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IWASAWA THEORY AND p-ADIC HODGE THEORY

BY KAZUYA KATO

The aim of this paper is to formulate the Iwasawa main conjecture for
varieties (or motives) over arbitrary number fields. See (4.9) for the statement
of the conjecture, and (4.15) for “philosophical comments" on it. To formulate
our conjecture, we need the p-adic Hodge theory developed by Tate [Ta.],
Fontaine and Messing [FM], and Faltings [Fa,].

The classical Iwasawa theory relates special values of partial Riemann zeta
functions to the Galois module structures of the ideal class groups of cyclotomic
extensions of Q. In our conjecture, we replace Q by an arbtirary number field
K, a cyclotomic extension of Q by a finite abelian extension L of K, and partial
Riemann zeta functions by partial L-functions Lg(M, ¢-part, s) of a motive M
over K for c=Gal(L/K). (Here S is a finite set of finite places of K including
"bad places”, and Ls means the L-function without the S-part. For the mean-
ing of the ¢-part, see (4.6).) Our conjecture relates special values of L(M, o-
part, s) to the Gal(L/K)-module structures of the etale cohomology of Spec (Oy,s)
with coefficients in an etale sheaf coming from M, where Oy s is the ring of
elements of L which are integral outside S.

In {BK1], Bloch and the author formulated a conjecture on Tamagawa num-
bers of motives which generalizes the Birch Swinnerton-Dyer conjecture to
general Hasse-Weil L-functions. The Iwasawa main conjecture in this paper is
a natural generalization of the conjecture of [BK] (which is regarded as the
case L=K in the above description).

In our conjecture, we assume the variety is smooth proper over K but we
put no other assumption on our variety. We do not assume the variety is of
ordinary reduction at the prime number p in problem. We do not assume our
motive is critical in the sense of Deligne [De;]. However this does not mean
that we can define p-adic L-functions without these assumptions. Our conjecture
treats directly the special values of complex L-functions, but do not treat p-adic
interpolations of special values.

In §1-§ 3, we review known results and conjectures on p-adic Hodge theory,
K-theory, and the duality in Galois cohomology of number fields. We formulate
the Iwasawa main conjecture in §4. In §5 we consider the case of Tate motives
over Q, and in §6 we show that in case of the motive @(+) over Q with r even
and positive, and L real abelian extensions of Q, our Iwasawa main conjecture
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coincides with the classical Iwasawa main conjecture. In §6 we use a relation
(5.12) between p-adic Hodge theory and values of partial Riemann zeta functions
proved in a forthcoming paper [Ka,]. In §7 we show that our conjecture is a
generalization of the conjecture in [BK] on Tamagawa number of motives.

After | completed this paper, I learned that Fontaine and Perrin-Riou found
a similar approach to the arithmetic of values of L-functions. ([FP] I, II, III).
They did not consider partial L-functions, but they found how to treat mixed
motives (especially the hight pairing of mixed motives) though my study is
limited to pure motives. The motivation of my study was the hope to extend
Kolyvagin’s Euler systems (which are related to partial L-functions) to motives,
and so partial L-functions were essential to me.

I was inspired much by the nice atmosphere in the number theory seminar
at Komaba organized by Professors K. Iwasawa, G. Fujisaki, and S. Nakajima.
I found the general conjecture during I was preparing a lecture in this seminar
on related subjects. I am very thankful to participants of this seminar. I thank
Prof. T. Saito for his advice on the proof of (4.17), and Prof. S. Bloch who
introduced me to this fascinating field.

Notations: For a field %, % denotes an algebraic closure of %k, and char (k)
denotes the characteristic of k. As usual, Q (resp. @,, R, C) denotes the field
of rational (resp. p-adic, real, complex) numbers.

§ 1. p-adic Hodge theory.

(1.1) We review some results concerning p-adic Hodge theory. In this
section, let K be a complete discrete valuation field with perfect residue field k&
such that char(K)=0 and char(k)=p>0.

Fontaine defined a big ring Br over K endowed with an action of Gal(K/K).
For the definition of Bggr, see [Fo]. Bgg is the field of fractions of a complete
discrete valuation ring Big, K is contained in Byg, the residue field of Bz is
isomorphic over K to the p-adic completion of K, and K coincides with the
Gal (K/K)-invariant part of Bag.

(1.2) We review the de Rham conjecture of Fontaine [F0] proved by
Fontaine and Messing [FM] under certain assumptions and by Faltings [Fa,]
in general.

Let X be a smooth proper scheme over K. Then, on one hand, we have
the p-adic etale cohomology HZ(X, Q,) (X=X®xKWwith an action of Gal(K/K).
On the other hand we have the de Rham cohomology group HZT(X/K Wwith
the Hodge filtration. The de Rham conjecture (1.3) relates these two different
p-adic cohomologies.

THEOREM (1.3) ([Fa,] V). For any 1ra”0, there existsa canonical isomorphism
Hé’t’(l\_,, Qp)@QdeRgHgLR(X/K)®KBdR

preserving the actions of Bar and Gal(K/K),and the filtrations. (Here the action
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of 6=Gal(K/Kpn the left (resp. right) hand side is o®o (resp. oQid.). For
neZ, fil' of the left (resp. right) hand side is

HEX, Q)®q, /" Bdesp. 2 [IZH?(X | K)Q xfil* B ar) -
Here the filtration on B.p is defined by the discrete valuation of Bgg.

(14) We review de Rham representations in the sense of Fontaine.
Let V be a finite dimensional vector space over @, endowed with a con-
tinuous action of Gal(K/K). Let

DdR(V):HO(Ky V®QdeR)

(HYK, ) means the fixed part under Gal(K/K)), which is endowed with the
filtration {D%x(V)},coming from the filtration V®Qpﬁl'BdR. Then

dimg(Der(V))<dimg, (V)

holds always, and the following two conditions (i) (ii) are equivalent.
(i) dimK(an(V))Zdime(V).
(ii) The canonical map

Der(V)QkBar —> V®QdeR
is bijective. _

We say V is a de Rham representation of Gal(K/K)if these equivalent
conditions (i) (ii) are satisfied. If V is a de Rham representation, the bijection
in (ii) gives an isomorphism of filtrations.

The theorem (1.3) says that for a smooth proper scheme X over K, H;’Z(X,Qp)
is a de Rham representation of Gal(K/K)and D.r(HZ(XQ,)) is canonically
isomorphic to H7»(X/Kas a filtered K-vector space.

(1.5) We review the exponential map of a de Rham representation defined
in [BK]. Let V be a de Rham representation of Gal(K/K),and let H'(K,V)
be the continuous Galois cohomology. Then we have a canonical homomorphism

(1.5.1) exp : Dar(V)/D§r(Vy—> HYK, V)

defined as follows. Recall that Fontaine defined a subring Berys of Bar con-
taining the field of fractions of the p-Witt ring W(k), endowed with the Fro-
benius operator / : Beyys— Berys (f. [Fol [FM7), and defined the functor Derys by

Dcrys(V):Ho(K, V®Qchry8)CDdR(V)
The sequence
a B
0 — > Qp - > Bcrys®B§R '_>Bcrys@BdR“—)0

is exact where a(x)=(x, x), B(x, y)=((1—f)x), x—y). By tensoring with V
and by taking Galois cohomologies, we have an exact sequence
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(1.5.2) 0 —> HK, V) —> Derys(V)DDI(V)

r o}
— > Derys(VYBD gz (V)y— > HY(K, V),

where 7(x, y)=((1—f)(x), x—y) The exponential map (1.5.1) is defined by the
second component of §.

(1.6) Let / be a prime number and let V be a finite dimensional Q,-vector
space endowed with a continuous action of Gal(K/K). In the case /=p, assume
that ¥ is a de Rham representation of Gal(K/K). Then, the "finite part"
H¥K, 7) of H(K, V) is defined as follows ([BK]§3)). If [#p,

WK, V)=Ker (H'(K, V) — > H'K,,, V)

where K,, denotes a maximal unramified extension of K. If I=p, H}K, V) is
the image of the map ¢ in (1.5.2). If [=p, we have an exact sequence ([BK]
(3.8.4)

(16.1) 0 — > HYK, 7) — > Ker(1—f : Derys(V))

exp
—> Dar(V)/D§r(V) — HH(K, V)
— > Coker(1—f:Derys(V)) — >0.

Assume the residue field of K is finite. Then, for any #, the cup product
trace
HYK, V)X H*"(K, V*()) — H*K, Q.(1)) ——— Q.

gives a perfect duality of finite dimensional @Q;-vector spaces (Tate duality).
Here V*=Hom (V, Q,) on which ¢=Gal(K/K)acts by hA—hoo~!, and (1) means
the Tate twist. In this pairing, if {%p or if /=p and 7 is de Rham, H}(K, 7)
and H}(K,V*(1)) are the annihilators of each other ([BK] (3.8)).

§ 2. K-theory.

In this section, K is a number field, p is a fixed prime number, and M is
a pure motive (in Q-coefficients) over K of weight wt(M). We review standard
conjectures concerning the “K-theory of M".

(2.1) We do not ask seriously what motives are, but it is better to fix a
definition. A pure motive over K of weight weZ is a finite family of 4-ples
{X,,m,, r.,, &)}, where X, are smooth proper schemes of pure dimension over
K, m,, rieZwith w=m;—2r,, and ¢, is an idempotent in the ring of algebraic
cycles on X,.xX,with Q-coefficients modulo rational equivalence which are
regarded as algebraic correspondences from X, to X,. We denote the single
family (X, m, r, Ax) by H™(X)(*)(Ax denotes the diagonal, which is regarded
as the identity correspondence). We interpret {(X,, m,, »,, &)}, as the direct
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sum of the direct summands of H™i(X,)(r,xorresponding to ¢,. (This is just a
very non-smart modification of the original definition of the motive of Grothen-
dieck.) We do not discuss morphisms of motives. For a motive M— {(X,,m,,
7., €}, the Tate twist M(r) for r&€Z (resp. the dual M*) is defined as {(X.,
m., ni+r, &)}, (resp. {(X,2n;—m,, n;—r,, e¥)}, where n,=dim (X,)and ¥ is the
transpose of &,).

(22) We fix notations for various realizations of M.

Let V,(M)be the p-adic etale realization of M which is a @,-sheaf on
Spec(K).. Once we fix an algebraic closure K of K, V,(M)is identified with
a finite dimensional @,-vector space endowed with a continuous action of
Gal(K/K). Let M, be the Q-structure in the Hodge structure of M which we
regard as a sheaf of Q-vector spaces on Spec(K®qR)... Finally let D(M) be
the de Rham realization of M, which is a K -vector space endowed with the
Hodge filtration {D*(M)};c;. These realizations are defined as follows. Assume
M=H™(X)(rwith X, m, r as in (2.1). Then, V,(M)=H7(XQ,)()as a Gal (K/K)-
module, where X=X®xK. For a=Spec(KQqR)the stalk M,({a@})of M, at the
algebraic closure @ of a=Spec(KQyR) is HHXQra,Q(2xi)") where Hg is the
classical cohomology, and M, ({a})is the Gal (@/a)-invariant part of M,({a})where
Gal(@/a) acts simultaneously on & and on QQ@2zz)".  Finally D(M)=H7:(X/K)
with the filtration D¥(M)=fil**" HT(X/Kyhere fil' is the Hodge filtration.
In general if M= {(X,,m,, 7., €,)},, a realization of M is defined as the direct
sum of the direct summands of the realizations of H™i(X,)(r,korrespondin to ¢,.

(2.3) We have a canonical map

23.1) HY(KQqR, My)QqR —> (D(M)/D(M)RQeR,

which is injective if wt(M)<—1. This map (2.3.1) is induced from the isomor-
phism

HY(K®4C, My)RqC=DM)R,C

which is compatible with the action of Gal(C/R).(¢=Gal(C/R)acts by o®oc
on the left hand side and by 1Qe on the right hand side. If M is the motive
H™X)(r)for X, m, r as in (2.1), this isomorphism is the classical isomorphism

HH(X®eC, C)=Hir(X®eC)/C).

(24) Here we fix some notations concerning ctale cohomology. For a
scheme Y of finite type over Ox and for a smooth Z,-sheaf Fon Y., let
HiY, F)=LinLnHe’t(YF/p"F). Then if p is invertible on Y, each HAY, F/p"F)
is a finite group and H%Y, F) is a finitely generated Z,-module. For such Y
and for a smooth Q,-sheaf Fon Y., let H{Y, F)=HY, F’)®Zpr,where F’
is a smooth Z,-sheaf such that F:F’®Zpr; which is independent of the choice
of F’. For a scheme Y of finite type over K and for a smooth Z, (resp. @p)-
sheaf Fon Y, which comes from some smooth Z, (resp. @Q,)-sheaf on a scheme
Y’ of finite type over Ok such that Y=Y'Qo. K, let
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Hltzm(yp F):l.ifl;x_}(Hi(Y,onU: F'))

where U ranges over all non-empty open subsets of Spec (Og). Then Hpn(Y,F)
depends only on Y and F, and is independent of the choices of Y’ and F’.
(2.5) We shall need K-theoretic Q-vector spaces denoted by H(K, M) ((€Z)
and a subspace H}K,M) of H(K, M). For i=2 or for i<0, define H*K, M)
=0. We define H' (X, M) as follows.
First assume M=H™(X)(>)with X, m, r as in (2.1). Let K«(X)be Quillen’s
K-group. Then

K.(X)Q®Q= zGEBZ(Kn(X)(X)Q)“"
where (K,(X)®@Q)® is the part of K,(X)®Qon which the Adams operators ¢*
act by k* for any fe"l ([Ses]). If tttf(M)=£-1 (i.e. if m#2r—1), define

HY(K, My=K;r-n-1(X)QQ) .

If wi(M)=—1 (i.e. if m=2r—1), define H*(K, M) to be the part of (K,(X)RQ;>=
CH"(X)®QQ(CHT denotes the Chow group of algebraic cycles of codimension 7)
consisting of elements which are homologically equivalent to zero.

In general H(K, M) is defined from the case M=H™(X)(r)by taking the
direct summands and the direct sum.

Next we define H}(K, M). Consider the chern class mapping

(25.1) HY(K, M) — H}n(K, V(M))
which is induced when M=H™(X)(r),from the chern class map
Kprom—s(X) —> HEH(X, Qp(r))
(Soule [So,]) and from the map
Ker {HE (X,Qp(r) — > HE'X, QD) — > Hin(KHEX25(r)
coming from Leray’s spectral sequence
Ey'=Hi,n(K, HA(X, Qp(r) == HiH(X, Qo).

Let H}K, V,(M))be the subspace of H'(K, V,(M)) consisting of elements
whose images in H'(K,, V,(M))belong to H}(K,, V,(M))for all finite places v
of K (cf. (1.6)). Let H}K, M)CHYK, Mde the inverse image of H}K,V ,(M))
CH\(K, V,(M)).

Finally we define H°(K, M) as follows. It is enough to consider the case
M=H™X)(r). If m#2r (i.e. if wt(M)=0), define H*(K, M)=0. If m=2r, let

HK, M)=CH"(X)®QQ)/(hom.~0)

where (hom.~0) means the part homologically equivalent to zero.
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CONIJECTURE (2.6). (1) H}K, M) and H°(K, M) are finite dimensional Q-
vector spaces.

Q) H}K, M)ReQ,—H}K,V,(M)) (¢f [BK] (5.3))

(3) (Tate conjecture.) H(K, M)@QQPiH"(K, Vo(M)).

4) /) M=H™X)(rJand 2% is a proper flat regular scheme over Og such
that X=2Qo K, H}(K, M)CTK,r-n1(X)QQ coincides with the intersection of
HYK, M) and the image of Kyr-m-1(X)RQ.

The following is an old conjecture of Beilinson [Be] (H}(K,M) was defined
in the way of (2.6) (4) by him).

CONJECTURE (2.7). Assume wt(M)#—1. Then we have an exact sequence

0— > H{KM)QR 4 P—B > Homg(H*(K,M*(1)), R) — >0
where P={(D(M)/D*(M))QoR/Image (H'(KQoR, My)QoR)

Here a is the regulator map of Beilinson, “Image” is taken with respect to
the map (2.2.1), and B is defined as follows: If M=H™(X)(r)with m—2r=—2
and with X purely of dimension », each element of

HYK, M*(1))=(CH" " {(X)®Q)/(hom.~0)
defines a cycle class in fi/*~"**HZE* %X /K which induces
DM)/D(M)=H3a(X/K)/ fil" Hi(X/K) —> HERX/K)/fil** ' HiR(X/K)

trace trace
K

CONJECTURE (2.8). Assume wt(M)=—1 - Then:
() H{K,M)=H'K, M).
(2)  The height pairing

(HYK, M)QeR)X (H'(K, M*(1))QeR) —> R

defined by Beilinson [Be,] and Bloch [Bl,] under a certain assumption is defined
in general, and it is a perfect pairing of finite dimensional vector spaces over R.

§ 3. Global p-adic duality.

In this sectin, K denotes a number field and p is a fixed prime number.
Let S be a finite set of finite places of K containing all places lying over p.
Let Ok be the ring of integers of K, and let O s be the ring of S-integers,
that is, Ok, sis the ring of elements of K which belongs to the local ring of Ok
at v for all places v outside 5.
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(3.1) Let V be a smooth @,-sheaf on Spec(Og, s)e,0r in other words, a
finite dimensional Q,-vector space with a continuous action of Gal (K/K)which
is unramified outside S. Then, by the duality of Poitou-Tate and Artin-Verdier
([Ser1II (6.3), [Pol, [Ta,], [AV], [Ma]), we have an exact sequence of finite
dimensional Q,-vector spaces

0—>H'Ox5, V) — > Q H(Ky, V) — > H(O.5, V¥(D))*
T Oke V) QI V) O VO
— > HOx.5,V) — > EH(Ky, V) — > H'O .5, V *(D)* — > 0.
ve

Here the cohomology groups are etale cohomology groups or Galois cohomology
groups, ( y*=Homg (, @), and the maps B H K, V)—>H*"(Og, sV*())* are
induced by the canonical map =

H**(Og,s, V¥(1)) —> B H* (K, V(1))
e
and the local Tate duality
HY Ky, V)X H*"(Ky, V¥(1)) —> H*K,, Q,(1))=Q5.

COROLLARY (3.2). Assume for any place v of K which divides p, V is a de
Rham representation of Gal(K,/K.). We have an exact sequence of finite dimen-
sional Qp-vector spaces

O — > HK, V) —> Gox V) —> H*Ox.s, VFL)*
— HE,V) — > @ H}(K,, ) — > H'Ox.s, VD)
—> H(K, VX)) —>0.

(3.3) In the rest of this sectin, let M be a pure motive over K of weight
wt(M), which is of good reduction outside S. Note that for any place v of K
which divides p, V,(M)is a de Rham representation of Gal(K,/K,)by (1.3).

The following conjecture (3.4) is a real theorem of Deligne [De,] (resp. of
Fontaine, Messing [FM] and Faltings [Fa,]) if v does not divide p (resp. v
divides p) and M is of good reduction at v. For general v which does not
divide p (resp. divides p), a geometric analogue of (3.4) was proved in [De,]
II (resp. [Fa,]).

CONJECTURE (3.4). Let v be a finite place of K. If v does not divide p, let
o be the Frobenius automorphism in Gal(Koy, »./Kyacting on HYK,,, ), and let
P,,(t)zdet%(l—gog‘t HYK .,V ,(M)EQ[t]. // v divides D, let fo: Derys(V (M)
—Derys(V(M)e the Frobenius operator, £(v) the residue field of v, K., the
field of fractions of the p-Witt ring W(k®)), dw)=[«k@): Fy1, and let
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Py(t)y=detg, (1= f3t; Derys(V (M) EKy,o[t] .
Then, in any case, p,t) is with Q-coefficients,and has the form
Ml-ad) (@&C, |a] =N@)» ")
(N() is the norm of v) in C[t].

PROPOSITION (3.5). Assume wi{M)<—1 and assume Conj. (3.4) is true for M.
Let v be a finite place of K.
(1) // v divides p, the exponential map of § 1 induces an isomorphism

DM/ DMYR Ky —> HNKy, V(M)

) // v does not divide p, then H}(K,V ,(M))=0.
(3) H(Ky, Vp(M))=0.

Proof. The case v\p follows from (1.6.1). The case v does not divide p
follows from the fact that H}(K, ) (resp. H°(K, )) is isomorphic to the
cokernel (resp. kernel) of 1—¢y* on H (K, 47, ).

From (3.2) and (3.5), we can deduce easily :

PROPOSITION (3.6). Assum wt(M)<— 1 and assume that the conjectures (2.6)
and (3.4) are true for M. Then:
(1) For any 7, we have

HiOx.s, Vo (My*(1) —> Hpm(K, V,(M)*(1).
(2) We have an exact sequence of finite dimensional @ p-vector spaces

0 — > Hin(K,V ,(M)*(1))* — > H}(K,M)ReQ»
— D(M)/D*(M)QqQp —> Hium(K,V ,(M)*(1))*
——> Homo(HHK, M*(1)), Qp)— > 0.

The above sequence in (2) plays the role of the p-adic version of the
sequence in (2.7) of vector spaces over R.

Remark (3.7). In (3.6), assume wi(M)<—2. Then H}K, M*(1))=0. Indeed,
since M*(1) is of weight=0, it is a direct sum of subspaces of (K;-m-i(X)
RQ)™ with m—2r=0, i.e. with 2r—m—1<0. Furthermore it is probable that

Bm(KV ,(M)*(1)) vanishes (this is conjectured by Jannsen), or equivalently
(if we asssume (2.6) and (3.4)), the p-adic regulator map H}(K, M)RQeQr—
D(M)/D"(M)QoQ4n (3.6) (2) is injective. If this is the case, the sequence in
(3.6) (2) has the simple form
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0 — > H{K,M)®qQ, —> D(M)/D(M)R4eQ»
—> HOme(HLl;m(K,Vp(M)*<l>); QP) —>0

very similar to the sequence in (2.7).

§ 4. Iwasawa main conjecture.

(4.1) In this section, let K be a number field and let M be a pure motive
over K of weight<—1. let L be a finite abelian extension of K with Galois
group G, and let p be a fixed prime number.

(4.2) We define Q[G]-modules H,, H;, H:, H;, H{ and Q,[G]-modules H?
(feZ) as follows. With the notations in §2, let

Hh_—_HO(L®QR; M), Hy=DWM)/DMNQxL, szH}(L, M),
Hy=H (L, MX(1)), ¢i=Hi(L, M*1)),
and let
Hi=Hn(L, V,(M)*1)) (2.9).

Then H;=0 unless wt(M)=—2, H=0 unless wt(M)=—1, H;=0 for =3,
and Hj=0 unless wt(M)=—2. If X=H™(X)(r)then

Hy=H(XQx L)ReC, QCmi)")*

where+means the fixed part by Gal(C/R) which acts simultaneously on C and
on QQni)",

Hy=H7x(XQx L)/ L)/ Ail",

and H, is a certain subspace of Kyr_m-1(XQxL)QQ.

(43) In (4.3) and (4.4) we give purely module theoretic preliminaries.

Here we give a preliminary concerning determinant modules. Let R be
a commutative ring. Recall that for a finitely generated projective R-module
L, the determinant R-module detz(L) is defined to be the exterior power AL
where r is the rank of L which is a locally constant function on Spec(R) (so
AEL is defined locally on Spec (R) first and glued globally on Spec (R)). This
definition of the determinant module is generalized to perfect complexes as
follows.

Let C be the derived category of the category of R-modules. An object C
of C is called a perfect complex if there is a bounded complex of R-modules
consisting of finitely generated projective R-modules which represents C. For
a perfect complex C in C, the determinant module detz(C) is the invertible R-
module defined as follows. Take a representative of C

> Ly —> Ly —> e
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which is bounded and which consists of finitely generated projective R-modules.
Then

detz(C)= @ {detz(L,)} G

It is known that detg(C) is independent, modulo canonical isomorphisms, of the
choice of a representative as above.

(4.4) For a ring R, which will be Q, Q,, Z,or Z»=Z,NQ below, and
for an R[G]-module F, let F* be the R[G]-module whose underlying R-module
is F but on which ¢=G acts by the original action of ¢! on F. Let F¥=
Homg(F, R) on which ¢=G acts by h—he™*. Then F#*=F*# jg identified with
the dual module Hompgrg:(F, R[G]) on which a=R[G] acts by h—hea—a-h,
via the isomorphism

F** — > Hompgrey(F, R[G]) h — > (x — » Zah(a“x)o) .
gE!

(4.5) In the rest of this section except in (4.15)-(4.17), we assume that the
conjectures (2.6) (2.7) (2.8) (3.4) are true for the pull back of M over L.

We define a free Q[G]-module @™ of rank 1 with an isomorphism of
R[G]-modules

~

45.1) ®™'QeR —> R[G]

and a free @,[G]-module @47 of rank 1 with an isomorphism of @,[G]-modules
4.5.2) Dm4RQ, —> DI

Let

D™t =detgrei(Hr)Rererdetorei(Ha)* ¥ Qqrerdetorey(He)
Raqrardetyrei(Hp)*Rqrerdetorei(H)¥ .

Note that the fourth (resp. the last) det( ) is deters;({0})=Q[G] and can be
cancelled if wt(M)=—2 (wt(M)+—1). Let

Q‘f;r=detQtGJ(Hn)®QtaJdetthGJRPum(K, V p(MY*(1))*.

We define the isomosphisms (4.5.1) (4.5.2) as follows. First we consider the
Archimedean side (4.5.1). If ut(M)<—2, by Conj. (2.7) (with K replaced by L)
we have an exact sequence

0— > Hi@eR— > (Hi®R)/(HyQoRy— > (Hi)*QoR— > 0
which gives (4.5.1). If wt(M)=—1I the height pairing

H.®oR —> (H*Q@oR (2.8)

and the isomorphism
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Hy®oR —> Hi®oR

give (4.5.1). Next we consider the p-adic side (4.5.2). By (3.6) (2), we have
an exact sequence

0 —> (Hp)* —> Hi®qQp —> Hi®qQp —> (Hp)* —> (Hi)*®eQp» —> 0.

This sequence and

H£®Qij> HP (26) (3)

give (4.5.2).

(4.6) We consider the partial L-functions of M relative to the abelian ex-
tension L/K. Let S be a finite set of finite places of K containing all finite
places at which M has bad reduction and all finite places which ramify in L/K
Let

Ls(M, s)———%‘, a(U)NU)~*

be the Hasse-Weil L-function of M without Euler factors for places in S. Here
Jranges over all non-zero ideals of Og, a(VU)eQ, and N(U) denotes the norm
of .

For 6=G, we define the partial L-function

Ls(M, g-part, s)

to be Zq a(U)N(U)~* where U ranges over all non-zero ideals of Ogx which
are prime to 5 such that the Artin symbols ((L/K)/U)eG coincide with @.
This function Ls(M, g-part, s) converges absolutely when Re(s)>wt(M)/2+1.

We will consider the values of Ls(M, ¢-part, s) at s=0. If M=H™(X)r),
these are the values of the partial Hasse-Weil L-functions Ls(H™(X),e-part, s)
at s=r=(m+1)/2 (note Ls(N(r),a-part, s)=Ls(N,g-part, s+7) for any motive N),
where (m+1)/2 is the central point of the conjectural functional equations of
Ls(H™(X),o-part, s) under the substitution s—m-+1—s.

Define "the analytic zeta element"”

LTk, sIM)ER[G]

assuming no conjecture if wi(M)<—3, and assuming some conjectures if wt(M)
=—2 or -1 as follows. If wt(M)<—3, define

C‘i?x,s(M)=£GLs(M, g-part, 0) o.

Assume wi(M)=—2 (resp. wt(M)=—1). We proceed making conjectures. We
conjecture that the functions Lgs(M, o-part, s) are extended to the whole com-
plex plane as meromorphic functions. Let ff, (resp. HY) be the coherent sheaf
on Spec(Q[G]) associated to the Q[G]-module H; (resp. HY). Take an open
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set U of Spec(Q[G]) on which H; (resp. fig) has constant rank »(UU). Then
we conjecture that the image fy(s)eOU@R) of ™V X,eq¢ Ls(M, o-part, s) ¢
R[G] with e=1 (resp. —1) is holomorphic at s=0 as a vector valued func-
tion in s. We define {¢x,s(M)to be the unique element of R[G] such that for
any U as above, the image of {flk.s(M)in O(UQeR) coincides with f(0).

If S’ is a finite set of finite places of K containing S, we have

4.6.1) Ctx. s (M)=( I Po(@o))Ct7x, s(M)

where P,(t)eQ[tlis the polynomial such that P,(N(v)~%)"'is the Euler factor of
Ls(M, s) at v, ¢,=G is the Frobenius of v, and we assumed in the case wt(M)
=—1,—2 the conjectures needed in the definition of {%}x.s(M) (which are
equvalent to the conjectures needed for {¢x s (M)) are true.

The following Conj. (4.7) is a famous Beilinson conjecture [Be,] when L=K.
The generalization to abelian extensions L/K is proposed by several peoples
(Stark, Gross, Beilinson, <<¢). In the critical case, (4.7) was conjectured be
Deligne [De,].

CONJECTURE (4.7).  The image of C%}x. s(Munder the isomorphism (4.5.1) is
contained in @™t @™ RyR.

Assuming this conjecture we denote by (7% s(M)the element of @™° cor-
responding to {¢7x s(M)via (4.5.1), and call it "the motivic zeta element”. We
denote by %]k s(M), the image of {7’k s(M) in @%" and call it “the (p-adic)
arithmetic zeta element”.

The relation (4.6.1) concerning the change of the zeta element when we
enlarge S is extended to motivic zeta elements and arithmetic zeta elements, if
the conjectures needed for the definitions of them are true.

(4.8) Fix a Z,-sheaf T in V(M) such that T®ZPQ,,: V (M), in other
words, a Gal (K/K)-stable Z,-lattice T of V,(M). Let H, r<H, be the inverse
image of H(L®,C, T)CH(LQeC,V ,(M))under the composite map

H;, —> H(LQoC, Mn)®qQ,=H(LRC, V,(M)).
For example, if M=H™"(X)(r),we can take
T=HHX, Z,)r)/(torsion)V ,(M)=HIXQ,)r)
(then H,, p={H™(X®xL)ReCZ2mi)")/(torsion)}*®;Z ). We have
Hy1®5,@=Hyy  Hi1®3,,Z,=H(LQGR, T).

Assume p#2. Then H(LQeR, T) is afinitely generated projective Z,[G]-
module as is easily seen. It follows that Hs, rand hence H¥ r=Homgz ,,(H¥ r, Z(»)
are finitely generated projective Z(,[G]-modules. Let T*=Homzp(T, Zp).

Let Oy s be the ring of elements of L which belong to the local ring of O
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at v for any finite place v of L not lying over S. Assume S contains all places
of K lying over p. We see in (4.17) below that if p#2, RI'(Oy s, T*(1)) is a
perfect complex in the derived category of the category of Z,[GJ-modules.
Let

5.3, T:(detz(p)[G](Hh,T))®Z(p)[GZI {detzpm]RF(OL. s, T*))}H*

where ( Y*=Hom( , Z,). Since

H¥Oy,s, T*(1))Qz,Q»=Hi:m(LV ,(M)*1)) (3.6) (1),
we have 9%s.1®z,0,=0%"

Iwasawa main conjecture (4.9). Assume p+2, and assume S contains all
places of K lying over p, all finite places of K at which M has bad reduction,
and all finite places of K which ramify in L/K. Then, the arithmetic zeta

element

LTk s(M)p€P57 =055, 7Q2,Q>
is a Z,[G]l-basis of D§'s v

Note that Z,,[G] and Z,[G] are semi-local rings and hence any invertible
modules over them are free modules.

Remark (4.10). Conj. (4.9) is compatible with isogeny. That is, if 7 and
T’ are two Z,-sheaves in V(M) such that T®Zpr=V,,(M)=T’®Zprd>ng‘T
=0@%7 1 holds in @4 by (4.17) (3) below, and hence Conj. (4.9) for the pair
M, T) is equivalent to the Conj. (4.9) for the pair (M, T’).

Remark (4.11). Conj. (4.9) is compatible with localization, i.e. with enlarg-
ing 5. Let S’ be a finite set of finite places of K containing 5. Then we have
a distinguished triangle

RI(Oys, T*(1)) — > RI'(O1, s/, T*(1)) —st'E-Bs RI(v, TH[-1] —.
From this we have easily

@Z,TS’.T:(”E;LS Pv(%))‘@%,rs,r in @;r .

By comparing this with C%/x s/ (M),{TTves-s Polo))l% k. s(M),, we see that
Conj. (4.9) for the pair (M, §) is equivalent to Conj. (4.9) for (M, S’).

Remark (4.12). 1 refer to the case p=2 which was excluded in Conj. (4.9).
Let p=2 and assume that all Archimedean places of K split in L. Then H,
is a free Z[G]-module of finite rank. Under this assumption, I conjecture
that the trancation t<.RI'(Op sT*(1)) is a perfect complex in the derived
category of the category of Z,[Gl-modules, and the statement of Conj. (4.9)
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holds if we replace RI'(Oy, s, T*(1)) byr<,RI'(Oy s, T*(1)).

Remark (4.13). To state Conj. (4.9) we needed many conjectures concern-
ing K-theory which are difficult to verify. If wi(M)<—3and M is critical in
the sense of Deligne (i.e. Hh®QRE>Hd®QR),there is a way to get rid of con-
jectures on K-theory. In this case, define H,=0. Then, once we have expres-
sions of values of partial L-functions of M at s=0 in terms of period integrals,
Conj. (4.9) becomes purely a problem on p-adic Hodge theory and Galois
cohomology.

Remark (4.14) (on Euler systems). If L’/Kis a subextension of L/K with
Galois group G', the norm maps induce isomorphisms Hh®Qm]Q[G’j':>Hh(L’),

Hd®QEGJQ[G’]in(L’),etc., where H,(L’), etc. mean the H, etc. defined for
the extension L’/K,and hence isomorphisms

@.14.1) D™ R, Q[C] —> Bmo(L)

(4.142) 02 ®0,cc:QLC"] —> O3 (L).

Furthermore, if the conjectures needed for the definitions of {7 s(M)(resp.
L7k s(M),)are true, the isomorphism (4.14.1) (resp. (4.14.2)) sends (% s(Mp
Crote s(MXresp. (¢ix.s(M)pto C&5 k. s(M),). This fact and the change of zeta
elements with enlarging 5 described after (4.7) suggest that when L and 5
vary, the systems {{7% s(M)}. sand {{#/x.s(M),t.s should be called "Euler
systems of Kolyvagin” ([Ko]) for the motive M. Is it possible to apply theories
of Kolyvagin on his Euler systems to these general systems?

(4.15) In the next section, we will see that if K=0Q, M=Q() (resp. M=
Q(r) with r a positive even integer) and L is the real part of Q(a) with a a
root of 1, the algebraic (resp. arithmetic) zeta element is essentially the funda-
mental cyclotomic unit (1—a)(1—a™?) (resp. the p-adic cyclotomic element of
Soulé and Deligne in the Galois cohomology of Z,(1—r)).

Zeta functions live in some world. They come to R[G] and become
{ery s(M)to be called special values of zeta functions. When we find they
come to D™ gnd become 7% s(M),we call them expressions of special values
of zeta functions in terms of period integrals, in terms of regulators of K-
theory, **+ . We have realized they come to @%" and become (¢/x. s(M), only
in very special cases. In such cases, we have called them expressions of special
values of zeta functions in terms of explicit reciprocity laws, describing ex-
plicitly and map Hi®RoQ,—(H3)* (cf. [dS] for the case M=HYE)(1)with E
elliptic curves with complex multiplication. This point will be discussed in
more detail in [Ka,].)

There should be many beautiful extensions of the theory of cyclotomic
units and of the known theory of explicit reciprocity laws, to motives.

(4.16) To describe how arithmetic zeta elements are important for the
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study of arithmetic of varieties, I introduce a result of a forthcoming paper
[Ka,]. (We assume no conjecture in this (4.16).) Let £ be an elliptic curve
over Q dominated by a modular curve, let M=H'(E)(1)and let S be a finite
set of primes containg all primes at which E has bad reduction. In [Ka;], we
give a new proof of the theorem of Kolyvagin

L(HYE), )*0== E(Q) is a finite group

in the following way without using Heegner points. In [Ka], we construct an
element ¢ of H,®eH} such that the Q,-dual H}—»H¥®Q, of H,RoQ,—(H})*
sends ¢ to

(4.16.1) T®{LS(H1(E), 1)(Srw)_l}weHh@QH’gCHh@QH:'{@QQp

where yeH,— {0}, o=I'(E, .QE,Q)—{O} we identify H, with H,(E(R),Q), Hi
with I'(E, £2%,), and we denote by \ o the 1ntegrat10n of w against . Note
H, and H, are one dimensional over Q Ls(HY(E), 1)(\ cul EQ, and the element
(4.16.1) is independent of the choices of y and w.

Assume Ls(HYE), 1)#+0. We obtain E(Q) finite as follows. The property
of ¢ implies that the map H,QoQ,—(H3)%s injective. By the exact sequence
(3.2), we have that H}Q, V,(M)—H,QeQpis the zero map. On the other
hand, the map E(Q)—HYQ, V,(M))induced by the exact sequences

j
00— ,,E —F —F —0 (anzKer(p“:EeE))

lands in HX(Q,V ,(M)) ((BK] (3.11)), and the composite map E(Q)—HHQ, V ,(M))
—H,;QeQ, coincides with

log
E@Q) — E(@,)QQ —> Lie(E)QeQr=H:ReQ> .

From these facts, it follows that E(Q)—E(Q,)®Qis the zero map. This shows
that E(Q) is finite. (This kind of method was used by Coates-Wiles [CW],
Bloch [BI,1 §2, and by K. Rubin (de Shalit [dS] IV §2) for elliptic curves
with complex multiplication).

The element ¢ is the zeta element {§/p s(M) if L(HY(E),1)+0 (strictly
speaking, we know c¢ is the arithmetic zeta element only after we know
H}n(Q, V,(M))is one dimensional over Q, and Hi(Q,V,(M))=0 as con-
sequences of Kolyvagin’s theorem on the finiteness of the Tate-Shafarevich
group; I do not have a new proof of this theorem). The element ¢ above is
defined in [Ka,] by using "modular units in K, of modular curves" of Beilinson
[Be,], just as the p-adic cyclotomic elements of Deligne and Soulé are defined
(cf. (5.11)) by using classical cyclotomic units in K,=G,. The fact ¢ is sent
to the element (4.16.1) is shown by applying the explicit reciprocity law for two
dimensional local fields by Vostokov and Kirillov ([VK]) to the completed
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modular function field
1 n -1 _l_
(i (2/ " Z[La21 00 D] 5

where ¢ is the g-invariant.
Finally we prove the following result used in (4.8) and (4.10).

PROPOSITION (4.17). (Here we assume no conjecture.) Assume p+2, and let
S be a finite set of finite places of K containing all prime divisors of p in K.
Let F be a smooth Z,-sheafon Spec(Og. s)e:. Then:

(1) RI'(O.rs, F)is a perfect complex in the derived category of the category
of Z,[Gl-modules.

Q) // L'/Kis a subextension of L/K with Galois group G', we have a
canonical isomorphism

~

ROy 5, P)®z,06:2,[G'—> RT(Oy. 5, F) .
B // p"F=0 for some n=0, we have
deth[G](RF(OL,S, F))@zmrm]detzmrm](H(L@QR, FXO)*=Z,[G] in Q,[G],

where ( )*=Hom( , Q,/Z,)and the left hand side is regarded as embedded in
its ®ZJ,Q,, which is identified with

detq o1 {0D®pq re1dete,rai({0H=0Q,[G] .

Proof. (1) and (2) are proved by the methods of Deligne (SGA4, Ch. 17)
as follows. It is enough to prove that the morphism

hy : RI'(Oy.s, F)®§ptGJN —>RI'(Oy s, F®%pcGJN)

is an isomorphism for any finitely generated Z,[G]-module N. To prove that
the map H%hy) induced on the ¢-th cohomology groups of these complexes is
an isomorphism, take an exact sequence of Z,[G]-modules of the form

0—>N'—>L,—>-—--->L,—>N—>0

with L, free of finite type and with »>2—g¢. Since h., are clearly isomorphisms,
the bijectivity of H%hy)is reduced to the bijectivity of H?*"(hy.), but the
cohomology groups are zero in degree >2.
We prove (3). If G={1}, the statement of (3) is equivalent to the formula

of Tate ([Tas;] Thm. (2.2))

H2#(Hi(OL.S,F))<—1)1:#(H°(L®QR’ Fx)*.

0sts<
(#( ) denotes the order of the set). Our proof of (3) is essentially the same
with the argument of Tate in his proof (suggested by Serre) of this formula.
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We are reduced to the case where there is a cyclic extension K' of K of degree
prime to p which is unramified outside S, and F corresponds to a finite
Gal(K’/K)-module killed by p. By replacing L with the composite field K’L({,)
where ¢, is a primitive p-th root of 1, we may assume F=Z/pZ(1). Let
K(Z/pZ[G]) (resp. Ko(Z/pZ[G])) be the Grothendieck group of the category
of finitely generated projective (resp. finitely generated) Z/pZ[G]-modules.
Then for a perfect complex C in the derived category of the category of
Z/pZ[G]-modules, the Z,[G]-submodule detzp[G](C) of Q,[G] is determined
by the class of C in K(Z/pZ[G]). Since K(Z/pZ[G))—K(Z/pZ[G]) is in-
jective, it is sufficient to prove that the sum of the class of RI'(O..s, Z/pZ(1))
and the class of H(LQqR, Z/pZ) in Ko(Z/pZ[Glis zero. This fact is proved,
just as Tate says in [Tas], by considering the cohomology sequence of 0—Z/pZ(1)
-GG n—0, together with the knowledge of the cohomology of G, furnished
by class field theory.

§5. Zeta elements of Q(») (r=1) for cyclotomic extensions.

In this section, let K=Q, M=Q(») with =1, let N=1, and let L be the
extension of @ generated by a primitive N-th root of 1. We give an explicit
description of the motivic zeta element ((5.6), which is a rewriting of known
results) and a "half description” of the arithmetic zeta element ((5.14), for which
we need a result (5.12) proved in [Ka,]).

(5.1) For ce(Z/NZ)*]et o, be the element of G=Gal(L/K) characterized
by the property g.(@)=a for N-th roots of a of 1. Define the rings

A=Q[G]/(e-,—(=1)"), B=Q[Gl/(e-,+(—=D).
Then

Q[G] —> AXB.

In the case »=1, let B’=Q[G]/(6-1—1,3sec0). Then, BSQx B’ where the
part B—Q sends elements of G to 1.
The following lemma is easiy seen.

LEMMA (5.2). (1) Has=L, and it is a free Q[G]-module of rank 1.

(2) H, is identified with the space of systems {a(c)}, which associate to each
embedding ¢: L—C an element a(c) of QQ@ri)" satisfying a(D=a). (Here—
denote the complex conjugation.) The canonical injection

Hh®QR —_—> H¢®QR= L®QR

associates to a={a(0)},EHy, the unique element of LQoR whose image in C for
any embedding ¢: L— >C coincides with a(c). The action of Q[G] on H, is given
by a(a)9=a(c0).

(3) The action of QLG] on H, factors through A, and H, is a free A-



IWASAWA THEORY AND p-ADIC HODGE THEORY 19
module of rank one.

(5.3) Assume r=1. Then H,=0i®Q, and H;=Q with the trivial action
of G. The classical theory of regulator shows that Conj. (2.7) is true for Q(1)
over any number field, the action of Q[G] on H, factors through B’, and H,
is a free B’-module of rank 1.

For an N-th root a of 1 in L such that a#1, we define the cyclotomic
element c¢,(a)eH, as follows. If the order of @ is not a power of a prime
number, then 1—ea is a unit, and we define ¢,(a@) to be the image of (1—a)'c
O;i in H,. If the order of a is a power of a prime number /, 1—a does not
belong to Oj, but we have

0i®Q —> 0i@uaB —> (04 +]) ButerB.

We define ¢,(@)=H, in this case to be the image of (1—a)*e(0.[1/17)*. It is
easily seen that if N=2 and a is a primitive N-th root of 1, ¢,(a) is a basis of
the B’-module H,.

(54) Assume r=2. Borel proved Conj. (2.7) is true for Q(r) over any
number field ([Bo] Borel used his regulator map but the coincidence of it with
the regulator map of Beilinson is checked in [Ra]). It follows that the action
of Q[G] on H, factors through B, and H, is a free B-module of rank one.

For an N-th root a of 1 in L, Beilinson defined an element ¢,(a)< Hywhose
image in (Hy®oR)/(Hy@QqR)is the class of

Zla"n"EL®QR=Hd®QR.

nz

If a is a primitive N-th root of 1, ¢,(a) is a basis of the B-module H,.
(5.5) We fix some notations. Let a be an N-th root of 1 in L.
(5.5.1) We define w.(a)e L as follows. For n=1, let

va: QLt]/@Y —1) — Q[1/@Y—1)

be the ring homomorphism ¢—t". We define w.(@) to be the image of
( I A="v)™)(@  under Qt1/t"—1—L; t—a. Here 1—=1""v;: Q[t]/¢¥—1

! prime
—Q[t]/(t¥—1) is bijective, since the eigenvalues of v, are 0 or a root of 1

(indeed, there are :>7=0 such that v}=v}). If N=1 and a is a primitive N-th
root of 1, w.(a) is the sum of a and a linear combination over @ of powers
of a which are not primitive N-th roots of 1, and it is a basis of the Q[G]-
module L.

(5.5.2) For a primitive N-th root @ of 1 and for x€Q@2=7)", let x<{a) be
the following element of H,. To an embedding ¢ : L— »C, x<{a) associates
x€QQri)" if ca)=exp@2ri/N), % if ¢(a@)=exp(—@2ri/N))and associates 0
Q@2ri)" otherwise. (Cf. (5.2) (2).)

(5.5.3) We define d,.(a)e L=H,as follows. Let g(?) be the rational func-

~
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tion in ¢ defined by

d_\ry_t r-tyn
g(t)z(m) (T>=7§ln A
If a#1, we define d,.(a@)=(—1)"(r—1)!"'g(a) For a=1, take any integer ¢ which
is different from 0, 1, —1, and let d,(1) be (1—c¢")"! times the value at {=1 of
the rational function (—1)"(r—1)!"'(g(#)—g(*). Then rf(l) is independent
of the choice of c.
We have d.(aY)=(—1)d.(a) if r=2, and d,(a")=—d.(a)—1.
Let rf?(a)e(/i,)* be the Q-linear map

Hi=L —Q; x+—> T”L/Q(xdr(a)).
The motivic zeta element is described as follows.

PROPOSITION (5.6). Let the notations be as above, and let S be the set of
places of Q consisting of o and all prime divisors of N.

(1)  The image of Lk, s(M)ER[G] in O™ QyR belongs to D™,

(2) The image of CFf% s(M) in

™' Rqrar A= Hy Qoo HE*
coincides with
2mi \" "
(5) @®dt@

for any primitive N-th root a of 1 in L.
3) // r=2 (resp. r=1 and N=2), the image of {7k s(M) in

O™ RQqra1B (resp. @™ Qqra1B") = Hi@qro1HE ™V
coincides with
cr(@)Qw.(a)?

Sfor any primitive N-th root a of 1 in L. (Here H$"" means the inverse of the
invertible QLGl-module Hy.) If r=1I, the image of (M) in ®™'Qere:Q=
HE"YQore1Q=Homge(Hq, Q) coincides with the trace map L—Q.

Proof. All things follow from the results introduced in (5.2)-(5.5) by direct
computation, except that; for (2), we have to recall the following fact which is
a consequence of the functional equations of partial Riemann zeta functions.
The value at s=r of

( VERCS QD I

1 n
n=cmod N n=~cmod N

(ceZ) coincides with
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2"(%)r<df(a)+<—1)’dr(a“>) with a=eXp< 23\77. )

(5.7 Now we fix a prime number p, and consider the p-adic side. We
first recall a result of Soulé.

THEOREM ([So,] §1). Let F be a number field, and let v=2. Then the
chern class map induces an isomorphism

Kzr—i<0F[%])®Qp i Hi(OF[%:l) Qp(?)) for i=1, 2
Both groups are zero if i=2.

By using easy localization arguments and the fact Kir-;(F)®Q=(K,r-(F)
®Q)™, we deduce from this theorem ;

COROLLARY (5.8). Let Fand r be as in (57). Then, for any i€Z, the
chern class map induces an isomorphism

(5.8.1) HY(F, Qn)QqQ» > Hin(F, Q).

Both groups are zero if 1+#1.

COROLLARY (5.9). For any number field F and for any r< Z, the chern class
map induces an isomorphism

(5.9.1) H}(F, Q(?’))@QQ;J: H(F, Qp(r)).

Both groups are zero if r<0.

Proof. As is easily seen, H}(F,Q,(r)) is isomorphic to the kernel of
HYO ¢[1/ 1,Q(r) = @orp H{(Fy, Qp(r)/HHFo@,()). For a place v of F lying
over p, H}(F, Q(r)) coincides with H'(F,, Q,(r)) if r=2, coincides with the
image of 0;,QQ in H'F, Q,(1))if r=1, coincides with the “unramified part"
of H'(F,, Q) if r=0, and is zero if r<0 ([BK] §3).

We have from these facts

H}(F: Q_n(r)):Hllzm(IQn(r)) if r=2,
HY(F, Qp)=H"OF, Q,)=0.

These reduce the case »=2 of (5.9) to (5.8), and prove the case =0 of (5.9).
(Note HY(F, Q) K,y _1(F)®Qby definition and K,._,(F)is zero when »=<0.)
The case r=1 of (5.8) is checked easily. Finally assume r<0. Then H}(K,Q,(r))
is isomorphic to the kernel of HYO r[1/p],Q»#)—Buw» H(F,Q,()) which is
isomorphic to H*Ox[1/p1Q,(1—r)* by (2.1). The last group is zero by (5.7).
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(5.100 Now we return to the cyclotomic case. By (3.2) and (5.9), we have
an exact sequence (without any conjecture)

0— > (Hiy* — > Hi®oQ,— > ff4®(?p — > (Hy*—>0.

One conjectures H2==0, but this is not yet proved. However, since HiQqre14
=0, we have Hi®qe14=0. From this and (5.2) (1), we see that H}Qqre14 is
a free AQeQp-module of rank 1. We have

D5 QorerA= Hy®qre:(Hp)*

canonically.

We will give an explicit description of the image of the arithmetic zeta
element in D% ®qre14, by using p-adic cyclotomic elements of Deligne and
Soule, which we recall here.

In the rest of this section, let § be the set of places of Q consisting all
prime divisors of N, and let S’ be the union of S and {p}. Of course one has
S=S’ if p|N.

(5.11) Let a be a primitive N-th root of 1 in L and let meZ. Then, the
p-adic cyclotomic elements

cn(@), em(@)EH (Or,s1, Zp(m))

of Deligne and Soule are defined unless (e, 7)=(1, 1) ([Des], [So:]).

In the case m=1, c¢,(a) will be the image {l—a} of 1—a under the canonical
map Oi s—H' Oy s, Z,(1))defined by Kummer theory. The elements ca(a)
and cn(a) will be related to each other by

cnl@=1—=p" or"Ven(a) in HYL, Qp(m))

where ¢, is the Frobenius of p.
Let n=1. Take a p"-th root 8 of a of order p»N. Then, we obtain an
element

{1-BIRLBYI* ™ P e H(QB), Z/p"Z(NKRZ/p"Z(m—1)
=HYQB), Z/p"Z(m)).

Here {1—pB} denotes the image of 1—8 by Kummer theory, and [B¥] is just ¥
but one puts [ ] to avoid a confusion for we consider Z/p"Z(1)as an additive
group. One sees easily that the elements

cin(@) defNgeayr({1— B} QLBYIS™ D) HX Oy 5, Z/ 1" Z(m)

(Ng¢py/z denotes the norm map) is independent of the choice of B, and ch(a),
forms a projective system when n varies. Let

cn(e)=lim ¢ (@) €H O, 5, Zp(m)).
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Now we define cn{a). In the case p\N, we define
cm(a)=cm(a).

In the case m=1, let cn(a) be the image of l—a<O0r s in HYOr s/, Zy(1)).
Then these two definitions agree when p\N and m=1. If (N, p)=1 and m=2
(resp. if (N, p)=1 and m=0), we define

em(@)= S(P™ ) ch(a?™
i20
where a”™" is the unique p*-th root of a of order N
(resp. cn(a)=—Z(p'"™)'cn(a")).

The following theorem will be proved in [Ka,], by using an "explicit re-
ciprocity law" for the motive Q(r).

THEOREM (5.12). Let a be a primitive N-throot of 1 in L. Then, the image
of ¢i-(@) (r=1) in HERQoQ, under the dual map Hi—Hi®eQp of Hi®eQr—
(HY* coincides with — N-"d*¥(a).

In the case N is prime to p, this result follows easily from [BKJ]§2 (2.1).

Remark (5.13). Deligne and Soulé, and also Gros and Kurihara ([G7]) con-
sider these cyclotomic elements in H*' of @,(m) mainly for positive m, and relate
them to special values of p-adic zeta functions, though we consider here these
elements with ra”O which are related to special values of complex zeta func-
tions.

By (5.6) (2) and (5.13), we have

THEOREM (5.14). The image of {&lx.s(M)p (resp. L&k, s:(M)p)E@L™ in
D4 Rore1A= HiQqrai(H3)* coincides with

—@2ri) <a)Qc,_(a) (resp. —Q2ri)<ad@ci--(a)).

for any primitive N-th root a of 1.

§6. Relation with classical Iwasawa theory.

In this section, we show that when we consider the situation where K=0Q,
M=Q(r) with r a positive even integer and L is the maximal real subfield of
Q(a) with a a root of 1 of order a power of p, our Iwasawa main conjecture
coincides with the classical Iwasawa conjecture.

The classical Iwasawa theory uses characteristic polynomials of torsion
modules. We first relate this concept to determinant modules.
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PROPOSITION (6.1). Let R be a Noetherian normal ring and let F be the
total quotient ring of R (that is, F is obtained from R by inverting all non-zero-
divisors in R). Let Y be a finitely generated R-module of finite tor-dimension
such that YQ®gF=9. Then, the image of

detg(Y) —> detz(Y)QrF=det p(Y QrF)=det r({0})=F

coincides with Char(Y)™!, where Char(Y) is the unique invertible ideal of R such
that for any prime ideal p of R of height one, the stalk Char(Y), coincides with
(DR)"® where

n(p)=lengthp,(Y).

Proof. Since R is normal, an invertible R-module in F (for example detz(Y))
is characterized by its stalks in codimension one. Hence we are reduced to the
case where R is a discrete valuation ring. In this case, Y=@;R/a;Rfor a
finite family (a,); of non-zero elements of R. By using the resolution 0—&; R
i»EBi R—-Y -0 with a=(a,);, we obtain detg(Y)=(I,a.)'Rin F.

(6.2) We recall the classical Iwasawa main conjecture proved by Mazur
and Wiles. (Cf. [{w], [Wa] Ch. 13).

Let K=Q, M=Q(r), and let r be an even positive integer. Let S={p}
with p an odd prime. For n=1, take a primitive p"-th root a, of 1 in Q
satsfying (@n.1)?=a,. Let L, be the maximal real subfield of Q(a,), and let
Lo=\UnLa, Or,s=\Un01, s. Unless the contrary is explicitly stated, ( )*
means Hom( , @,/Z,)in what follows.

Let

X=H (O, Qp/Zp)*.

Then 2 is the Galois group of the maximal abeiian extension of L.. which is
unramified outside p. Let

Y=H'(Ls®qQp, Qp/Zp)*
=1m(L.®eQ,)*/{(L.Qe@p)*}*™ (by class field theory)

where lim is taken with respect to norms. Let
n

c={(l—an)(l—az")}r €Y.

Let I'=Gal(L./Q). Then the completed group ring Z,[[I"]] is a regular
ring and so any finitely generated Z,[[I’]]-module is a perfect complex over
Z,[[I']] when regarded as an object of the derived category.

In Iwasawa theory, it is well known that % and 4/Z,[[I"']]c are finitely
generated torsion Z,[[I']}modules (Iwasawa [Iw]). The classical Iwasawa
main conjecture, in one formulation, is stated as

(6.2.1) Chary oo (%) =Charz i r1(Y/Z, L1 ]]e).
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(6.3) Now we relate our conjecture (4.9) to (6.2.1). For nx=1, let I',=
Gal(Lw/ L), Gn=Gal(L./Q).

LEMMA (6.3).

1 2(—=r)r, if i=0
D > ‘”‘”"D_{ 0 otherwise.
Y(=r)r, if i=0
0 otherwise.

@ Torftay(—r), Z,(GaD)={
(3) There is a distinguished triangle
ROy, s,Z,(1=r)[1] —>Y(=r)r, — > X(=1)r, —>.
Here ( )r, denote coinvariants by I,.

Proof. Consider the spectral sequences
ELy=H'(I"y, H(OLe s, (Qp/Zp)1)) == H*(Or, s, (Qp/Zp)r))
Efdoe=H "z, H(Lo@q@p, (Qu/Zp)#)) =3 H"*/(L1@e@p, (Qn/Zp)1)).
Then we have:

6.4.1) Ei3,=0 and E}i,.=0 except the cases (z, /)=(0, 0), (1, 0), (0, 1).

(6.4.2) Ety —> Bt if j=0.

Indeed, (6.4.1) follows from the facts that the cohomological p-dimension of
I, is 1, the cohomological dimension of L@@y (resp. Oy, s) is <2, and

HYL:®eQp, (Qp/Zp)IrN=H(LzQeWQpZp(1—7))*=0,
H*O1,.s, (Qp/Zp)r)=0, H*OL...s, (Qp/ZpXr)=0

([So.]) The proof of (6.4.2) is easy.
Finally (6.3) (3) follows from the above facts and the distinguished triangle

RI'(Oi,.s, Zp(1—=1r)) —> RI(La®qQ0p, (Qp/Zp)r)*[—2]

— > RI(0y,,s5,(Qu/Zp)m)*[-2] —,
which comes from Artin-Verdier duality.
(6.5) We relate Conj. (49) to (6.2.1). By (5.14), Conj. (4.9) for K=Q,

L=L, with n=1 and M=Q(r)is equivalent to the statement that c,_.(a,)&
H'O.,,s, Q,(1—1)) is a Z,[G,]-base of detzp[GnJ(RI’(OLn,s, Z,(1—r)[1]). Let

r={(l-a)(l=az)QaR "} EY(—7),

and let 7,€%Y(—7)r, be the image of 7. Then the image of c¢i-.(a,) in
HY(L,Q¢Qp, Z,(1—r)) coincides with the image of 2-'7,. By (6.3) (3), 4.9 is
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equivalent to the statement that 7, is a Z,[G,]-basis of detzpwnj(q}( r)r —

.‘36’(d 7'21“7;) This holds for any n=1 if and only if y is a Z,[[1"]] baSlS of
eg.

detz ror n(Y(—r)—2X(—r)), that is, if and only if (6.2.1) holds.

§ 7. Relation with Tamagawa numbers of motives.

In this section, we see that the conjecture on Tamagawa numbers of motives
in [BK17 is regarded as the case of trivial abelian extension of our Iwasawa
main conjecture. For simplicity, we treat motives of wt<—3 and we consider
numbers (Tamagawa numbers, values of L-functions, ***) modulo multiplication
by powers of 2.

In this section we assume the conjectures (2.6) (2.7) (3.4) (these conjectures
were assumed also in [BK]).

(7.1) We fix notations. In this section, let M be a pure motive over Q of
weight<—3. Fix an odd prime number p. Take a Z,-sheaf T in V ,(M)such
that  T®z,Q,=V(M).

Let

1@, HcHYQ,T)  (resp. H{(Qp, T)CH Qp,T))
be the inverse image of
Hi(Q, Vo (M)<HYQ,V,(M))  (resp. H}(Qp,V,(M)CTH Qp, Vo(M))).

Let Hy,r<HHXQ,T)be the inverse image of HycHHQ, V,(M)). Then, H; ris
a finitely generated Z(,,-module such that

He1®z,,Q —> He,  He1®z 20 —> HHQ,T).

(7.2) We review the definition of the Tamagawa number of the pair (M, T),
which is an element of R*/Z7%,. (In [BK], the Tamagawa number is defined
as a number without modulo Z%,, by using /-adic realizations of M for all
prime numbers /. We work here only with the p-adic realization, so we have
a number modulo Z,,. By varying p, we can recover the Tamagawa number
in [BK].)

Take a Zp-lattice A of H;. By Conj. (2.7) which we assumed to hold, we
have an isomorphism

(7.2.1) Hy 1@z, R — ARz, R)/(Hr,1Q@z,,R) -
Let
opot —-detz(p)(Hn. T)®Z(p) detz(p)(Hk, r)@z(m detz(p)(A)* .

(( ¥*=Homg (', Z¢p)). Then (7.2.1) induces

~

(7.2.2) %Ry, R —>.
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Let acR*/Zp»be the image of a Z,-basis of @F%under (7.2.2). (With the
notations in [BK], a is the volume of A(R)/A(Q)modulo Z7p. The choice of

A here corresponds to the choice of detQ(Hd)-':'»Qin [BK].) On the other hand,
let B=Q*/Z%, be the element such that the image of a Zp)-basis of detz(p)(A)
under the isomorphism

detz,,(A)®z,,Qp —> detz (HIQp TH®z,Qs

induced by exp: A®z(p>Q;—=—>H}(QpT)®szpis (a representative in Q* of)
times a Z,-basis of detzp(H}(Q,,, T)). (With the notation of [BK], f is the
volume of A(Q,) modulo Z3p.)

Let 5 be a finite set of places of Q containing oo, p, and all finite places at
which M has bad reduction. Define

u1s r Q% Z%y, UsER*/Zp by
us, 1= vEI;I #(HY(Qw, TR(Qn/Z)), ps=a ps.;.

V#oo, P

Then ps is independent of the choice of A. Define
Tam (M, T)=ﬂs Ls(M,O)-IERX/pr) .

This element, called the Tamagawa number of the pair (M, T), is independent
of the choice of S.
The following (7.3) is clear.

LEMMA (7.3). The image of Ls(M, 0)R under the isomorphism (7.2.2) is
equal to (a representative in Q* of) ps,, Tam(M, T) ‘times a Z py-basis of DF%.

(7.4) By (7.3), we see that Conj. (4.7) is true in this situation (with K=L
=Q) if and only if Tam(M, T)eQ. Assume Tam (M, T)eQ. Then, the motivic
zeta element {B% s(M) is ps.; Tam (M, T)™' times a Z(py-basis of Opof,

(7.5) To state the conjecture in [BK] on Tamagawa numbers, we have to
consider the Tate-Shafarevich group of a motive.

Consider the map ¢: P—Q where

P=HYQ, TQQu/Zp)/(H1Q(Qs/Z)
Q = H'Qp, TQQw/Z:))/H}Q:T)RQs/Z:)D (D H' Qv TRWQ»/Z5))

The kernel of ¢ is a generalization of the Tate-Shafarevich group of an abelian
variety.

PROPOSITION (7.6). Ker(c) and Coker(c) are finite groups.

The proof of (7.6) is given below. (Recall we assumed the conjectures (2.6)
(2.7) (3.4). Otherwise such finiteness becomes very difficult).
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The p-primary part of the conjecture on Tamagawa numbers of motives in
[BK] is stated as follows.

CONJECTURE (7.7). Tam (M, T)=#(Coker(s)-#Ker())™* in Q*/Z%.

The following (7.8) shows the equivalence between (7.7) and our Iwasawa
main conjecture in this situation.

PROPOSITION (7.8).  Under the isomorphism @™*'QyQ,= P37, the image of the
zeta element (3% s(M)s®™" is
#(Coker (¢)) #(Ker(e))"'Tam (M, T)!
times a Z,-basis of
sir=detz ,\(Hi, 1)Qz,, {detz (RI(Zs, TXD)}H*.

Proofs of (7.6) and (7.8).
By Artin-Verdier duality and the loccalization theory for etale cohomology,
we have an acyclic complex

C:0— f{:e(ng) T®(Qp/Zp):—:eSO H(Qw, TQR(Qp/Z)
— HYZs, T*))* — H'Q, TQQ»/Zy)
— DEgB H (Qu, TQWQ2/Z:)D(D H'(v, T&Q»/Z)(—1))
— f(Z, T*W))* — HQ, T®WQ»/Z5)

T
— vg@ H*(Q,, T®(Qp/zp)>_* 0.

Here the * outside the notation of cohomology H¥() are Hom ( , Q,/Z,),whereas
the * inside H%( ) are Hom( , Z,).
Jannsen proved that the map 7 is an isomorphism. ([Ja] §4 Thm. 3d).
We define a subcomplex C7 of C. Since the image of

Homg (H(Zs, V ,(M)*(1))* —> HY(Zs, V(M)

belongs to H}(Zs, V,(M))=H, 1Qz,,Q»we see that there is a Z,-submodule
D of HY(Zs, T*(1))* of finite index whose image in HY(Zs, TQ(Q,/Z))s con-
tained in H, r@Q(Qp»/Z,). Let Cp be the complex

0— (deglz) - Hk:T®(Qp/Zp) _»’}(Qp’ T)®(Qp/Zp)
-— H'(Zs, T*(1))* — 0.

We have an exact sequence of complexes

0— >Ch—>C—>Ch—>0
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where C4 is the complex

0 —H (Q, TRWQ:/Z») —>vg H%(Qv, TQQ»/Z3))

—> H¥Zs, T*(1))*/D —> P—£> Q—0.

Here P and Q are as in (7.5). Since C is acyclic and the cohomology groups
of the complex Cp are finite, it follows that the cohomology groups of the
complex C% are finite, that is, Ker(¢) and Coker(¢) are finite.

For a bounded complex E of abelian groups whose cohomology groups are
finite, let X(E)=IL #(HYE))*". We have

(79.1) UCH=X(CP*.

It is easily seen that the isomorphism @™‘®,Q, P sends a Z py-basis of
P4 to

(7.9.2) B UC) # (Hy, pior)  #(HHZsT*))* /D) #(HH(Qp,T)eor)
times a generator of @37%. Here tor denote the torsion part. Since

(He.0)ior=H}Q, T)ior=H(Q, TRQ2/Z,))
and

1@p Tor=H"Qp, TRWQRH/Zp),
we have by (7.9.1) that the element (7.9.2) is equal to
#(Coker (¢))- #(Ker (¢))~'- 5!, .
Hence by (7.3), the map @™“Q,Q,=®%" sends (5%, s(M)to
#(Coker(¢)) #Ker()"*Tam M, T)!

times a Z,-basis of @47,
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