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CHARACTERISTIC CLASSES OF ORIENTED

6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

BY HIDEYA HASHIMOTO

§ 1. Introduction.

Let (M6, c) be an oriented 6-dimensional submanifold in the 8-dimensional
Euclidean space R8 with the immersion c. In this paper, we shall identify R8

with the octonians (or Cayley algebra) O in the natural way. By making use
of the algebraic properties of the octonians, we can define an almost complex
structure on (M6, e). We may observe that this almost complex structure / is
orthogonal with respect to the induced metric < , > . Hence M6~(M6, /, <,» is
an almost Hermitian manifold ([B], [C], [G]). R. Bryant ([B]) established the
structure equations of (M6, c) from the standpoint of (O, Spin (7)) geometry.
These equations play an important role in this paper.

C. T. C. Wall [W] has proved the following

THEOREM A. Let M6 be a ^-dimensional closed, simply-connected spinor
manifold with torsion free homology. Then we have

(1) There exists an immersion from MG into R8 if and only if p^M^+X2^
holds for some Ze2//2(M6; Z)t where pλ(MQ) is the l-st Pontrjagin class of M6,
In particular,

(2) There exists an embedding from M6 into R8 if and only if p^M6)—^.

The purpose of this paper is to show some results related to the above
Theorem A by making use of the properties of the induced almost Hermitian
structure on (M6, c). Namely, we shall prove the following

THEOREM B. Let M6=(M6, /, <,» be a ^-dimensional almost Hermitian
submanifold immersed in the octonians O. Then, we have the following relations

(1)

(2)

(3)

where p^TM6) is the l-st Pontrjagin class of the tangent bundle TM6 of M6,

d(Tl'«) is the i-th Chern class of the bundle Tl'°= {v^TM«®C\Jv= V^-lv}, e(v) is
the Euler class of the normal bundle it and £ι(ι>1>0) is the l-st Chern class of the

bundle vl'*—{v^v®C\Jv—^/—\v}, respectively.
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COROLLARY 1. Let MG=(AΊ6, J, <,» be a ^-dimensional almost Hermitian
submanifold immersed in the octonians O with flat normal connection. Then, we
have

c1(T1 °)=c1(v1 °)=e(v)=0, and

COROLLARY 2. Let MG=(M6, J, <,» be a ^-dimensional almost Hermitian
submanifold in the octonians O which is embedded as a closed subset in O. Then,
we have

0, and c2(T1 °)=/)1(TMβ)=0.

Remark 1. E. Calabi ([C]) proved that an oriented 6-dimensional hypersur-
face in purely imaginary octonians ImO^R1 is an almost Hermitian manifold
and its 1-st Chern class vanishes. Corollary 1 is a generalization of this result.

Remark 2. Corollary 2 improves slightly the necessary part of (2) of
Theorem A in our situation.

Remark 3. If (M6, t) satisfies the assumption in Corollary 1 or 2, then it
is a spin manifold (see [L-M, Remark 1.8, p. 82]).

In this paper, we adopt the same notational convention as in [B], [H2] and
all the manifolds are assumed to be connected and of class C°° unless otherwise
stated. The author would like to express his hearty thanks to Professor Seki-
gawa for his valuable suggestions and to the refree for his valuable comments.

§ 2. Preliminaries.

We shall recall the following formulation of the Spinor group Spin (7)
([H-L]). Let S 6 ={we/wO|<w, w>— 1} where 1m O is the purely imaginary
octonians. Then, for any weS6, we have u — — ΰ and w 2— — uu~ — <w, w>= — 1.
So, we may use weS6 to define a map Ju: O-+O such that Ju(x)=xu for any
x<=O. Each Ju is an orthogonal complex structure on O. It is known that
Spin (7) is isomorphic to the subgroup of SO (8) generated by the set {/JweS6}.
Also Spin (7) is isomorphic to the group {g^SO(8)\g(uv)=g(u)X(g)(v) for any
M, v$Ξθ}, where I is the map from SO (8) to itself defined by lί(g)(v)=g(g~l(l)v)
for any t>eO. Then we may observe that %|sp in<7> : Spin(7)-»SO(7) is a double
covering map and satisfies the following equivariance g(u)X g(v)=I(g)(uXv)
for any g eSρin(7), where X is the vector cross product defined by uχv~
(vu — uv)/2. Now, we shall recall the structure equations of an oriented 6-
dimensional submanifold in (O, Spin (7)). It is known that the octonians O is
considerd as the algebra H@H where H is_the quaternions. _We put a basis of
C®R0 by; N, E^iN, E2=jN, E,= kN, fj, 51==i/7, £.=//7, E,= kN where

β=(0, DeJίΘJJ, N=(l-V-ϊe)/2, N=(l+V=ϊε)/2ίΞC®R0 and {/,*,/, k] is
the canonical basis of H. We call this basis the standard one of C®RO and a
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basis (tt,/,n,/) of C(g)ΛO is said to be admissible, if (n,f,n,f)=(N,E,N,E)g
for some £>eSpin(7)c:M8χ8(Cf). We shall identify Spin(7) with the admissible
basis. Here, we may note that the Grassmannian manifold G2(O) of the oriented
2-planes in 0 is isomorphic to the homogeneous space Spin(7)/ί/(3). So, we
can set

3c(M')={(p (n, f, n, /)) | -2V:=Ί nj\n = T$M« for any

Then x : <3C(MG)^>M& is a principal £/(3)-bundle over M6. The induced almost
complex structure is defined by :

(2.D
for X^TpM6, where ξ,η are an orthonormal pair of the normal space and n —

l/2(ξ— V~—ίη) (for details, see [B], [HI]). By making use of the properties of
Spin (7), we may observe that this almost complex structure is an invariant of
Spin (7) in the following sence Let M6 be an oriented 6-dimensional manifold
and c, c' : M6— >O be isometric immersions. If there exists geSρin(7) such that
ε'=g°e (up to parallel displacement) then /— /' where / and ]' are the almost
complex structures on M6 induced by the immersions c and t' y respectively.
Also, we can easily see that T1 °=spanc{/1,/2,/3} where T1 > 0 is the subbundle

of the complexified tangent bundle TM6®C whose fibre is V^-eigenspace of
the almost complex structure /. Then we have the following structure equa-
tions :

(2.2) dc=fω+fω,

(2.3) d/=-w tf+A-n^-h/C«], (Gauss formula)

(2.4) dn = n(V^ΐρ)+fΐ)+fθ, (Weingarten formula)

(2.5) d(VIΓI/ί>)=tξΛί + t ^Λ5, (Ricci equation)

(2.6) \ _ _ (Codazzi equation)

(2.7) dκ^/\tϊι-κf\κ+θ/\tθ-[β']f\ίθ'}, (Gauss equation)

where p : Λ-valued 1-form, ή, θ: M8xι(C)- valued 1-forms, and A::M3 x 3(C) valued

1-form on ^(M6) which satisfy /c+^=0 and ίr/c+V^^^O. Here, [β] is
defined by

0

where θ = l(θ\ θ\ θ*). By (2.2) and (2.3), the second fundamental form Π is
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given by

(2.8) U =

Applying the Cartan's lemma, we may conclude that there exists 3x3 matrices
of functions A, B, C on 9^(M6) (with complex values) satisfying

A=*A, €=*€,

(2.9)

Hence, we have the following canonical splittings :

(2.10) Π' ^C-'

§3. Proofs of Theorem B and Corollaries 1, 2.

First, we shall define the Hermitian connections on T 1 > 0 and y 1 > 0 . Let X be
a section of the bundle T1>0. Then, we can write X=fa, where a is M3xl(C)-
Valued function on 3((M*). We define the operator on T1 > 0 such that $(/α)=
f(da+κά). Then we have

LEMMA 3.1. The operator tf defined above is a connection on T1 > 0 and
satisfies the following conditions,

(1) 7 is complex, that is V/=0,
(2) 7 preserves the Hermitian metric, that is

where X, Y are sections of T1 > 0 and Y is the conjugation of Y.

Proof. Let /x^(/ί, f ( , fί) be another frame field on M\ where f( is a
section of T1>0, then there exists £7(3)-valued function A on ^(M6) such that
f'—f A. By direct calculation, we have

Hence, 7 is well-defined. For any section X of T1>0, we have

)-^

Hence, we have (1).
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- -ί {'(dά)β+'(κά)β} + ~ {'(ά)dβ+'(ά)κβ}

= ~{ί(

Hence we have (2). Π

Similarly, let v be a section of v1'0. Then we can write v— nζ where ζ is the

C-valued function. We define the operator 71 as follows: 7 4;=n(ί/ζ+ζV— 1/>).

LEMMA 3.2. The operator V1 defined above is a connection on v1'0 and satisfy
the following conditions,

(1) 71 is complex, that is 7V =0,
(2) V1 preserves the Hermitian metric, that is

where u, v are sections of ι/'° and v is the conjugation of v.

Proof. Same as that of Lemma 3.1. D

We are now in a position to prove Theorem B. By Lemma 3.1, we see
that the 1-st Chern class of Γ 1 > 0 is given by

(3.1) Cl(rl 0)-

where Ω=dκ+κ/\κ is the curvature form of V. By (2.7), we get

(3.2) β^Λ'

By (2.5), (3.1) and (3.2), we get

(3.3) Cl(T1 °)--[(2^V^T)-1

On the other hand, by Lemma 3.2 and (2.5), we have

(3.4) Cl(p1'°)--[(2πV:=l)-1(JV=Tjo)] .

Since the codimension is two, we see that

(3.5) c1(p1 β)=β((ι;1 β)Λ)=eω.

By (3.3), (3.4) and (3.5), we have (1) of Theorem B. Next we shall prove (2)
of Theorem B. Since the restriction TO| ί C j fβ> is the pull back of TO to M6

under the immersion c, by the functoriality of the total Pontrjagin class

On the other hand, by (1), we get
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P(T O I ,cjrβ>)=

=l+2ca(T1 β)-2c1(rl β)ί.

Hence we have (2). From (2), we have the equality (3). D

We see that Corollary 1 follows from Theorem B. The following Proposi-
tion 3.3 will then complete the proof of Corollary 2.

PROPOSITION 3.3 ([M-S; p. 120]). Let Mn be an oriented, n-dimensional
manifold which is embedded as a dosed subset in (n + k)-dimensional Euclidean
space Rn+k. Then we have e(v)=Q where e(v) is the Euler class of the normal
bundle v.

§ 4. Applications.

In this section, we shall give some applications of the main Theorem B and
Corollaries 1, 2, and some examples.

Let M6 be a 6-dimensional compact irreducible Riemannian 3-symmeteric
space, i.e., M6 is one the following spaces:

(1) S£7(3)/T2, (2) SC7(4)/S(£7(l)Xί/(3)),
(3) SO(5)/ί/(l)xSO(3), (4) SO(5)/t/(2),
(5) S/>(2)/ί/(l)xS/>(l), (6)
(7) SO(6)/ί/(3), (8)

We note that the spaces (2), (4), (5) and (7) are diffeomorphic to P3(C), and, (3)
is diffeomorpic to G2(Rδ). T. Koda [K] has calculated the characteristic classes
of compact irreducible Riemannian 3-symmetric spaces. From his results and
Corollary 2, we have

THEOREM 4.1. Let MQ be a ^-dimensional compact irreducible Riemannian
^•symmetric space. If M6 can be embedded in R8, then it is (1) or (8). In fact,
SU(3)/T2 can be embedded in S1aO as a Cartan hypersurface.

Next, we shall calculate characteristic classes of three examples.

Example 1. Let c : S2-»/23 be the totally umbilical embedding and εXid: S2

XjR4->/280/24=/mOc:O be the product embedding. By Corollary 1, its 1-st
Chern class and 1-st Pontrjagin class vanish.

Example 2. (Example of non-zero 1-st Chern class with zero 1-st Pontrjagin
class). Let e : S2(l/3)-»S4(l) be the Veronese surface which is defined by;
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( \—ί xy xz yz x2—yz x2+y2—2z2

~

where x2+y2+zz=3. We fix p<=S\l)\c(S2(l/3)) and denote by πp the stereogra-
phic projection; πp : S4\ {/>}-> /24. We shall consider the following product im-
mersion

πp c X i d : S2xR*

Since H}>R(S*xR4)=Q, the 1-st Pontrjagin class of T(S2xR4) vanishes. Next,
we shall prove that the 1-st Chern class does not vanish. We note that the
induced almost complex structure satisfies the following :

for any (p, q)<=S2xR*. Hence, we may compute the following

f Cl(T1 °)=f ^(dp)=--^-( K^σ,
j T Γ p c ί C S 2 ) Jπ p o ί c52)27Γ 27Γ J ί Γ p - < C < S 2 >

where KL, σQ are the normal curvature, volume element of πp°c(S2), respectively.
Since KLσQ is a conformal invaiant, we see that π%(K Lσo)=(2/3)σ', where 2/3
is the normal curvature of the Veronese surface. Therefore, we get

~-~ { K^σ0^--^-( T*' = -7Γ-( er=--^4jrX3=-2,2π jπp°c(S2) 2 π J ί C 5 2 ) 3 6π j s z 6π

where σ', σ are the volume element of P2(R), S2(l/3), respectively. Hence, we
have c1(Γ1 °(

Remark. πp°c is an immersion but not an embedding.

Example 3. Let t = c X ί X c : S2xS2xS2-*S8c:R9=R*(§)R3®Rz be the product
embedding where c is the totally umbilical embedding. We fix p^S8\c(S2xSzxS2)
and let πp : Ss\{p}-*R8 be the stereographic projection. Then π^l : SzχS2xS2

->/28is an embedding. So the 1-st Chern class of T1>0(S2χS2χS2) and the 1-st
Pontrjagin class of T(S2xS2xS2) vanish. On the other hand, if we identify S2

with the complex projective space PX(C), then we have Cι(Tl \Pl(C)xP\C)
χP1(C)))^0. Therefore, the induced almost complex structure is different from
the product complex structure.

Lastly, we shall give some curvature condition that the immersion has a
self intersection. We shall recall the following

PROPOSITION 4.2 ([B]). Let MQ-(M&, J, < ,» be a ^-dimensional almost
Hermitian submanifold immersed in the octonians O. Then, its almost Hermitian

structure is semi-Kahler, that is, dΩz=0 where Ω— (V^ΐ/2)ω/\ω=(V::::ϊ/2')
2?=ιβ> lΛω l is the Kdhler form of M6.
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PROPOSITION 4. .3. Let M6=(M6, J, <,» be a compact ^-dimensional almost

Hermitian submanifold immersed in the octonians O. Then we have

\ cΛT' ΌΛO^- -l ( | Π 2 0 | 2 - |Π° ' 2 | 2 )c7
J A f 6 7Γ J Λ f 6

where a is the volume element of M6, \ E2'°\2:=trΛΛ and \ Π° 2 | 2 :=trCC.

Proof. By (2.5), (2.9), (2.10) and (3.3), we get

ω*= - -(trΛΛ-trCC)σ .
4τr π

From this, we get the desired results. D

THEOREM 4.4. Let M6— (M6, /, <,» be a compact ^-dimensional almost

Hermitian submanifold immersed in the octonians O. If \ 6 | Π 2 > 0 | 2 σ ^ \ 6 | Π 0 > 2 2 0 ,

then the immersion has a self intersection.

Proof. If the immersion is an embedding, by Proposition 4.2 and Corollary

2, we see that c^T^^AΩ2 is closed. By Proposition 4.3 and Stokes' theorem,

we get the desired result. Π
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