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CHARACTERISTIC CLASSES OF ORIENTED
6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

BY HIDEYA HASHIMOTO

§ 1. Introduction.

Let (M®, ¢) be an oriented 6-dimensional submanifold in the 8-dimensional
Euclidean space R’ with the immersion c. In this paper, we shall identify R’
with the octonians (or Cayley algebra) O in the natural way. By making use
of the algebraic properties of the octonians, we can define an almost complex
structure on (M¢ ¢). We may observe that this almost complex structure / is
orthogonal with respect to the induced metric <,>. Hence M®=(M¢, /, {,>)is
an almost Hermitian manifold ([B], [C], [G]). R. Bryant ([B]) established the
structure equations of (M¢, ¢) from the standpoint of (O, Spin (7)) geometry.
These equations play an important role in this paper.

C.T. C. Wall [W] has proved the following

THEOREM A. Let M® be a 6-dimensional closed, simply-connected spinor
manifold with torsion free homology.  Then we have

(1)  There exists an immersion from M°® into R® if and only if p,(M®)+X?=0
holds for some X&2H*(M®; Z), where p,(M°) is the 1-st Pontrjagin class of M®,
In particular,

(2)  There exists an embedding from M® into R® if and only if p,(M®)=0.

The purpose of this paper is to show some results related to the above
Theorem A by making use of the properties of the induced almost Hermitian
structure on (M°® c¢). Namely, we shall prove the following

THEOREM B. Let M*=(M¢® /, {,>) be a 6-dimensional almost Hermitian
submanifold immersed in the octonians O. Then, we have the following relations

D o (TH)=—c,(w")=—e),

@ (T )=cuT"°),

B PATM)+c(T*)*=0,
where p,(TM®) is the I[-st Pontrjagin class of the tangent bundle T M°® of M®,
ci(T" s the 1-th Chern class of the bundle T °={veTM*QC| Jv=v—1v}, e(y) is
the Euler class of the normal bundle v and c,(v"°) is the [-st Chern class of the

bundle v"°'={veuv@C| Jv=+~—1v}, respectively.
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COROLLARY 1. Let M*=(M?%,J, <,)) be a 6-dimensional almost Hermitian
submanifold immersed in the octonians O with flat normal connection. Then, we
have

(T )=c,(* )=e@)=0, and cx(T")=p(TM®)=0.

COROLLARY 2. Let M*=(M?®, J, {,>) be a 6-dimensional almost Hermitian
submanifold in the octonians O which is embedded as a closed subset in O. Then,
we have

ei(TH)=c,(0")=e()=0, and ¢(T" )=p(TM*)=0.

Remark 1. E. Calabi ([C]) proved that an oriented 6-dimensional hypersur-
face in purely imaginary octonians Jm O=R"is an almost Hermitian manifold
and its 1-st Chern class vanishes. Corollary 1 is a generalization of this result.

Remark 2. Corollary 2 improves slightly the necessary part of (2) of
Theorem A in our situation.

Remark 3. 1If (MS, ¢) satisfies the assumption in Corollary 1 or 2, then it
is a spin manifold (see [L-M, Remark 1.8, p. 82]).

In this paper, we adopt the same notational convention as in [B], [H2] and
all the manifolds are assumed to be connected and of class C* unless otherwise
stated. The author would like to express his hearty thanks to Professor Seki-
gawa for his valuable suggestions and to the refree for his valuable comments.

§ 2. Preliminaries.

We shall recall the following formulation of the Spinor group Spin (7)
([H-L]). Let S*={usImO|<{u, up=1} where ImO is the purely imaginary
octonians. Then, for any u<S°% we have u— — ¢ and u’= —uu=—<u, up=—1.
So, we may use u=S°® to define a map J,:0—0 such that J,(x)=xufor any
x€0. Each [, is an orthogonal complex structure on O. It is known that
Spin(7) is isomorphic to the subgroup of SO(8) generated by the set {J,lusS%.
Also Spin (7) is isomorphic to the group {g&S0®)|guv)=gw)X(g)(vfor any
u, v=0}, where [ is the map from SO(8) to itself defined by X(g)(w)=g(g (L))
for any v€0. Then we may observe that X|spinc» : Spin(7)—SO(7) is a double
covering map and satisfies the following equivariance g(u)Xg@)=%{(g)(uXv)
for any g&Spin(7), where X is the vector cross product defined by uXxv=
(u—@v)/2. Now, we shall recall the structure equations of an oriented 6-
dimensional submanifold in (O, Spin (7)). It is known that the octonians O is
considerd as the algebra HEH where H is the quaternions. We put a basis of
C®zrO by; N, E,=iN, E,=jN, E,=kN, N, E,=iN, E,=JN, E,=kN where
¢=0, Y)eHPH, N=(1—+v—=1¢)/2, N=(1++—1¢)/2eCQRr0and {I, 7, j, k} is
the canonical basis of H. We call this basis the standard one of C®g0 and a
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basis (n, f, 7, f) of CQRrO is said to be admissible, if (n,f,7,f)=(,E,N,E)g
for some g<Spin (7)c M,,s(C). We shall identify Spin(7) with the admissible
basis. Here, we may note that the Grassmannian manifold G,(0) of the oriented
2-planes in 0 is isomorphic to the homogeneous space Spin(7)/U(3). So, we
can set

FMO={(p (n, f, n, /) | —2+/=1uAn=T4iM* for any peM*}.

Then x : F,(M®—M?*is a principal U(3)-bundle over M® The induced almost
complex structure is defined by :

2.1) tx(J X)=(e+X) (X €)

for XeT,M* where & y are an orthonormal pair of the normal space and n —
l/2(&— ~/—19) (for details, see [B], [HI]). By making use of the properties of
Spin (7), we may observe that this almost complex structure is an invariant of
Spin (7) in the following sence Let M° be an oriented 6-dimensional manifold
and ¢, ¢/ : M®— >0 be isometric immersions. If there exists g&Spin (7) such that
¢=go¢ (up to parallel displacement) then J=J’ where J and /' are the almost
complex structures on M® induced by the immersions ¢ and ¢/, respectively.
Also, we can easily see that T °=spanc{f,, f., fs} where T"° is the subbundle
of the complexified tangent bundle TM*@C whose fibre is v —1-eigenspace of
the almost complex structure /. Then we have the following structure equa-
tions :

2.2) de=fotfa,
(2.3) df=—n'h+fe—a'6+7107, (Gauss formula)
(2.4) dn=n(~—1p)+fH+74, (Weingarten formula)
(2.5) d(vV=1p)=hAh+O NG, (Ricci equation)
( dh=—HhAKW=10)—cANG—[FING, ) _
(2.6) { _ ~_ (Codazzi equation)
l d0=—kNO+ON(V—1p)—[0]AY,
2.7) de=YAD—rAk+0 NG—[01A[0](Gauss equation)

where p : R-valued 1-form, §, 6 : M;.,(C)-valued 1-forms, and &: M,.s(C) valued
1-form on Z,(M°® which satisfy #+'£=0 and tre++—1p=0. Here, [6] is
defined by

0 6 -0
[f]=| —6° 0 A
g -6 0

where 0=, 6%, 6°). By (2.2) and (2.3), the second fundamental form IT is
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given by

(2.8) I=—2Re{(*how+'0-m)n} .

Applying the Cartan’s lemma, we may conclude that there exists 3x3 matrices
of functions A, B, C on ,(M® (with complex values) satisfying

A=t4, cC=tC,

- (o 2l

Hence, we have the following canonical splittings :

210) [°°'=(—weAw)n, LI"'=(—'@>'Bo—‘w-Ba)n, 0"*=(—'G.Ca)n.

§3. Proofs of Theorem B and Corollaries 1, 2.

First, we shall define the Hermitian connections on 7*° and y*°. Let X be
a section of the bundle T*°. Then, we can write X=fa, where a is M;.,(C)-
Valued function on &,(M®). We define the operator on 7%° such that V(fa)=
f(da+ka). Then we have

LEMMA 3.1. The operator tf defined above is a connection on T“° and
satisfies the following conditions,

(1) 7 is complex, that is VJ=0,

(2) 7 preserves the Hermitian metric, that is

dX, Vy=CIX, T>+<X, VY,
where X, Y are sections of T*° and Y is the conjugation of Y.

Proof. Let f'=(f{, fs, f3) be another frame field on M°®¢ where f is a
section of T*° then there exists UU(3)-valued function 4 on ,(M*®) such that
f'=JA. By direct calculation, we have

K=A"dA+AkA.
Hence, 7 is well-defined. For any section X of 7*°, we have
FNX=C))(fa)=Y (fa))—]¥(fa)
=V=1Vfa)—](f(da+ra)=~1(f(da+ra)~] (f(da+ra)=0.
Hence, we have (1).
X, Ty+<X, T
={f(da+xa), FBy+<fa, F(dB+RP)
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= L (@ + eafl+ — (He)df+ @eh)

= > () +(@dfh =d<X, V>,
Hence we have (2). O

Similarly, let v be a section of v**°. Then we can write v—n{ where C is the
C-valued function. We define the operator V* as follows: Viv=n(d{+{v—1p).

LEMMA 3.2. The operator N* defined above is a connection on y*'° and satisfy
the following conditions,

(1) V* s complex, that is TV =0,

(2) NV* preserves the Hermitian metric, that is

d<u, By=<V*u, B)+<u, V)
where u, v are sections of v“° and v is the conjugation of v.

Proof. Same as that of Lemma 3.1. D

We are now in a position to prove Theorem B. By Lemma 3.1, we see
that the 1-st Chern class of T"° is given by

G.D (T )=—Qzx~=1)"'[trQ]€ Hjp(M"),

where @=dk+xA«kis the curvature form of V. By (2.7), we get
3.2 Q=bN\D+ONG—[IIN[O],

By (2.5), (3.1) and (3.2), we get

3B.3) (T )=—[Q@rv =D (YAI= 0 NO)]=[Q2r~/—1)"(dV~1p)].
On the other hand, by Lemma 3.2 and (2.5), we have

3.4 (0" )=—[2rv—=1)"(dvV=1p)].

Since the codimension is two, we see that

(3.3) (' O=e((v' Vm)=c).

By (3.3), (34) and (3.5), we have (1) of Theorem B. Next we shall prove (2)
of Theorem B. Since the restriction TO|,ys is the pull back of 70 to M°
under the immersion ¢, by the functoriality of the total Pontrjagin class

P(TO|,cue))=c¥(P(T0)=1.
On the other hand, by (1), we get
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PTO | care)=c(TO| sy QC)=c((ex(T M )YDr)XC)
=c((e(T MQC)DWRC)=c(T" BT ™ *Dr* ")
=A4e(T )+ co(TH )+ co(TH NA— (T )
(T ) e TN+ (L= )
=142¢,(T* °)—=2¢,(T* °)2.

Hence we have (2). From (2), we have the equality (3). D

We see that Corollary 1 follows from Theorem B. The following Proposi-
tion 3.3 will then complete the proof of Corollary 2.

PROPOSITION 3.3 ([M-S; p. 1201). Let M™ be an oriented, n-dimensional
manifold which is embedded as a dosed subset in (n+ k)-dimensional Euclidean
space R™**.  Then we have e(v)=0 where e(v) is the Euler class of the normal
bundle v.

§ 4. Applications.

In this section, we shall give some applications of the main Theorem B and
Corollaries 1, 2, and some examples.

Let M*® be a 6-dimensional compact irreducible Riemannian 3-symmeteric
space, i.e., M°® is one the following spaces:

(1 SuE)/T? @ SU@/STDLXUQA),

(B) SOB)/UMXS0®), @ SO0B)/U@),

G Sp@/UMLXSp),  (6) Sp@)/U®@),

7 SO®)/U@M), Q) G./SUB)=S".
We note that the spaces (2), (4), (5) and (7) are diffeomorphic to P*(C), and, (3)
is diffeomorpic to G,(R®). 7. Koda [K] has calculated the characteristic classes
of compact irreducible Riemannian 3-symmetric spaces. From his results and
Corollary 2, we have

THEOREM 4.1. Let M*® be a 6-dimensional compact irreducible Riemannian
3-symmetric space. If M® can be embedded in RE, then it is (1) or (8). Infact,
SU@)/T?can be embedded in SO as a Cartan hypersurface.

Next, we shall calculate characteristic classes of three examples.

Example 1. Let ¢: S*—R® be the totally umbilical embedding and ¢Xid:S’
XR'*->R*PR*=ImOcO be the product embedding. By Corollary 1, its 1-st
Chern class and 1-st Pontrjagin class vanish.

Example 2. (Example of non-zero 1-st Chern class with zero 1-st Pontrjagin
class). Let ¢: S*1/3)—S*(1) be the Veronese surface which is defined by;
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o (XY Xz yz  x—yt ,36,?+y2*222_)
NERGRNYE AOVE SRVE M Vs S VA
where x*+9y2422=3. We fix p=S*1)\«(S*1/3)and denote by =, the stereogra-
phic projection; m,: S*™\{p}—R*. We shall consider the following product im-
mersion
wp ¢Xid: S*°XR*— HOH=O0.

Since Hpr(S*X R*)=0, the I-st Pontrjagin class of T(S?Xx R*vanishes. Next,
we shall prove that the 1-st Chern class does not vanish. We note that the
induced almost complex structure satisfies the following :

J(T3SH=TpS*,  J(TRI=TR',
for any (p, 9)=S?x R*. Hence, we may compute the following

1 1 .
"p°!(SZ)2?(d‘o)—__\. Kta,

27I‘J7rpot(32)

{ Loy
an=:(S2)cl(T ) S
where K+, g, are the normal curvature, volume element of z,<¢(S?), respectively.
Since K+‘g,is a conformal invaiant, we see that z}(K'g,)=(2/3)¢’,where 2/3
is the normal curvature of the Veronese surface. Therefore, we get

- 1 1
[ — g —=—-—"— =g = —— P = —
2 J{np.,uS?) Ktay 2r 5:(5% 37 Syr.)gsz 7 6 mx3=-2,
where ¢’, o are the volume element of P%*(R), S%(1/3), respectively. Hence, we
have ¢,(T" °(S*xX R*)+0.

Remark. 7m,e¢is an immersion but not an embedding.

Example 3. Let i=¢XeX:SEXSEXSE-S c R =R*HR*PR*ve the product
embedding where ¢ is the totally umbilical embedding. We fix p& S\ ¢(S2X S*X S?)
and let 7,: S®\{p} —>R*be the stereographic projection. Then m,e7: STXS*XS?
—R?®is an embedding. So the 1-st Chern class of T%°(S?xS?xS?% and the 1-st
Pontrjagin class of T(S?XS?xS?) vanish. On the other hand, if we identify §°
with the complex projective space P!'C), then we have ¢, (T* °(P(C)xP'(C)
X PY(C)))#0. Therefore, the induced almost complex structure is different from
the product complex structure.

Lastly, we shall give some curvature condition that the immersion has a
self intersection. We shall recall the following

PROPOSITION 4.2 ([B]). Let M*=(M°®J, <,>) be a 6-dimensional almost
Hermitian submanifold immersed in the octonians O. Then, ts almost Hermitian
structure is semi-Kdahler, that is, d2*=0 where Q=(—1/2wNd=(~—1/2)
S 0*A@ is the Kdhler form of M°.
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PROPOSITION 4..3. Let M*=(M?®J, <,>) be a compact 6-dimensional almost
Hermitian submanifold immersed in the octonians O. Then we have

10 2__ iS 20(2__ 0,22
J\MGCI(T YNQP= - MG(| o2°p?—|0***e
where ¢ is the volume element of M¢, \I*°|*:=trAAand \ TT° *|*:=trCC.
Proof. By (2.5), (29), (2.10) and (3.3), we get
1
10 o __ - 2
(T YN = o doNg2

V=1
Y

- — 2 — -
(trAA—trCOY' A& A@* N@* NW* \N@D*= - n—(trAA—trCC)a
From this, we get the desired results. D

THEOREM 4.4. Let M*=(M?®, J, {,>) be a compact 6-dimensional almost
Hermitian submanifold immersed in the octonians O. If \ &,| o=+ II%?%g,
J Jm

then the immersion has a self intersection.

Proof. 1f the immersion is an embedding, by Proposition 4.2 and Corollary
2, we see that ¢,(T"°)AL2%is closed. By Proposition 4.3 and Stokes’ theorem,
we get the desired result. d
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