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Abstract
In connection with the results of G. Song and J. Huang as well as G.

Song and L. Liao, concerning the factorization of entire functions, we shall
prove the existence of another entire function which is prime but whose
square is not pseudo-prime, by making use of Y. Noda's argument.

1. Introduction.

A meromorphic function F(z)=f(g(z)) is said to have / and g as left and
right factors respectively, provided that / is meromorphic and g is entire (g
may be meromorphic when / is rational). Then, F is called to be prime
(pseudo-prime) if every factorization of the above form into factors implies that
either / or g is linear (either / is rational or g is a polynomial) (cf. [3]).

Recently, G. Song and J. Huang proved the following theorems A and B in
[11]. Theorem A. If / is a pseudo-prime entire function and n is an odd
integer (rc^l), then F{z)={f{z)}n is also pseudo-prime. Theorem B. The
function F(z)=sin 2 exp [cos z~\ is prime.

It is noteworthy that, for the above prime function F(z)—sinz exp [cos 2],
{F(z)\2 is not pseudo-prime: {F(z)}2=(G(w))o(cos z), where G(w)=(l-w2)
exp[2w]. Moreover, the even power {F(z)\2k (k a natural number) is not
pseudo-prime either, since {F(z)}2k=(G(w)k)°(cos z). In this case, F is of infinite
order.

When the order (of such F) is finite, G. Song and L. Liao showed a similar
result in [12].

In this note, by applying the argument due to Y. Noda ([7]), we shall ex-
hibit other entire functions having the same property as above (that is, entire
functions which are prime but whose square and hence even powers are not
pseudo-prime).
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2. Results.

THEOREM 1. Let h be a non-constant entire function such that h(w)=
φ((2w2—I)2) with φ(ζ)=exp [^(ζ)] for some entire function φ and let H(z)—
sin z-h(cos z). Then the set

j α e C Fa(z) = H(z) — y sin 2z is not pnmeX

is at most countable.

Let us note that the function in the above Theorem 1 can be expressed as
Fa(z) = sin z' {h(cos z)~a cos z\. Hence {Fa(z)}2 = Gα(cos z) with Ga(w) =
(1 — w2){h(w) — aw}2. Thus {Fa(z)}2 is not pseudo-prime (transcendentally com-
posite).

THEOREM 2. Let h be a non-constant entire function and H(z)=sin z-h(cos z).
Suppose that the order of H is finite and not an integer and H has only simple
zeros. Then the set

; Fa(z)^H(z)(cos z—a) is not prime}

is at most countable.

For the function Fa in the above Theorem 2, it follows that {Fa{z)}2~

In order to prove these results, we shall follow the argument due to Y.
Noda in [7] honestly (see §§ 3 and 4).

3. Lemmas. For the proof of Theorems 1 and 2, we shall need the fol-
lowing lemmas which are the modified versions of Y. Noda's lemma (Lemma 3
in [7]).

LEMMA 1. Let //(,?)=sin z-h{zosz)f where h(w)=<p((2w2—l)2) for some non-
constant entire function ψ. Let Fa(z)=H(z)~(a/2) sin 2z. Suppose now that cos 2z
and H'(z) have no common zeros. Then, there exists a countable set E of complex
numbers such that any two roots u and v of the simultaneous equations

Fa(z)=c and Fα '(*)=0

satisfy cos u^cosv and sin u = sinv for any constant c ( G C ) provided a^C~E.

LEMMA 2. Let H(z)= sin z h(cos z) for a non-constant entire function h.
Let Fa(z)=H(z)(cos z—a). Suppose that H(z) has only simple zeros. Then, there
exists a countable set E of complex numbers such that any two roots u and v of
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the simultaneous equations

Fa(z)=c and Fα'(z)=0

satisfy cos u=cosv and sin u^sinv for any constant c(eC) provided

Proof of Lemma 1. By the assumption, Fa(z)~H(z)—(a/2) sin 2z and hence
Fa'(z)=H'(z)-a cos 2 .̂ Let us write

k(z)=H'(z)/cos2z
and

Λ=C—{p^C; p is a zero or pole of k'(z)}.

We choose open covering sets {CJA of A satisfying the following conditions.

(1) 0 Ct=A,

(2) k(z) is univalent in C% (ι = l, 2, •••),

(3) {k(z);ze=Ci} is a disk ( ί = l , 2, •••).

We set

sin2z,

> yi(w)=K(xi(w)) (u;eZ)t, f=l,2, ...),

w)

((ί,

and E=C-E0.

Then ^ is a countable set. For this set £, we shall verify the validity of
the assertion of Lemma 1 as follows. Now, by virtue of the definition,

K\z)^H\z)-^ψ- sin 2z-k(z) cos 2z=—~ψ- sin 2z .

If w^Dt (ι = l, 2, •••), then k(Xi{w))=w and hence we have

^<(u;)=^(x<(u;))-M;/2 sin (2xt(w))

and also (since ^/(^i(w;))*%l

/(^)=l)

ι\w)^-sm (2xt(u;))/2.



FACTORIZATION OF ENTIRE FUNCTIONS 199

Assume now that a^EQ (-C—E). Then the set

τ ( ί=l , 2, .-•)}

coincides with the set of the roots of Fa'(z)—0. This can be verified as follows.
Let us note that, by the assumption, cos2z and H'(z) have no common zeros.
Then, since k(Xi(a))~a for a^Dx, we have (cos2xi(a)Φθ and hence) Fa

f{Xi{a))
=0. Conversely, if Fa'(s)=H'(s)-a cos2s=0, then k(s)=a (noting cos2s^0).
Since a<^E0, k'(s)Φθ so that s=Xi(a) with a^Dt for some i.

Moreover, if yi(a)=yj(a) for some a^EQ, then yi(w) = yj(w) near w — a.
Hence 3>ι'(α)=:y/(α) as well. Accordingly,

sin 2%ί(α)=sin 2#/α) and H(Xi(a))—H{Xj(a))

, since α e E 0 ) . The latter equation implies

sin Xi(a)-φ(l—sin2[2xt(a)])=:sin Λ/fl) p(l — sin 2[2x/α)]).

Hence, in view of the former equation, we obtain sin Xj(α)=sin Xj(a) (Φθ) and
further cos *i(α)=cos %/α) (whence we see Xi{a)—Xj{a)—2nπ for some integer
n).

Thus we have the desired rseults.

Proof of Lemma 2. Since Fa(z)=H(z)(cos z—a),

Fa'(z)=H'(z)(co& z-a)-H(z)-sin z.

We set
fe(z)=cos z-H(z)>sin z/ i/ 7 ^) .

By the assumption that i/(2θ=sin£ Λ(cos£) has only simple zeros, H\z) and
sinz (as well as //'(e) and H(z)) have no common zeros. Therefore, Fα '(z)=0
if and only if k{z)—a.

Let us write

yl=C—{/?eC; £ is a zero or pole of k'(z)}.

We choose open covering sets {Ci}t=i of A (as before) satisfying the following
conditions

(1) 0 Ct=A,
1 = 1

(2) k{z) is univalent in Ct (i=l, 2, •••),

(3) {k(z); z(=Ci}=Dι is a disk ( ι = l , 2, •••).

We also set

K(z)=H(z)(cosz-k(z)),

z, ι = l , 2, -..),

U f = l , 2, . . . ) ,
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/={(,-, j)tΞNxN; DiΓλDjΦφ and y^

Then we have
1). E=C—E0 is a countable set,
2). yt(w)=H(Xi(w))(cσs Xχ(w)—w) and yι'(w)= — H(xi(w)) if W G ^ for

some /.
3). If ^ϊ(α)=^y(fl) for some a^E0, then cos Xj(a)=cos xj(a) and sin x*(α)

— sin %y(α).
4). If a(=E0, then the set \Xi(a); a^Dt (/=1, 2, •••)} is identical with the

set of the roots of Fa'(z)=0.
In fact, 1) is clearly valid. 2). The former equation is readily seen. Since
K'(z)=-k'(z)H(z), we get yι

/(w)=-H(xi(w)) as well 3). If yi{a)=yj{a) for
some a^E0, then yi(w)=yj(w) near w — a. Hence :yt'(α)=:y/(α). Hence

i(a) — a)=H(Xj(a))(cosXj(a)—a) and H(Xi(a))=H(xj(a)) (Φθ, since
Then cos x t(α)=cos x/α). Moreover, by the latter equation, it follows

that sin Xi(α) /ι(cos Xi(α))=sin x/α) /ι(cos x/α)) (^0) and so that sin Xi(α)=
sin xj(α) at the same time. 4). Noting the fact that Fα'(z)=0 if and only if
k{z)—αy we can easily verify the assertion, since, if α^E0, k(s)=α if and only
if s = Xi(α) with α^Dt for some i.

Hence, we also have the desired result.

4. Proof of Theorems.

Proof of Theorem 1. We have Fα(z)=H(z) — α/2 sin 2z and H(z)=s'm z
h(cosz), where h(w)=φ((2w2—I)2) with ^(O=exp [^(ζ)] for some non-constant
entire function ψ. As being shown in the previous section, we can choose a
countable set E of complex numbers for which the assertion of Lemma 1 holds
with respect to the above Fα(z). We (may) assume 0 e £ .

In what follows, we shall assume that α<^E0=C—E and prove that Fα(z)
is indeed prime, by applying Noda's argument in [7] (cf. especially the argu-
ment in the proof of Theorem 3, there).

Let fe(0, 1). Then (since αφΰ), the inequalities

N(r, 0, Fα'^tmir, Hf) (*)
and

N(r, c, Fα)^tm(r, H) (**)

hold (respectively) on a set of r of infinite measure for any complex number c,
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which is seen to be valid by the modified second fundamental theorem using
small functions (cf. Theorem 2.5 in [4], p. 47) and also Clunie's theorem ([1]).
Here we used Nevanlinna's notations ([6]).

Letting Fa(z)=f(g(z)), we consider the following several cases separately
one by one.

a). / and g are transcendental entire functions. Since Fa'(z)=f'(g(z))g'(z),
we see f\w) has infinitely many zeros {wn}n=i (say) by the inequality (*).
Then, any root of g(z)—wn is also a common root of the simultaneous equations

Fa(z)=f(wn) and Fa'(z)=0.

By Lemma 1, all the roots of g{z)—wn do lie on a certain straight line of the
complex plane (each of which is parallel to the real axis) for n = l , 2, •••. There
must exist infinitely many (hence at least four), distinct, straight lines among
them. Otherwise, by a theorem of Edrei ([2]), g must reduce to a quadratic
polynomial, which is not in reason. Thus, by Kobayashi's theorem ([5]), we
have (cf. [8]) that

where P is a quadratic polynomial and A is a non-zero constant. Since Fa(z)
= sinz {/ι(coS2r)—a cos z} is an odd function, we have f{P{eAz))——f{P{e~Az)).
This implies that f(P(w))=—f(P(l/w)) for wφO, from which, comparing the
singularity at w—0, we get a contradiction. Hence the case a) cannot occur.

b). / i s transcendental meromorphic (not entire) and g is transcendental
entire. In this case,

f(z)=p(z)/(z~ao)
k (p(ao)Φθ)

and

where k is a natural number, p(z) (trans.) and q{z) are entire functions. Then

If q is transcendental, this case is reduced to the case a). If q is a polynomial,
then degq=l or 2 by Renyi's theorem ([10]), since Fa(z)=f(g(z)) is periodic.
When d e g # = l and q(z)—azΛ-b (say), then putting Φ(uO=0~*w ί ( α o + O , we
have Φ{—azΛ"b)— — Φ{az-{-b)y since Fa(z) is an odd function. Hence we have
p(ao+e-a*+b)=:-e-2ka* p(ao+eaz+b) so that, changing the variable such as
w=-eaz,

p(a,+eb/w)=-(l/w)2k-p(a*+ebw).

Comparing the singurality at M/=0, we get a contradiction (since p is trans-
cendental).

Next, when deg#=2, this case can be reduced to the case c).
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c). / i s transcendental entire and g is a polynomial of degree at least two.
By Renyi's theorem ([10]), g is a quadratic polynomial. Put g(z)=s(z— u)2+v
with constants s, u and v. Let {wm\ (meJV) be the zeros of f'(w). Let £ m

and qm be two roots of g(z)—wm. Then />TO and qm are also common roots of
the simultaneous equations

Fa(z)=f(wm) and F β ' ( * )=0.

Therefore, cos />m=cos #TO and sin £m—sin #m by Lemma 1 (since a£ΞE0). Hence,
pm.—qm=2kπ for some integer k and also (pm+qm)/2=u. Accordingly, Im pm

=lmqm=lmu. Hence, noting that Fa'(z) is periodic (with period 2π), we have

N(r, 0, Fa')£N(r, 0, f'(g))+N(r, 0, *')

=O(r)+O(logr)=0(m(r, ^ 0 )
This contradicts (*).

d). / is a polynomial of degree d (^2) and ^ is transcendental entire. By
Renyi's theorem ([10]), g is periodic. Hence we may put

where k(w) is holomorphic in 0 < | i f | < o o and A is a constant (^=0). It is noted
that k{w) has an essential singularity at w=0 or w = oo. Let % be a zero of
/ ' . Then k{w)=x has at most finitely many roots. Otherwise, the set of the
roots of the simultaneous equations Fa(z)=f(x) and Fa'(z)=Q (which are distri-
buted periodically on a single straight line, as before, by Lemma 1) has an ac-
cumulation point, which is not in reason. Hence, / ' has exactly one zero, say
x. Hence

f/(w)=b(w-x)d-1 and f(w)=bd-1(w-x)d+c

for some constants b (Φΰ) and c. Therefore

Hence N(r, c, Fa)=dN(r, x, g). Since k{w)—x has at most finitely many roots,
N(r, x, g)=O(r)=o(m(rf H)). Thus we have N(r, c, Fα)=o(m(r, H)), which is
contrary to (**).

e). / is rational (not a polynomial) and g is transcendental entire. Then

f(w)=P(w)/(w-wo)
k (P(

where P is a polynomial, G is entire (Φconst.) and k is a positive integer.
Hence
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Let us note that the function e~kw-P(wQ+ew) is obviously transcendental by
the condition P(wo)Φθ. Hence, this case can be reduced to the case a) or c),
if G is non-linear. However, if G is linear, the above equation shows that
Fa{z)—f{g{z)) is of order 1 (indeed, of exponential type), which is not in reason.
(In this case, G is also transcendental.)

f). / i s rational (not a polynomial) and g is transcendental meromorphic
(not entire). Let f(w0)=°o for some w<>Φ<χ>. Then g(z)=wo+l/ L(z) exp[G(z)']
for some entire function L and G. If we set gi(z)=l/(g(z)—w<)—L{z)-e~G<iz:>

(trans, entire) and /i(Q=/(u/ 0 +l/O (rational), then we have fi(£i(z))=f(g(z)).
Hence, we see that this case can be reduced to the case d) or e).

Consequently, we get a contradiction (under Fa(z)=f(g(z)) with α e £ 0 ) ,
unless / or g is linear. Hence Fa(z) is prime. Thus, the proof of Theorem 1
is now complete.

Proof of Theorem 2 (an outline). Concerning Fa(z)=H(z)(cos z—ά)> we
choose a countable set E of complex numbers for which the assertion of Lemma
2 holds. Now, by the assumption, the order of H and hence that of Fa is finite
and non-integral. Noting that Fa and Fa' have the same order, we have

limsupΛΓ(r, 0, Fα0/r=oo (#)

and
limsupΛ?(r, c, Fβ)/r=oo (##)

r-»oo

for any complex number c (in view of BoreΓs theorem, cf. [6] p. 72). Then,
if a<=EQ=C—E, Fa(z) can be shown to be prime. Assume Fa(z)—f(g(z)). As
in the proof of Theorem 1, we need to consider the several cases a)~f). In
the case a), where / and g are transcendental entire functions, it is noted that
/ is of order zero (by Pόlya's lemma [9]) and hence f'(z) has infinitely many
zeros. Hence, we can derive a contradiction, by using the similar argument
(since Fa{z) is also an odd function). Moreover, other cases can be treated
quite similarly as before, by applying (#) or (##) (instead of (*) or (**)). Any-
way, we get a contradiction, unless / or g is linear. Therefore, Fa{z) (a<=£0)
is prime, which is to be proved.
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to the referee for valuable comments and kind suggestions.
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