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ON ALGEBRAICITY OF VECTOR VALUED
SIEGEL MODULAR FORMS

By YOSHINORI TAKEI

0. Introduction.

Let n be a positive integer and let k2, /=0 be integers. Let Sym' be the
natural representation of GL(n, C) on Sym'(C"), the [-th symmetric tensor
product of the vector space C™.

A Sym!(C™)-valued holomorphic function f on the Siegel upper half space
of degree n is called a Siegel modular form of degree n and type det* ® Sym'
when f satifies certain automorphic condition with respect to the action of the
integral symplectic group of size 2n through the representation det*®Sym'.

Let M;*; be the C-vector space of Siegel modular forms of degree »n and
type det*@Sym!. Let SE, be the subspace of M*, consisting of cuspforms.
Precise definitions of them are in §1 below.

The purpose of this paper is to prove several algebraic results on Fourier
coefficients of f=M,*; described as follows:

RESULTS. (Precise statements are in & 2.)

Suppose that k, | are even and k=2n+2.

(1) SE. has a basis consisting of forms whose Fourier coeffictents lie in
SymH(Q™).

(2) Let fESE, be an eigenforms (1.e. a non-zero eigenfunction of the Hecke
algebra) and let Q(f) be the extension field of Q generated by the eigenvalues on
f of the Hecke algebra over Q. Then Q(f) s a iotally real number field and
the degree of extension does not exceed S% ;.

(3) SP. has an orthogonal basis consisting of eigenforms such that the Fourier
coefficients of each element f lie in Sym'(Q(f)™).

(4) Let m be a wnteger with m=n and k>m+n+1, let [ 1% : S§.,—M™ be
the Eisenstein lifting. Let fES}, be an eigenform whose Fourier coefficients lie
in Sym (Q(f)"). Then, [f1™ has Fourier coefficients in Sym"(Q(f)™).

For the case /=0, i.e. Sym’(C")=C-valued case, above results are proved
by several authors. The assertion (2) is due to Kurokawa [6]. In [5], Garrett
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showed the “Pullback Formula” which reduces problems on Siegel modular
forms to smaller degree ones, and using this formula he showed (a similitude
of) (4). Boécherer [4] showed (3), by effective use of the pullback formula. In
[7], Mizumoto gave a way to prove (3), (4) as well as (1) simulatenously, also
using the pullback formula.

In the paper [2] of Bocherer-Satoh-Yamazaki, they have obtained the
pullback formula for the case /=2Z >0, which enables us to apply the above
proofs for the case {=0 to the case {€2Z >0 without essential change. A brief
description of the pullback formula is given in §3, where we shall also a
connection between Fourier coefficients of eigen cuspforms and the partial
Fourier expansion of pullback of Siegel’s Eisenstein series.

The stated results shall be proved in §4.

The author would like to express his gratitude to Professor S. Mizumoto
for helpful advices, and to Professor T. Harase for constant encouragement.

1. Notations and definitions.

Let n be a positive integer and k, / be positive even integers. Let x:=
(x1, -+, x,) be a row vector with x,, ---, x, being indeterminantes. We define
a C-vector space

Vi=Cx,® - BCx,

and a Hermitian inner product on V by
(LD (Zax, Bbx):=3ab,

where a,, b;eC(1<i<n) and b, denotes the complex conjugate of b,. Put
V. =Sym!(V), the [-th symmetric tensor product of V, which is identified
with C[x,, ---, x,]«), the C-vector space of homogeneous polynomials in x,, ---,
x, of degree [. The inner product (1.1) induces an inner product on V¢ by

1.2) (e, BrB)i=;7 B 1 @ B

where «,, 8;&V, - denotes the symmetric tensor product and &, denotes the
symmetric group of degree /.
Let p==p}; be the representation

det*@Sym!: GL(n, C) —> GL(V),

Let §, be Siegel upper half space of degree n, and [, :=Sp(n, Z) be the
group of integral symplectic group of size 2n.
For a function f: 9,—»V® and McSp(n, R), put

FleaM(Z):=p(CZ+D)' f(MKZ3)
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with
MLZy :=(AZ+B)CZ+D)™!

for Z€9, and M(é1 g)

The C-vector space of V-valued Siegel modular forms of degree n and
type k, [ with respect to [, is defined by

(1.3) M M(VD):={f: $,—~V®|f is holomorphic on 9, (and at the cusps if
n=1), and f|} ,M=f for all Mel',},

and the space of cuspforms by
(1.4) SE(VO) = {fe M (VD))

. z 0
lim f(() \/:D)_O for all ze9,_,}.

A 00

In the notations (1.3) and (1.4), we omit (V) whenever V is obvious. For
[=0, MI(VO)Y=M*(C) is the space of Siegel modular forms of weight %.
Each feM;"(V®) has a Fourier expansion of the following type:

(1.5) fZ)=2aR; NHe(RZ) (a(R; /HeVD, Z&D,)

R20
where e(-):=exp 2x+/—1 trace(-), and R runs through symmetric, semiintegral,
semipositive matrices of size n(We denote such R by “R=0” or by “R™ =0").
If f is a cuspform, then a(R; f)#0 only for R>0. Throughout this paper,
a(R; f) denotes the Fourier coefficient of f at R.

Let Aut(C) be the group of all field automorphisms of C. For r=Aut(C)
and a function f(Z)=Xgs, a(R; f)e(RZ), set

(1.6) f’(Z):=RE;,oa(R; f)e(RZ).
Let A be any subfield of C. Put
Vig:=Kx, D - BKx,
ME (V) :={feM|a(R; )&V ® for all R™ =0}
and for any subset X of M2,(V¥), set
(1.7 Xg :=XNMM (VD).

Let r<n and put V,:=Cx,_,+,PH - PCx,.
For 1<r<n with even k>n+r+1, the Langlands-Klingen type Eisenstein
series [f1reM(V®) is attached to f=S7,(V¥) by

(1.8) [f]?‘(Z)=M 2 p(CZ+D) " f(MLZ>*)

EPp g
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where Ze,, M=(é1 g), M<Z>* denotes the lower-right 7 X block of M{Z>,

and Pn,rz{(o(n_,*,n”) i)el“,,} which is a subgroup of /',. The linear map

[ J%: Si.—My, is called the Eisenstein lifting. We define [ ]7 as the identity
map on S};. When [=0, the Eisenstein lifting is also defined for »=0. In
this case, we understand that M}?,(C)=S} (C)=C, and the Eisenstein lift of
/=1

(1.9) MZ) :=|:1]ﬁ(Z)=Me > . det(CZ+D)*

n, oM n

is Siegel’s original Eisentein series [8].
For f, ge My, (at least one in S};), their Pertersson inner product (f, g)
is defined by:

(L.10) (f, g):=SI, 0 (6WY)f(Z), p(VY)g(Z))(detY ) ""'d XdY

with Z=X+4+/—1Y, X, Y real and (,) in the right-hand side is the inner
product (1.2) defined on V&,
We note that if »<n, then

(1.11) (f, [$1=0  for all f=Sp, and ¢eSi,.

Let L& (resp. L&) be the abstract Hecke algebra of degree n over C
(resp. @) and let
t: L& —> End (SE)).

be the C-algebra homomorphism defined as in [1].

We put T, :=t(L&) and Tq:=tL§’). Let f+0&SE, bea common eigen-
function to all T&T,(such f is called an eigenform), and for each T, let
AT)eC be the eigenvalue on f:

(1.12) Tf=AXT)f forall TeTe.
Then 2 is a C-algebra homomorphism A: T¢—C and each element of T/'Z:Z
Homc.a1g(T¢c, C) is obtained in this way.
For each ,ZET/'\C, put
SEiQ):={feSkITf=AT)f for all TeTc}.
Then the space of cuspforms decomposes into eigenspaces:

Sia= @ Sk.(8).
N\

AET¢

We note that for any f,&SE.(4,) and f,ESEi(4:), (f1, f2)=0 if 21#2,.
For each ,Ze’l/'\c, define an extension field of @ by
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(1.13) Q) :=QAM)|T<Ty,
and for f&Sg.(1) put Q(f) :=Q(A).

2. Statement of the Theorems.
THEOREM 1. Let g=1 be an integer, let k, (=0 be even integers satisfying
k=2q+42.
Then, the following holds.
@O % 1=5%1,8eC.
In particular, Aut(C) acts on S%,, by f—f° in the notation (1.6).

(@) Let 2€Te and f#0SE (N>
(i) Q) is a totally real finite extention of Q with

[Q(z): Q]édimcs‘llz’l .
(ii) Let c(f) be the constant of (3.5) below. Then,

c(f) 7 e(fY)
((f, N’ = for all teAut(C).

(iii) Let m:=dim¢ S#,(2). There exists an orthogonal basis {f;}7-, of S&u(A)
such that

fi=f and [;€S58: Doy 1=)=m).
THEOREM 2. Let pz=q=1 be integers, let k, [=0 be even integers satisfying
k>p+g+1.
Let €T and f#0&S% (Decss  Then,
(LAY=0Lr1%  for all zeAu(C).

3. Differential operators and the Pullback formula.

The first part of this section is a brief description of the “Pullback
Formula” of Bdcherer-Satoh-Yamazaki [2].
Let p, g=1 be integers. Put

Vx :;Cxl@”'®cxp, x:'——(xly ) xp)
Vy::Cyl@"'®qu’ y::(yl» Tty yq)'

and for »<min(p, ¢), put
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Vx,r ::Cx[)—r+l® @Cxp ’
Vyri=Cyqr® - BCy,.

and define an isomorphism ¢: V, ,—V, , by a(x,-,)=¥e, (7 <min(p, ¢)).
Let 3=(3:,)15..,2p+¢ b€ a variable on §,., and

i 0
(&)~

2 8,8” >1gz,;§p+q'
For a holomorphic function f: £,.,~(V.BV,)"’, we define the operators

&

Dfi= gyt (g

— 1 8 t
DTf =- _,;7_-,:(‘” 0)( )f( x)’
Dif:____:/.T_A (O y)< )f<[ ).

Let d be the diagonal embedding
d . ’s:)px'gq _—> ©p+q
Z 0
Z, W) — (3 )

and let d* be the pullback of 4.
The differential operator L is defined in [2] as follows:

L‘”Zd*ﬁﬁ
l 2y —_ . -2y
xo%‘g[p!(z—zu)!(z—k—/)m (D: DD =D =Dy,
where
(a+b—1)!
a“’]:———{ a—1)1 for a>0,
1 otherwise.

for integers a and b.
This defines a linear map

L®: MP§YC) —> ME(V C)QME(V D).
THEOREM A [2, Prop. 4.4]. Let p, g=1 be integers and k, =2 be even

integers satisfying k> p+q+1. For each 1<r<min(p,q), let d(r):=dimc
SEUV, D) and {f, 1D an orthonormal basis of Si(V,, .°) consisting of
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eigenforms.
Let EB* 4= MP;9UC) be Siegel’s Eisenstein series (1.10) of degree p+q and
weight k. Let a,, and Cy., » be the constants

1\ (2k—2)
&b . =(= gey=1) o1y
Ck,l,r=2’(”"”)'”‘\/:1’k+l7%%);),/12,
r=1 ['(2k—2r+2u—1)2k—r+u—2)-"

X S T Wkt uti—r—1)
For an eigenform f<Sp,(V, ), put

0f(2):=f(=2),
ACF)=(L) TLE@R—20)) LU=, f, 8D,

where { denotes Riemann zeta function and L(x, f, St) denotes the standard L-
Junction attached to f, respectwely.
Then, following equation holds

main(p,q

3.2) LOEEAZ, Wy=ap, S Cprr S
=1 J=1

Af 5. 007 [, RS, 15 W).

In the rest of this section, we study a connection between Fourier coeffi-
cients of eigenforms and the partial Fourier expansion of L®EZ*e,

Let p, g, k be as in the assumption of Theorem A and suppose also p=gq.
Let R=R® =0 be a symmetric, semiintegral, semipositive matrix of size p.
Let X,={§=T1%-.x¢|a;=Z=0, X;a;,=!}, which is an orthonormal basis of C-
vector space V. ¥,

We attach a V,’-valued modular form gg =M, (V,) for each R=0 and
&= X, through the partial Fourier expantion of L™ E%*:

(3.3) LOERZ, W)=23 2 gp%W)se(RZ).

RzoéeXp

Since the Fourier coefficients of Siegel’s Eisenstein series are rational, and
L preserves rationality of Fourier coefficients, we have

(3.4) g5%e 5% (VP

For FeM®,(V,®) and R=R® =0 and §=X,, let a(R; F; &) denote the &
component of the Fourier coefficient a(R; F).
For each eigenform f=S9% ,(V,%), put

3.5 c(f)i=ap Cr . Af).
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We note that ¢(f) is a nonzero constant depending only on /IETAC such that
S%.(V, P, A)>f. We occasionally write ¢( f)_as ¢(A) for such 2. By Theorem
A, taking inner product of f and L®WER*(—Z, %) on S% ,(V,), we obtain

(3.6) (f, ggh=c(fHa(R; [e7'f1}; &) (RP =0, é=X,).

In the rest of the paper, we simply write Mg, (V,%®) (resp. S%,.(V,®)) as
Mg (resp. S%0).

Let h%% be the projection of g%% to S% .. Then, for each eigenform fe&
S%.1, we get

3.7 (f, W%)=c(fa(R; [o7'f15; & (R =0, é€X,).
In particular, when p=g,
(3.8) (f, h%Z)=c(Na(R; a7'f; §) (RP=0, é=X)).

PROPOSITION. Let q=1 be an integer and k, =0 be even integers satisfying

(3.9) k=2q+2.
Then,
(3.10) S%,1=Ch%% | R >0, E€Xpe,

where { Y¢ means the C-linear span.

Proof. Let S be the space in the right-hand side of (3.10), and S* be its
orthogonal complement in S% ;. Let f be any eigenform in S%,. By (3.8), fe
St if and only if f=0. Since S%, has an orthogonal basis consisting of eigen-
forms, we see that St=0. =

4., Proof of Theorems.

We shall prove Theorems 1, 2 by similar way as in [7]. First, we in-
troduce a condition on (p, g).
Condition C(p, q):

h%%eS%,., for all R=R®=0 and £X,.

We first show that Theorems 1, 2 are valid for (p, ¢) which satisfy C(p, ¢)

and C(g, ¢).
We write the assertion of Theorem 1 for ¢ as A(g) and the assertion of

Theorem 2 for (p, ¢) as B(p, ¢).

PROPOSITION 4.1. (1) Suppose g=1 satisfies C(q, g). Then A(q) holds.
(I) Suppose p=q=1 satisfy C(p, q) and C(q, g). Then B(p, q) holds.

Proof. (1) Suppose that £=2¢+2. From (3.10) and C(g, ¢), A(g) (1) fol-
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lows immediately. Next, we show A(g)(2)(i) following [6]. There exists the
action of Aut(C) on T¢ which is defined by

A(T):=XT)y (TeTy
with 2T .Aut(C) and by
Tc=TRqeC.
By A(g)(1) and similar argument to [6, Theorem 1], we have
(Tfy=T(*  for all feS%., TeT, r=Aut(C).
In particular, for all r€Aut(C) we have
4.1) ffe8%.,(aY) for f=S%,(1) and r<Aut(C)

and

Q)=Q).

Since Aut(C) acts on 7/’; whose cardinality <dim¢S%,,, we get [Q(A): @]=
dim¢ S%.;. The field Q(A) is totally real since all T<T, are Hermitian.

Next, we shall show A(qg) (2) (ili). Put d=dim¢S%,,. We choose {(R,, §.)|
R,>0, §,X,, 1<i/<d} so that

{h%d ¢, li=1, -, d}

is a C-basis of S%,. We claim that this is also a @-basis of S%.,. For any
he&S%,14, there exists unique (a,, -+, a;)€C* such that

d
h: Eaih’qﬁ’g»fz .
Since #, hq}’?%giEquJQ by the assumption, we get

h=Faihte, for all rEAut(C),

but by the uniqueness of (ay, ---, a,), we get (a;, -, aqs)'=(ay, -+, ag) for all
rcAut(C).

Hence, (a,, -, as)€Q% and we see that
4.2) {h%e,11=1, -, d}

is a Q-basis of S%, i,
For TeT, let B(T)eM,(C) be the representation matrix of T with respect
to the basis (4.2). Since S% ., is To-stable, B(T) lies in M,(Q).

For ZET/'\C, put m=m(R) :=dim¢ S%,;(2). Let {a,, -, a,} be column vectors
in C¢ which spans {asC*|(B(T)—A(T)ls)a=0 for all TTq,}. Since B(T)=
My (Q) and AT)=Q(2), we can take such {a,, -, @a,} in Q)% Put
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¢J:(hqé?.51 hqk?i.éd)a] (léjgm) .

Then, {¢,}~, is a C-basis of S% (1), which is also a Q(A)-basis of S% ;(A)gcs>-
For given f+#0&S%,:(A)qc1>, We choose an index j, so that {¢;|1<;<m, j+
Job\U{f} is a Q(A)-(resp. C-) basis of S% ,(2eci> (resp. S%.(2)). Let j,=m by
changing order.
For any ¢&5% (e, (3.8) implies
(@, 0)=¢, h%Le) - (P, h% e ))a,
=c(a(Ry; a7'¢p; &) a(Rq; a7'¢; Ea)a,
<c(H- Q) (1=;=m—1)

and in particular,
(e asiEm-l g AUl

Hence, by Gram-Schmidt orthogonalization on {f}\U{¢;} 7', we get the required
basis of S%, ,(4).

Next, we prove A(g)(2)(ii). For given f+#0&5% :(A)q1y, take R>0 and é&
X, so that a(R; ¢7'f; &=+0. Let h(2) be the projection of h%Z% to S%.(4).
Using h%%<S% ., and (4.1), we see

4.3) h(2)*=h(Z")

for rcAut(C). Let {f,(=f), -+, fa} be the orthogonal basis of A(g)(2)(iii).
Writing

h(R)= ﬁ": B,f. (B;=Q),

we have

(4.4 (f, Ha)=(f, hg=c(Na(R; a=f; &)
and

*.5) (f hy=(1, X Bot)=Bulf ).

On the other hand, we get for r=Aut(C),
(f5 hDN=(F7, h%ld=c(fHa(R; a7(f); §)
by (4.4) and
(f5, hAN=(F7, h)=B (7, 1)

by (4.5).
Therefore
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( c(f)_)T: B _ )
D) alR; 7' (f9; &  (f5 fH°

Thus the part (I) is proved.

(I) Suppose that k>p+qg+1. By C(q, q) and k=29+2, A(g) is valid. For
any R=R®>0 and £=X,, let h(1) be the projection of h%% to S% .(2). By
C(p, q), (4.3) holds again for this A(1), and by the same argument as in (I), we
find 2 B=Q(2) such that

D) _yp: to-tF12-
C(f) —G(R, [0 f]zt)ll 5))
5SS R Tai IR
B D a(R; [e~'(fH)15; & for all r=Aut(C).

Then, from A(g) (2) (ii) and the expression above,
a(R; [o™'f1%; &'=a(R; [e™'(f)1G; &
for any R=R® =, é=X, and r=Aut(C). Part (Il) is proved. =

Remark. A(g) (ii) and (4.1) imply the existence of an orthogonal basis B,
of S% , such that:

(1) B, is permuted by the action of Aut(C).

(2) Each feB, satisfies f&5% ,,, Py

Now, we shall show that the condition C(p, ¢) actually holds when £k is
sufficiently large.

PROPOSITION 4.2. Let p=q=1 be integers and k, [=0 be even integers such
that
k>p+qg+1.
Then,
1) C’, 1) holds for 1<p’<p.
(2) Suppose that
C(p, r), Clqg, ) and C(r,r) hold for 1<r<q.

Then, C(p, q) holds.

Proof. (1) Let R®x=0 and &£=X, be arbitrary. In this case, gk ;' and
hk ' are identified with elliptic modular forms by

V,=Cy,
and
Mkl, l(Vy(l)):Mle,o(C)‘ yll-
Therefore
ghid—h%i=a0; g%d; yiHEWL,

where E},;: §,—C is the elliptic Eisenstein series, whose Fourier coefficients
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lie in @. Then, by gﬂﬁéeMk‘,lq, we see h’;{;geS},,lQ.

(2) By the assumption and Proposition 4.1, we can assume A(») of Theorem
1, B(g,r) and B(p, r) of Theorem 2 for 1<r<gq, noting that 2>p+r+1=¢g+
r+1>2r+1. In particular by A(r) (2) (iii), for each r, there exists an orthogonal
basis B, of S, as stated in the Remark above.

By Theorem A of section 3, together with (3.6), (3.7), (3.8), we have

(= c(f)
4.6) g%é,qf_hp}i.qf‘_rgl fggr f, f‘)A
for any R=R® >0 and §=X,.

Since B, is permuted by Aut(C), f€B, satisfies f&Sii4,, and by
A(r)(2) (ii), B(q, r), B(p, r), we see the right-hand side of (4.6) is invariant
under Aut(C). Thus, h%%€S%.,,. W

Theorems 1, 2 are proved by induction using Proposition 4.2.

a(R; o™ f12; OLf1%

Proof of Theorem 1. Let g, k, [ satisfy the assumption. Then, C(1, 1) is
valid by Proposition 4.2(1).
Let 1<¢’<q and suppose that

4.7) C(m, n) is valid for (m, n) with 1=n<m<q’.

Again by Proposition 4.2(1), C(¢’+1, 1) is valid. By (4.7) and repeated use
of Proposition 4.2(2), C(¢’+1, n) holds for 1<n<q’+1 (Note that k=2¢+2=>
2¢’+1D+1D).

Thus we have:

(4.8) C(m, n) is valid for (m, n) with 1<n<m<qg’ +1,
and finally we obtain C(g, ¢), which imply Theorem 1 by Proposition 4.1. =

Prooj of Theorem 2. Let p, g, k, | satisfy the assumption. Then, C(m, n)
is valid for 1<n<m<gq, as seen above. We have C(p, 1), and using Proposi-
tion 4.2(2) repeatedly, we get C(p, ¢) and the assertion of Theorem 2. m
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