by the Cartan-Serre transgression theorem
ds2°=x%x,+x,x% .

Now we consider the case of the dehedral group.
LEMMA 1.2. When G=D, H¥BG ; Z/2)=E;=S,/(x,%,)QZ/2[z%]

Proof. We know that d,z=x,x, and E¥*=Z7Z/2[x,, x,]JQZ/2[z]. Let a<
Z/2[x,, x,]. Now dy(az)=d,a-z+(—1)'*"a-d,z=(—1)"""'a-x,x, and d,(az?)=0.
Therefore Kerd,(E}*)=0 and Imd,(FE} *)=Ideal (x,x,). Hence E¥*=H(E¥*, d,)
=Z/2[xy, x,]/(x:12:)QRZ/2[2*]. Since dsz*=xix,+x,25=0 mod (x,x,), we have
E¥*=EX*, g.e.d.

§2. II*(BD; Z/2).

In this section we calculate the cohomology of the dehedral group D by
the another way. Given a finite group G and a central cyclic subgroup C, we
fix an embedding of C into S*, and define 5=G><<¢>S‘. Then we have the
exact sequence

1—8'— D —> Z/2pZ/2 — 1

which induces the spectral sequence.

E¥*=H*B(Z/2BZ/2; Z/2), HXBS'; Z/2)) = H¥BD; Z/2),
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where E¥*=Z/2[x,, x,1JQ®Z/2[u] and dsu=x%x,+x,x3. The E,-term is given by
{ Z/2[x,, x:]/(dsu) J=0mod 2

E¥¥=
Ker (dsu) 7=1mod 2

In this paper, let us write gr A=F if F= E_{%‘ F;/F,,, for some filtration
A=F,oF,> - DOF,.

THEOREM 2.1. H¥BD; Z/2)=E¥*=Z/2[x,, x,]/(x3%s+%:x)RZ/2[u*].

Proof. If di(au)=adsu=a(xix,+x,x23)=0 in Z/2[x,, x,], where ac
Z/2[x,, x,], then a=0. Hence Ker(d;u)=0. Now d,u*=d;Sq’u=S¢*(x}x,+x,x3)
=x,%,(x34+x3)=0 mod (x2x,+x,x3). Hence E¥*=E¥*, qg.e.d.

To find H*BD; Z/2), given H*(Bﬁ; Z/2), we use the Serre spectral of
the fibration
S'—> BD —> BD.

This induces the spectral sequence
E¥*=H*BD; Z/2QH*S"; Z/2) = H*BD; Z/2).
THEOREM 2.2. Let ze H\(S'; Z/2) be a generator. Then
gr H¥(BD; Z/2)=H*BD; Z/2)/(d:2)®(Ker dy2)-z
=S:QZ/2[u]/(x1%)DSQZ/2[u*]/(%:%:) {(x1+ x,)2}

Proof. First note d,z=x,x,. Since =xix,+x,x}=x,x,(x,+x,), Kerd, is
generated by {(x;+x,)}. g.e.d.

In section §1 we know already H*(BD; Z/2)=S,®Z/2[u]/(x,x,). From
Theorem 2.2, a filtration of C=H*(BD) is given

Fi=H*BD; Z/2)/(x12,)=S,QZ/2[u*]/(%,%5)
C/F=Kerd,z=S:QZ/2[u*]/(x1%:) {(x,+ x,)z}

with identifying (x,+x,)z by u.

§3. Margolis homology of H*(BD; Z/2).

We consider the Margolis homology defined by the Milnor primitive deriva-
tion Q,, H(H¥BD; Z/2), Q,). Here Q, is defined by Q.(x)=x%""", Q,(x,)=
x2"*1 It is known that u”eH*(Bﬁ; Z/2) is represent by Chern class. Hence
Qn(u?)=0.

Let us denote u®(resp. x%, x) by c(resp. yi, ¥,).
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THEOREM 3.1. H(H*BD; Z/2), Q)= Z/2[ys, yo, 1/(3232+313%, 37", 33
B(Z/2Ly1=Y2, 1/ (DTN {x1%a}.
Proof. If fEZ/2[xy, x,]/(x3x,+x,2x)RZ/2[u?], then we can write f=

a+bx,+cx,+dxx,+exix,, where acsZ/2[x%, x%, u*]/(xixi+x3x3), be
Z/2[x%, ul, ceZ/2[x}, u*], deZ/2[xi=x%, u*], e Z/2[x}=x%, u*]. Then Q,f
= bai" texf™ Hdat b da " extad™. Here  dat"Txo+dxad™ =

d(x2" M xy+x,x3" ) =0 mod (x3x,+x,x3).
Therefore Ker Q,={a+dx,x,} and

n+1
Im an {bx%n+1+ngn+1+ex%x%n+l:bx%n+l+cxgn+ +e(x1x2)x§n+l} .

Hence we get H(H*(BD; Z/2), Q.)=Z/2[y., ys ¢1/(¥iy:+y15% ¥7", 93"
D(Z/2[9:1=s 1/ (YEN{x1, %ob.  q.e.d.

THEOREM 3.2.  gr HH*BD; Z/2), Q.) = (Z/2[y:, y:.1/(¥1, ¥o 31", 35")
®Z/2[c]/(3:c®" 7, 3o NDBZ/2[cI{y" ei=y3""'es}, where e,=x(x:1+X5)z.

Proof. From Theorem 2.2, we already know grH*(BD;Z/2)=
H*BD: Z/2)/(d,2)P(Kerd,z)z. First we compute H(H*(BD; Z/2)/(x:%5), Qx)
and secondary compute H((Ker x,x,)z, @,). Using the spectral sequence, we
get H(H*(Bﬁ; Z/2), Q,) at last.

Let C=gr H¥(BD; Z/2) and Fi=H*BD: Z/2)/(x,x,). Then we will prove

(3.3) H(F:, Qu)=Z/2[y., ys ¢1/(3132 31", ¥37)
(3.4) H(C/Fy, Qu)=(Z/2[y1, ¥s, c1/(¥1Y2, 317 35" N2, 322}

First we will prove (3.3).
If feZ/2[x,, x,, u*]/(x,x,), then we can write f=a+bx,+cx, where ac=
Z/2[x%, x%, u®]/(x3x%), b= Z/2[x%, u*], c=Z/2[x%, u*]. Operate @, to f, then
Q.f=bx¥""4cxg"'. Therefore Ker Q,={a} and Im Q,={bx}""'+cx3"*}.
Hence we get (3.3).

Next we will prove (3.4).
If fe(Z/2[x,, x4 u*]/(x:1%:)) {X14 X5}, then f=a(x,+x,)+bx,(x;+x2)+cxo(x,+x5)
=a(x,+x,)+bxi+cxi, where acZ/2[xi+x% u?]/(x3x}), beZ/2[x% u?], c=
Z/2[x3, u*]. Then Q.f=a(x¥""+x§""").  Therefore KerQ,={(bx;+cx,)
{(x:+%5}}, Im Q,={a(x?"""+x§""")}. Hence we get (3.4).

At least we consider the spectral sequence

E\=H(F,, Q.)DH(C/F,, Qz) == H(C, Qa).

Now we can prove Q,(y:2)=v,u?", =y,c*""", for i=1,2. So we can prove
gr H(C, Qu)=(Z/2[y1, y21/(3132, 33", y3RZ/2[c]/ (317", 3" )DZ/2[c]{y5" ex
=y5""te;}. q.e.d.



224 JUN-SIM CHA

§4. Morava K-theory.

The Morava K-theory K(n)*(—) is generalized cohomology theory with the
coefficient K(n)*=2Z/2[v,, vz'], |v.|=—2"*'+2.
We consider the Atiyah-Hirzebruch spectral sequence for Morava K-theory

Ef*=(H*X ; K(ny*) == K(n)*(X).

It is known [Hu], [T-Y] that the differential d,,.,_,(x)=v,@Q,x. Hence we
get
ELn=Kn)y*QH(H*(X ; Z/2), Q.)

THEOREM 4.1. gr K(n)*(BDy=K(n)*QHH*BD; Z/2), Q.)

Proof. H(H*BD; Z/2), Q,) is generated by even dimensional elements,
hence EX¥,=E%*. q.e.d.

Ravenel [R] showed that dimg K (n)*(BG) is finite for each finite group
G. Hopkins-Kuhn-Ravenel [H-K-R] defined K(n)-theory Euler character X, by

4.2) X2(G)=dimg e K (1) B G) —dim g« K (n)°44(BG) .

For p-groups G, this Euler character can be described in terms of conjugacy
classes of commuting n-tuples of elements in G,

X.(G)=number of {(g, -, g»)|[g., £,]=1, g:€G}/G with the conjugate
action g-(gy, -, g.)~(gg:187 Y, -+, 88.87"Y). They also showed (Lemma 5.3.6 in
[H-K-R]) that X, is computed inductively

“.3) Xa(G)=20g)Xa-1(Ce(g))

where <{g> runs over conjugate classes in G and Cqs(g)={h=G|[h, g]=1} is
the centralizer of g in G.

Now we consider K(n)*(BD). Recall HH*(BD; Z/2), Q,) in Theorem 3.3.
If d.{y?"'e;}=0 for all r», then EX**=E¥**, Hence dimg,K(n)*(BD) is in-
finite since c¢®+0.

This contradicts the results of Ravenel, therefore we know

4.4) d.{y?" te)} =vhc® for some s with 22" —1)(k+1)+4=4s.
From Theorem 3.2, E**% is generated by even dimensional elements. Hence
ExX= E%*,

LEMMA 4.5. dimg K (n)*(BD)=2%"—2"+s.

Proof. From Theorem 3.2, K(n)*(BD) has K(n)*-basis {y%, 3% Qc’Pc*
(1gk<2™ 0£5<2m, 0<h<s). Hence we see dimg«K(n)*(BD)=2(2"—1)X
27145, q.e.d.
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LEMMA 4.6. X,(D)=2%r422n-1—-27"1,

Proof. The conjugacy classes of D are <{1), <a?, <a'¥’|0=i ;<1 (@, /)+
(0, 0)> and their centralizer are D, D, Z/2DZ/2 respectively. So from (4.3)

Xn(D)=21 5 Xn-1(C(2))
=Xn-1(Co(1)+Xa-1(Co(a®))+Xn-1(Cs(a)) +Xn-1(Ca(b)) +Xn-1(Co(abd))
=X s(DY X s(D)+ Ao Z D)+ X (Z /2R Z ) 2)+ X0 Z/ 2002/ 2)
=2Xpn-(D)+3-2772%,

We put X,_,(D)=2?""24+22""3—-2"-% Then 2X,_,(D)+3-22""2=2(22"24-227~2—_2""%)
+3.28n-2=02n 4 2n-1_09n-1  Hence we get this Lemma. q.e.d.

From Lemma 4.5 and Lemma 4.6, we know s=22""'4-2"-! hence k=2"+1.

THEOREM 4.7. gr K(n)*(BD)=K(n)*(S3/(y1y2 yi", y3")
RZ/2[c]/ (3™, yoc2™ 7Y, "2 with c=u?.

Remark. The multiplicative structure of K(n)*(BD) was given in Theorem
4.2 in [T-Y]. There were some errors, which were corrected in [T-Y3]. The
ring structure is

4.8) K(n)*(BD)
=K(n)*(S'QZ/2[c]/(y%", ¥8", vic*" =v,¢"" "'y, =0,c*" " y3=315).

This consists with ours as following and from (4.8) we deduce

— n —_ 2n_1 2n-1 o _..2n n-1\9M .20 on—-1cgn_1y 2N -1
0=21"y:=va 31 71c*" T yp= - =0R (P T) P ye=0n ¢t T Ty,

__.en_y an-1can_ . 2M41 (2N -1y20 -1 on___ o7 2n_1497-1
_v% ch 2 l)ylyZ‘_‘U?‘t + C(Z He2 CZ =v? +lc2 +2 .
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