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MARGOLIS HOMOLOGY AND MORAVA ^-THEORY FOR

COHOMOLOGY OF THE DIHEDRAL GROUP

BY JUN-SIM CHA

Abstract

In this paper, we note that the Margolis homology H(H*(BG; Z/p), Qn)
relates deeply the Morava /f-theory K(n)*(BG). In particular we compute
K(n)*(BD) for the dihedral group D by using Atiyah-Hirzebruch spectral
sequence.

§ 0. Introduction.

Let G be a finite group and H*(BG; Z/p) be the cohomology of G with
the coefficient Z/p for a prime number p. Since the restriction map to a sylow
p-gronp S of G is injective, it is important to know the cohomology of ^-groups.
However it seems a very difficult problem to compute H*(BS; Z/p) when S is
a nonabelian p-group. In this paper we consider the case p—2. The smallest
nonabelian 2-groups S have the order 23, which have two types D and Q the
dihedral and the quaternion groups. The cohomology H*(BG; Z/p), G—Dy Q
are determined by Atiyah, Evens respectively [A], [E].

In this paper we first study the Margolis homology H(H*(BD; Z/2), Qn)
for the dihedral group D and next study Morava Zf-theory K(n)*(BD) where
K(n)*(—) is the cohomology theory with the coefficient K{nf—Z/p\yni vή1'].
Such K{n)*($D) are given by Tezuka—Yagita [T-Y2] using £P-theory. How-
ever we use here only Atiyah—Hizebruch spectral sequence for K(n)* theory.
In particular we correct some inaccuracy of results in Tezuka—Yagita [T-Y2].

Quite recently I. J. Leary decided the muliplicative structure of H*(BG; Z/p)
for groups of order pz [Ly2] by using the cohomology of group G which is
the central product of G and 1-dimensional sphere S1. The cohomology ring
H*(BD Z/2) is very easy. But its Margolis homology seems not so easy.
Hence we first study Margolis homology of H*(BD; Z/2) and next consider
that of H*(BD; Z/2). I thank Nobuaki Yagita who introduced me to these
problems.
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§ 1. The nonabelian p-grovφ of the order 8.

Let G be a nonabelian group of | G | =8. Then G is one of the following
groups

D=<a, b\a4=b2=l, [α, 6] = α2), dihedral group,

Q—(a, b\[a4=b4=l, [α, bl = a2=b2}, quaternion group.

For each group G, there is a central extension

(1.1) 1 —> Z/2 —> G —> Z/20Z/2 —> 1

which induces the spectral sequence

Ef*=H*(B(Z/2®Z/2 Z/2), H*(B(Z/2 Z/2))) = } H*(BG Z/2).

where £f *=S8(g>Z/2[>] and S a =
It is known that ([Ls], [Q]) that

{ XίX2 for G=Z)

X\t ^2^-x2i+xi for G = Q

Then by the Cartan-Serre transgression theorem
&%Z '== X\%2 I" X 1%2

Now we consider the case of the dehedral group.

LEMMA 1.2. When G=D, H*(BG; Z/2)^E^S2/{xιx2)®Z/2lz2']

Proof. We know that d2z-XιX2 and Ef*=Z/2[xu x2~\®ZI2{z\. Let QG
Z/2[JC!, jca]. Now d2(az)=d2a z+(-iya]a,'d2z=(-iya\a-x1x2 and ^2(α^2)=0.
Therefore Kerί/2(£;j *)=:0 and Imdί(£ϊ *)=ldeal(x1jc2). Hence £ ϊ *=/?(£?•*, da)
=Z/2[Xi, x2]/(x1%2)(g)Z/2[^]. Since rf82r8=^2+XiJci=0 modCxxX,), we have
£f * s £ * *. q.e.d.

§2. II*(BD;Z/2).

In this section we calculate the cohomology of the dehedral group D by
the another way. Given a finite group G and a central cyclic subgroup C, we
fix an embedding of C into S\ and define G = Gx<c>51. Then we have the
exact sequence

1 —> S1 —> D —> Z/20Z/2 —> 1

which induces the spectral sequence.

Ef*=H*(B(Z/2®Z/2; Z/2), H*(BSι Z/2))=$ H*(BD; Z/2),
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where £f *=Z/2|>1, *2]<8)Z/2[u] and dsit = XU2+X1XI The £2-term is given by

Z/2[*i, x2]/W3w) y=0mod2

Keτ(dsu) y=lmod2

In this paper, let us write grΛ=Fif F= Θ s Ft/Fl+1 for some filtrationΘ

THEOREM 2.1. #*(βJ5; Z ^ s E f + s Z ^ C * ! , *a]/(*ϊ*a+*i*i)®Z/2[tιa;i.

Proof. If d3(au)=ad2u=a(XiX2+XixD—O in Z/2[*i, % 2], where α e
[x!, * β ] , then α=0. Hence Ker(d3w)=0. Now dhu*=dhSq2u=Sq2(x\xz+Xix\)

=xίx2(xl+xl)=:0 moά(x2

1x2+xixί)^ Hence £? * ^ £ * *. q.e.d.

To find H*(BD;Z/2), given H*(BD;Z/2), we use the Serre spectral of
the fibration

51—

This induces the spectral sequence

Ef*=H*(Bΰ Z/2)®H*(Sι Z/2) = 4 #*(BZ> Z/2).

THEOREM 2.2. Let z^HKS1 Z/2) te α generator. Then

d2z) z

Proof. First note d2z—xxx2. Since x?x2+^i^i=^i^2(^i+^2), Kerύf2 is
generated by {(xi+x2)}. q.e.d.

In section § 1 we know already H*(BD; Z/2)^S2®Z/2[_u']/{xιx2). From
Theorem 2.2, a filtration of C=H*(BD) is given

Fι=H*(Bΰ Z

with identifying (Xi+x2)z by w.

§3. Margolis homologry of H*(BD; Z/2).

We consider the Margolis homology defined by the Milnor primitive deriva-
tion Qn, H(H*(BD;Z/2), Qn). Here Qn is defined by Q«(*i)=*ϊn+1, O»(x.)=
x|n+1. It is known that U2ΪΞH*(BD; Z/2) is represent by Chern class. Hence
Qn(w2)=0.

Let us denote w2(resp. x\, x\) by c(resp. ^1, y2).
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THEOREM 3.1. H(H*(BD; Z/2), Qn)=Z/2lyu y2, cy{y\y,+yιyl, y\\ yln)

Proof. If / e Z / 2 [ ^ , *2]/(*?£2+*i*i)(g)Z/2[tt2], then we can write / =
a+bXι+cx2+dx1x2-{-exiX2, where β ε Z / 2 W , x\9 u2y(xtx2-{-XiXί), btΞ
Z / 2 [ * ϊ , w 2 ] , c e = Z / 2 [ * | , U 2 ] , d E Z / 2 W = 4 w 2 ] , e e Z / 2 [ % ! = 4 , u 2 ] . T h e n <?„/
- ^ Λ : Γ + 1 + ^ i n + 1 + ^ x ? r i + 1 Λ ; 2 + ^ ^ i 4 n + 1 + ^ ? Λ ; i 7 i + 1 . H e r e d j c f ^ * 1

d(xΓ+1x2+XixΓ+1)=0 mod (jcfxa+x^l).
Therefore Ker Qn—{a-\-dx1x2} and

Im g n = {bxln

Hence we get H(H*(BD; Z/2), Q«)=
)) {^1, * 2 } . q. e. d.

THEOREM 3.2. grH(H*(BD; Z/2), (?„) s (Z/2[^i, ^2]/(3Ί, 3̂ 2, 3̂ ?", yT)
®Z/2lcy(yxc*n-\ y2C*n-1mZ/2lcl{yΓ-ίe1=yΓ-ιe2}, where eι=xi(x1+x2)z.

Proof. From Theorem 2.2, we already know gr H*(BD Z/2) =
H*(BD; Z/2)/(d2z)®(Kerd2z)z. First we compute H(H*(BD; Z/2)/{xxxύ9 Qn)
and secondary compute //((Ker XiX2)^ Qn). Using the spectral sequence, we
get H(H*(BD; Z/2), Q J at last.

Let C=grH*(BD; Z/2) and F^H^Bϋ; Z/2)/(x1x2). Then we will prove

(3.3) / / ( ^ , (? B )sz/2[^i, 3̂ 2, c]/(3Ί3>2, yΓ, yln)

(3.4) //(C/Λ, 0»)s(Z/2[yi, 3̂ 2,

First we will prove (3.3).
If / e Z / 2 [ # i , Λ:2, W 2]/(XI^ 2), then we can write f~a+bxijrcx2 where α<Ξ
Z/2[Λ;|, Λ|, W2]/(Λ;?X1), b^Z/2\_x\, w2], CGZ/2[JC| , M 2 ] . Operate Qn to / , then

On/=ftjcfn + 1+cxin + 1. Therefore KerQn={a} and Im ρ ^ = {bx\n+1 + cxln+1}.
Hence we get (3.3).

Next we will prove (3.4).
If /<=(Z/2[>i, Λ2, w

2]/(xiX2)){^i+^2}, then /=a(x1+%2)4-6x1(xi+^2)+cA;2(x1+^2)
= a(jc 1+X2)+W+cxi, where a<ΞZ/2lx\+xl9 u*y(x\x\)9 b^Z/2\_x\, w2], C G
Z/2[xI, ttf3. Then O Λ / = a ( x ϊ n + 1 + x ϊ n + 1 ) . Therefore
{^x+x2}}, Im<? n ={a(xr + 1 +^i n + 1 )} . Hence we get (3.4).

At least we consider the spectral sequence

Eι=H(Fu Qn)@H(C/Fl9 Qn)=

Now we can prove Qn(yit)—yiu\n, =3/<c2Λ~1, for ι = l, 2. So we can prove
gr //(C, g»)s(Z/2[yi, 3>2]/(3>i3>2, yΐ\ y\n)®Z/2\_cy(yιc*n, y2c*n))@Z/2M {̂ f""1^
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§4. Morava /Γ-theory.

The Morava K- theory K(ή)*(—) is generalized co ho mo logy theory with the
coefficient K{nf=ZI2\yn) vή1], | v n | = - 2 n + 1 + 2 .

We consider the Atiyah-Hirzebruch spectral sequence for Morava /ί-theory

Ef*=(H*(X /f(n)*) = > K(n)*(X).

It is known [Hu], [T-Y] that the differential d2n+1_ι(x)=vn®Qnx- Hence we
get

) , Qn)

THEOREM 4.1. gr K(n)*{BD)^K{n)*®H{H*(BD) Z/2), Qn)

Proof, H(H*(BD; Z/2), Qn) is generated by even dimensional elements,
hence Efyf^ES*. q.e.d.

Ravenel [R] showed that dimκCΐO*K(n)*(B G) is finite for each finite group
G. Hopkins-Kuhn-Ravenel [H-K-R] defined /C(n)-theory Euler character Xn by

(4.2) Xn(G)=άimKCn^K(nΓen(BG)-άimKCn^K(n)odd(BG).

For ^-groups G, this Euler character can be described in terms of conjugacy
classes of commuting n-tuples of elements in G,

%n(G)=number of {(gu •••, gn)\Lgu gjl^h gi^G}/G with the conjugate
action g (gu •••, gn)^(ggig'\ •••, ggng'1)- They also showed (Lemma 5.3.6 in
[H-K-R]) that Xn is computed inductively

(4.3) Xn(G)=Σκe>Xn-i(CG(g))

where <£> runs over conjugate classes in G and CG(g)={h^G\ [/ι, ^]=1} is

the centralizer of g in G.
Now we consider K(ή)*(BD). Recall H(H*(BD; Z/2), Qn) in Theorem 3.3.

If dr{yln-1e1}=0 for all r, then E4* * s E * *. Hence dimκin»K(n)*(BD) is in-
finite since csφ0.

This contradicts the results of Ravenel, therefore we know

(4.4) driyΓ-'eJ^vic* for some s with 2(2n-iχ&+l)-f-4=4s .

From Theorem 3.2, E%& is generated by even dimensional elements. Hence

LEMMA 4.5. dλmKin^K{ήf{BD)=2m-2nΛ-s.

Proof. From Theorem 3.2, K(n)*(BD) has #(tt)*-basis {y\, yϊ}®c}®ch

0^j<2n-\ 0^h<s). Hence we see
2n~1+s. q.e.d.
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LEMMA 4.6. Xn(D)=22n+22n-1-2n-1.

Proof. The conjugacy classes of D are <1>, <α2>, (albj\0£i / ^ l (i, j)ψ
(0, 0)> and their centralizer are D, D, Z/2φZ/2 respectively. So from (4.3)

Gm

We put Xn-1(D)=22n-2+22n-z-2n-\ Then 2%n_1(D)+3-22 n-2=2(22 n-2+22 r i-3-27 1-2)

4-3 2 2 n - 2 = 2 2 n + 2 2 n - 1 - 2 n - 1 . Hence we get this Lemma. q.e.d.

From Lemma 4.5 and Lemma 4.6, we know s=2 8 n - 1 +2*- 1 , hence k=2n-\-l.

THEOREM 4.7. gr K(n)*(BD)^K(n)*(Sί/(yιyt9 y\\ y\n))

0Z/2ίcV(yic
2n-\ y2c

2n-\ c2271-1^'1) with c=u2.

Remark. The multiplicative structure of K(n)*(BD) was given in Theorem

4.2 in [T-Y]. There were some errors, which were corrected in [T-Y3]. The

ring structure is

(4.8) K(n)*(BD)

^K(nΠS'®Z/2lcy(yΓ, yl\ v\c2n=υnc
2n-ιy^vnc

2n^y^y,y2).

This consists with ours as following and from (4.8) we deduce

0 = yl»y% = Vnyl»-ic*»-iyt= ... ^^n^n-yny^y2n^n^n^^n-!y^

2 n l Λ n - l ( 2 n l ) 7 ) 2
r ι + lλ,(2W-i)2W-l 2n 2^ + 1^22^-1 + 2 ^ - 1
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