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Abstract

In this paper, we investigate the complex oscillation of

where b k ^ j ( j — l, ••• , k ) are rational functions, B(z) is a meromorphic funciton,
and obtain general estimates of the exponent of convergence of the zero-
sequence and the pole-sequence of solutions for the above equation.
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§ 1. introduction and results.

For convenience in our statement, we first explain the notations used in this
paper, we will use resperctively the notations λ(f) and λ(l/f) to denote the
exponent of convergence of the zero-sequence and the pole-sequence of a mero-
morphic function f(z), !(/) and ?(!//) to denote the exponent of convergence
of the sequences of distinct zeros and distinct poles of f(z), σ(/) to denote the
order of growth of f(z), T f(r) to denote the centralindex of entire function

f(z). By the Wiman-Valiron theory, we have <7(/)=Πϊn — ~ — — — .
r-~ log r

In addition, other notations of the Nevanlinna theory are standard (e. g. see
[3]), the individual ones will be shown when they appear.

We also need the following Definition.

DEFINITION. If the meromorphic function f(z) has infinitely many zeros,
we call f(z) is oscillatory.

The complex oscillatory problems of the non-homogeneous linear differential
equation
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are a very important aspect in the complex oscillation theory of differential
equations which has been an active research area recently. Just lately, Gao
Shi-an proved in [2].

THEOREM A. Let F be a transcedental entire function with σ(F)<°o, ak~j
(/=!, ••• , ft) polynomials. Then for every solution f of

/c*-1>+ - +aQf=F (ft^l) (1.1)

(a) // F is oscillatory, then f is also oscillatory.
(b) λ(f)^λ(F).
(c) // σ(F) is not a positive integer, then

(d) // σ(f)>σ(F), then λ(f)=σ(f)>σ(F).

THEOREM B. For the equation

f » + a0f=P1eV« (1.2)

where α0, ίo, Pi are polynomials, άegaQ=n, deg pQ<l+(n/2).
(a) // n>l and degΛ<rc, then every solution f of (1.2) satisfies

Λ(fi=*(fi=σ(f)=l + j >deg P0 .

(b) // deg/^n^O, then the solution f of (1.2) either satisfies λ(f)=λ(f)
=ff(/)=l+(n/2)>degP0, or is of the form f=Qep°, where Q is a polynomial.
And if (1.2) has a solution of the form QePϋ with Q polynomial, then (1.2) must
have solutions which satisfy Λ(/)=I(/)=σ(/)=l+(7i/2)>degP0.

In this paper, we investigate the complex oscillatin of non-homogeneous
linear differential equations with meromorphic coefficients, and obtain general
estimates of the exponent of convergence of the zero-sequence and the pole-
sequence of solutions for the considered equations.

In fact, we will prove the following theorems in this paper.

THEOREM 1. Let A^Q, bk-j(j=l, • • - , ft) be rational functions, bk-j have a
pole at co of order n*_,^0, ft^l, P be a polynomial degP=β satisfies

1+ max— -</3<oo. (1.3)
lϊjϊk J

If the differential equation

1/<*-'>+ ... +b,f=Aep (1.4)
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has a meromorphic solution f, then
(a) σ(/)— β, f has only finitely many poles.
(b) suppose that A has a pole at oo of order nA. If nA<k(β—l), thenλ(f)

=^(/)=(7(/)=j8, if UA^-.k(β—l}, then all meromorphic solutions of (1.4) satisfy
J(/)=^(/)=(7(/)=^8, except at most a possible one. The possible exceptional one
is of the form fQ=AQep (AQ is rational).

THEOREM 2. Let A^=Q, bk-j(j=l, •••, k) be rational functions, bk-3 have a

pole at oo order TU-^O, &^1, P be a polynomial, deg P— β^l+ max — — . If

(1.4) has a meromorphic solution f, then

(a) /3rSσ(/)ίgl+ max — ̂ ~, / has only finitely many poles.
J

(b) // σ(f)>β, then J(/)=J(/)=σ(/).

THEOREM 3. L#£ bk-j(j=l, ••• , ^) ^ rational functions having a pole at oo
of order nk-jl^Q, k^l, B(z) be a transcendental meromorphic function, σ(B)—β
satisfying (1.3). // all solutions of the differential equation

f«>+bk-,f<k-»+ - +bQf=B(z) (1.5)

are meromorphic functions, then
(a) σ(/)=j8.
(b) λ(l/f)=λ(l/B), λ(l/f)=λ(l/B). If λ(B)>λ(l/B), then λ(f)^λ(B).
(c) // β>max{λ(B\ λ(l/B)}, then all solutions of (1.5) satisfy λ(f)=λ(f)=σ

(f)—β, except at most a possible one. The possible exceptional one /„ satisfies

THEOREM 4. Let bk-j(j—l, ••• , k) be rational functions having a pole at oo
of order nk-j^Q, k^l, B(z}^ be a meromorphic function satisfying σ(B)—β

<U-J-max— — . // all solutions of (1.5) are meromorphic functions, then
J

(a) /^(/^l+max-H7-. (1.6)
J

(b) λ(l/f)=λ(l/B), 2(1//)=J(1/B). // λ(B)>λ(l/B), then
(c) //

§ 2. Lemmas.

LEMMA 1. L^ί ί/iβ set ££Ξ[0, +°°) /zα^ yzmYβ logarithmic measure, T(r) be
a nondecr easing function on [0, oo). Then

= Π5
rSO-.+oo)-* 10«r
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Proof. We clearly have

Π5 M^ HEr->co log r r->oo
reco.+oo) 6

 r€Ξ[0,+oo)-£

S dr— —logδ<co, for a given
# r

there exists a point rne[rή, (δ+l)rή]—E. From

) l o g r ( r n ) ^ logΓ(rJ _
= logr; = logrn+log(l/S+l) log r»(l+0(l)) '

it follows that

Since {rή} is arbitrary, we have

is; .
r-*c» log r r-»oo log r

? e[o,+oo) ° reco,+oo)-ί; σ

This proves Lemma 1.

LEMMA 2. Lei f be a solution of the differential equation

/c* ) + α*-ι/c*-1)+ - +α0/-0 (&;>!) (2.1)

GO, •*• i flfe-i polynomials. Then f is entire of order

Proof, see [1].

LEMMA 3. Lβί ^_., 0=1, ••• , /?) ^?e rational functions having a pole at co of
order TU-^O, k^l, f be a meromorphic solution of the differential equation

/ (* )+δ*-ι/c*-1 )+ ••• +b,f=Q (2.2)

Proof. If / is a rational function, then Lemma 3 holds. Thus, we can
now suppose / is a transcendental meromorphic function. If / has a pole at z0

of order a, and bk-ι, ••• , bQ are all analytic at z0, then f<k>+bk-ιf'k~"+ ---- \-b0f
must has a pole at z0 of order a + k. This contradicts (2.2) and implies that
the poles of / can only occur at the poles of bk-j O'=l> ••• , &)• Hence / has
only finitely many poles. Now let /i denote the sum of the principal parts of
all poles of /, then /Ί is a rational function with l/il^o^""1), and f z — f — f i
is a transcendental entire function. Now substituting f=f1+f2 into (2.2), we



COMPLEX OSCILLATION 69

obtain

/ (&) \h f ( k - ί ~ ) \ I A / ff(k)-L.h fίk-l^i _1_A> f \ O Q^
2 ιUk~lJ 2 ~l ' * " ι~UθJ 2——\J 1 ι<sk-lj 1 I '" ~Ύ~UθJ I/ W»«-v

For sufficiently large \ z \ . we have ^Λ_< 7=JSΛ- ι/zΛ*-j(l+o(l)) (jB*_ ;^rO are con-
stants). Now let z be a point with \z\-r at which |/2(z)|=M(r, /2). Since
/i is rational, we get

llίΞ " TZz) ~! ̂ Ξ M(r 7 )̂ ~ ~^' '̂̂

From the Wiman-Valiron theory (see [4], [6], [7]), we have basic formulas

/!»(*)

where \z\-r, 1/2(2) I =M(r, /2), re£, \ — <c»,Γ/2(r) denotes the centralindex
J.E ?*

of /2(z). Substituting (2.4), (2.5) into (2.3), we have

(-^^)\1+<<1))+^^

(2.6)

Since the solutions of an algebraic equation are continuous functions in its
coefficients (see [4, P. 228]). As r-»co, the solutions of (2.6) are asymptotically
equal to the solutions of the algebraic equation

/^y"1

+ ... +B0z
n*=Q. (2.7)

The solution Γ/2(r) of (2.7) is the centralindex of the solution g of the differ-
ential equation with polynomial coefficients

So by Lemma 2 we have σ(g)^l+ max — — , and by the Wiman-Valiron theory,
IZJϊk J

we obtain

max—*-'-.
l^J^k J

LEMMA 4. Lei A^Q, bk-j (/=!, •••, ^) &0 retional functions, bk-j have a
pole at oo 0rder n&_^0, ^^1, P be a polynomial such that άegP=β, and f be
a meromorphic solution of equation (1.4). Then f has only finitely many poles.

If <*(f)>β, then
J
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Proof. By the same proof as in the proof of Lemma 3, we see that poles
of / can only occur at poles of bk-3 (/=1, ••• , &). Hence / has only fimitely
many poles. If σ(f)>β, we let f l f fz denote the same as in the proof of lemma
3. Now substituting /=/1+/2 into (1.4), we obtain

/2(*)+£*-ι/2

(*-1)-f - +ftβ/2=^p-(/f*)+&*-ι/ί*-1)+ - -H>o/ιM^-C, (2.8)

where C=fik^+bk^fik'^-\ ----- h&o/i Now let z be a point with | z | = r a t
which |/£(z)|=M(r, /2). From the Wiman-Valiron theory (see [4], [6], [7]),
(2.5) holds. Now for a given ε, 0<3ε<<7(/)— β, there exists {r^} (rή->oo) such

S d/Γ
— — logδ<oo, there exists a point rnE T

^[r'n, (δ+l)rή]— £. At such points rny we have

Ϊ
rσ(f)-ε

•(g+iχc/

In addition for sufficiently large rn we have

So

!+ -rS("-2 } —> 0 (rn->oo).

Therefore, at such points |zn | =rn (rn<^E, |/2(2Λ)l=M(rn, /2)), substituting (2.5)
into (2.8), we have

(Z/s^y (1+0(1))+^^ ... +β.z»β(i+0(i))==0(i).
^ ^n ' %n '

(2.9)

As rπ->oo, at the points rn, a solution Γ/2(rn) of (2.9) is asymptotically equal to
a solution of an algebraic equation

=0. (2.10)

Thus

2"/,(r»)~Cirii (2.11)

where Cj^O is a constant, the possible values of al should coincide with the
possible orders of growth of transcendental solutions of equation

But Lemma 3 gives α^l f max

On the other hand, differentiating (2.8) gives
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i. e. /2 also solves a linear differential equation with rational coefficients, since
/2 is a transcendental entire function, by the reasoning in [6, P. 106-108], for
sufficiently larger r we have Tf2(r)^czr

a2(r^E), with c2 a constant, a2 a rational
number. But by (2.11), we have dr^^c^y-. So Cι—cZ) αi— α2 must hold. And by

Lemma 1 we get β(f^—a<ι<l+ max— ̂ — . Therefore, </(/)— σ(/2)^l+ max — —Λ.
7

LEMMA 5. Let bk-j 0=1, ••• , &) be rational functions having a pole at co
of order TU-^O, /e^l, 5(z) ^^ α meromorphic function with σ(B)=β satisfying
(1.3). // all solutions of the differential equation (l.§) are meromorphic functions,
then σ(f)=β.

Proof. It is easy to see that σ(f)^σ (B)=β from (1.5). On the other hand,
all solutions of (2.2) that is the corresponding homogeneous differential equation
of (1.5) are meromorphic functions, we assume that \flf ••• , f k] is a funda-

mental solution set of (2.2). By Lemma 3 we have σ(fτ)^l+ max — — ~- (ι =
l^Jίk J

l,-,k).
By variation of parameters, we can write

f=A1(z)fί+ +Ak(z)fk, (2.12)

where Aι(z\ ••• , Ak(z) are determined by

Aίfί+ '+A'kfί=Q

Noting that the Wronskian W(flf •••, /*) is a differential polynomial in flt ••• , //,

with constant coefficients, it is easy to know that σ(w)^l-\- max—-1. Set
l^J^k J
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where gt are differential polynomials in f l f ••• , /* with constant coefficients. So

t)^ 1+ max ̂ '- also hold. Since ^{=-^-= - - - ,
W izjzk J

we have σ(4})^j8, <y(^)=σ(^4ί)^j8. And from (2.12) we get σ(f)<Zβ Hence
σ(f)—β must hold. (It is not difficult to see that we can suppose all Λl are
meromorphic functions here.)

LEMMA 6. Let U^O be a meromorphic function with <τ(ί/)<oo, bk-j 0'=
1, ••• , k) be rational functions. If f is a meromorphic solution of the differential
equation

i/<*-1 )+ - +b0f=U (2.13)

such that <7(f/)<σ(/)<oo,

Proof. We can write from (2.13)

/C*-D v (2 14)

Since σ(/)<oo, we have w(r, (/°V/))=0(logr) (;'=!, ••-, έ), thus,

m(r, y)^m(r, jj)+m(r, "y^-)+ - +m(r, j-)+O(logr)

=m(r,^-)+0(logr). (2.15)

Because bk.ι , ••• , ba are rational functions, bt-ι, ••• , b<, must be analytic at z<> as
|zβ| is sufficiently large. If / has a zero at ac of order β (>&), then U must
have a zero at £0 of order β—k. Hence,

and

(2.15) and (2.16) give

T(r, /)=T(r,

n(r, j)^

, l)+0(logr). (2.16)

r, U)+0(log r). (2.17)

Setting σ(f)=a>σ(LΓ), there exists {rn} (rπ->oo) such that
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rn-oo logr

For a given ε with 0<2ε<α—σ(ί/), as rn is sufficiently large, we have

T(rn, /)>rΓε, 7

Therefore

T(r»> t/) ^r..-fα-,^

T(rn, /) ̂
and

Q

holds for sufficiently rn. From (2.17) we obtain

T(r», f)^2kN(rn> y) + 0(logrn)

for such rn. Thus,

.
>•„-<» logr,, rn-oo logr,,

So we get I(/)=ί(/)=

LEMMA 7. Lei d*_ ; 0=1, ••• , k) be rational functions having a pole at oo
of order «»_^^0, έ^l, β^O be a meromorphic function with σ(B)=β<oo. If
all solutions of the differential equation (1.5) are meromorphic functions, then
λ(\/f)=λ(l/B),

max {,*(/), λ(j)} ^max \λ(B\ λ(j)}. (2.18)

Proof. Since bk-3 0=1, •••, k) have only finitely many poles, and as
bk-\, •••, 60 are all analytic at z0, / has a pole at ZQ of order α if and only if B
has a pole at ^0 of order a+k, we have I(l//)=I(l/£). From (a+k/2k)=

α, it follows that

and
1

7rrN(?% 5)-fO(logr)^Mr, /)^Mr, β)+0(logr).ώ/?

Therefore, λ(l/f)=λ(l/B\
By the proof of Lemma 5 we know that σ(f)<<*>. So we can write

f—^mίML6Pί D m2jL±lgP2 ί2 19)y —^ ^ έί , /^—<r tί , ^.117;
Vl V2
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where ml, m2 are integers, ft and H2 are canonical products formed respectively
with the nonzero zeros of / and B, Q1 and Q2 are canonical products formed
respectively with the nonzero poles of / and B, Λ and P2 are polynomials with
degΛ^σ(/). degP2^σ(β). Substituting (2.19) into (1.5) we have

T_Γ

F(Hlt Q^zmz-^-ep*-pι, (2.20)
V2

where F is a rational function in ft, Ql and H{3\ Qp> 0=1, ••• , k) with poly-
nomial coefficients. From (2.20), we get

maxMft), σ(Qί)}^σ(F)=σzm-ep^pmax{σ(H2)) σ(Q2)}.
^ Qz '

So (2.18) holds.

LEMMA 8. Let β be a positive integer and β>l, bk-j 0=1» ••• , &) be rational
functions having a pole at oo of order /(/3 — 1), k^l, g be a meromorphic solution
of the homogeneous differential equation

i^ c*-1 )+-+fte^=0. (2.21)

Then σ(g)=β.

Proof. Using the same proof as in the proof of Lemma 3, we see that g
has only finitely many poles. Now let gλ denote the sum of the principal parts
of all poles of g. Then g^ is a rational function with | gλ\ =o(r~1}, and g2=
g—gι is an entire function. Substituting g=gι+g2 into (2.21), we obtain

£ί*)+ft*-ι£ί*-1)+ - +b*gt=-(gik>+bk-1gi*-1>+ - +60^). (2.22)

If gz is a polynomial, then there is only one term bϋg2 with degree &(/3— 1)+
deg#2 being the highest one in (2.22). This is impossible. So g2 must be a
transcendental entire function. Now, we use the same proof as in the proof of
Lemma 3. Let z be a point with \z\=r at which \g2(z)\ =M(r, g2), Tg2(r)

denote the centraiindex of /2(z), Ec[0, oo) be a set such that \ — -<oo.
JE r

Similarly to (2.6), as r(=E, we have

(2.24)

Set σ(gz)=a. Then by the reasoning in [6, P. 106-108] we have Γg2(r)>^cza

(\z\=r(=E, c^O is a constant) as r-»°o. Substituting it into (2.24), it is easy
to see that the degrees of all terms of (2.24) are respectively

l) 0=1, ••• , £-1), A(]8-l).

From the Wilman-Valiron theory we see that a=β is the only possible value.
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Therefore, by Lemma 1 we get σ(gz)=β, and o(g)

LEMMA 9. Let β, bk-j (/=!, ••• , k) be the same as Lemma 8, A^ be a
rational function having a pole at oo of order nA consider the differential
equation

^c*-1)+ - +b*g=A. (2.25)

If nA<k(β—l), then every meromorphic solution g of (2.25) is of σ(g}—β.
If nA^k (/3— 1), then all meromorphic solutions of (2.25) satisfy σ(g)—β except
at most one possible. The possible exceptional one go is a rational function.

Proof. Assume g is a meromorphic solution of (2.25). Clearly, g has only
finitely many poles. Let g1 denote the sum of the principal parts of all poles
of g. Then gt is a rational function, and gz~g—gι is an entire function. Now
substituting g=gι+gz into (2.25), we get

Sί*)+&*-ιSί*-1)+ ••• +bog2=A-(gik>+bk-1gik^ + ••• +&o£ι) (2.26)

Divide the discussion into two cases. Case I. nA^k (/3— 1). In this case,
if g2 is a polynomial solution, thus g0=gι+gz is a rational solution of (2.25).
If g2 is a transcendental entitre function, we can use the same proof as in
Lemma 8 to get σ(g)=σ(g1+g^=σ(g^=β.

Case II. nA<k (β—l). In this case, if gz is a polynomial, then there is
only one term b0g2 with degree k(β — l)+deg#2 being the highest one in (2.26).
This is impossible. Therefore, gz is a transcendental entitre function. Using
the same proof as in Lemma 8, we can get σ(g)= σ(gl-\-g2)=σ(g2)=β.

We affirm that equation (2.25) can only possess at most one exceptional
rational solution g0. In fact, if gQ is the other one, then σ(gϋ—gQ)<β. But
go— go is a solution of the corresponding homogeneous equation (2.21) of (2.25).
This contradicts Lemma 8.

LEMMA 10. Let β, bk-j (/=!, ••• , k) be the same as Lemma 8, ί/^0 be a
meromorphic function with σ(U)<β, If all solutions of the equation

£<*>+&*-1£<*-1>+ - +b*g=U (2.27)

are meromorphic functions, then all solutions of (2.27) satisfy σ(g)=β except at
most one possible. The possible exceptional one g is of σ(g)<β.

Proof. Assume that { g l f ••• , gk\ is a fundamental solution set of (2.21)
that is the corresponding homogeneous differential equation of (2.27). By Lemma
8, we have a(gj)^β (;=1, ••• , k\

Using the method of variation of parameters as in Lemma 5, we can prove
that all solutions of (2.27) are of σ(g)<^β.

Using the same proof as in the proof of Lemma 9, we see that (2.27) pos-
sesses at most one exceptional solution g of order σ(g)<β, the other solutions
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g are all of order σ(g)=β.

§3. Proof of Theorems.

Proof of Theorem 1. (a) By (1.4) we have σ(f^σ(Λep)=β. If σ(f)>β,

from Lemma 4 we have </(/)^l+ max — — -. This is a contradiction. There-
J

fore σ(f)=β. And / has only finitely many poles from Lemma 4.
(b) Set f=gep. Then λ(f)=λ(g), I(/)=I(g). Substituting /=£βp into (1.4),

we have

g^dt-^'-v+ +d^A, (3.1)

where d*_ι, ••• , dQ are rational functions. To work out σ(g\ we need d k - j
0—1, ••• , &) in more detailed form. It is easy to check by induction that we
have for m^2 (see [5])

{ m }

g™+mp'g<"l-1) + Σ[ci,(/»')' + #,-ι(/>Wt-1)[β1', (3.2)
1 = 2 J

where Hl-l(pf] are differential polynomials in p' and its derivatives of total
degree i—1 with constant coefficients. It is easy to see that the derivatives of
Hl_l(pf) as to z are of the same form H l . ί ( p / ) C^Λ is the usual notation for the
binomial coefficients. (1.4) and (3.2) give

0=2, » . ,*, h = l), (3.3)

Since θ>l+ max-7^^, the degree j(β-l) of the term bkCi(py = Ci(py (ι=;)

is the highest one in the first equality of (3.3). Hence dk-3 must have a pole
at oo of order j(β— 1). If nA^k(β—l), then from Lemma 9, (3.1) may have
one exceptional rational solution Λ0 the other meromorphic solutions are all of
0(g)=β- By Lemma 6 we have λ(g)=λ(g)=σ(g)=β. Therefore (1.4) may have
one exceptional solution f0=A0e

p (A0 is a rational function), the other meromo-
rphic solutions f=gep are all of λ(f)=λ(f)=σ(f)=λ(g)=β. If nA<k(β-l\ then
from Lemma 9 and Lemma 6, all meromorphic solutions g of (3.1) are of H(g)
—λ(g}—σ(g}=β. Therefore all meromorphic solutions f—gep of (1.4) are of

Proof of Theorem 2. (a) It is easy to see that σ(f)^β from (1.4). If
nk-3.1-t- max

finitely many poles.

σ(f)>β, then σ(f)^l+ max—*^- from Lemma 4. And by Lemma 4, / has only
l U t J ^ k J
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(b) If σ(f)>β, then J(/)=^(/)=(j(/) from Lemma 6.

Proof of Theorem 3. (a) From Lemma 5, we have σ { f } — β .
(b) By Lemma 7, we see that λ(l/f)=λ(l/B\ I(l//)=I(l/β). If λ(B)>

λ(l/B\ we have λ(f)^λ(B} by Lemma 7.
(c) If /3>maxμ(£), Λ(l/£)} we can write

B=zm-~ep^

where m is an integer, H and Q are canonical products formed respectively
with the nonzero zeros and nonzero poles of B, U~zm(H/Q}, σ(U)<β, then β
must be an integer, p(z) is a polynomial with degP— β.

We set f=gep. Then λ(g)=λ(f\ λ(g)=λ(f\ Substituting f=ge* into (1.5),
we have

5f c * ) + d*.ι^c*"1)+ ••• + ^o£=t/ (3.4)

where d*_ι, ••• , dQ are retional functions.
Using the same proof as in the proof of Theorem 1 (b), we see that dk~j

must have a pole at oo of order j ( β — l ) . Hence from Lemma 10, we see that
all meromorphic solutions of (3.4) satisfy σ(g)=β except at most one possible.
The possible exceptional one g is of σ(g)<β._ If σ(g)<β, then λ(g)<β. If
a(g)=β, by σ(U)<β and Lemma β, we have 2(g) =λ(g)~σ(g)=β. Therefore
the equation (1.5) may have at most one exceptional solution fϋ=gep with Λ(/0)
=λ(g)<β, the other meromorphic solutions f=gep of (1.5) are all of λ(f)—λ(f)

Proof of Theorem 4. (a) By (1.5), we have σ ( f ) ^ β . On the other hand,
since all solutions of (1.5) are meromorphic functions, all solutions of (2.2) that
is the corresponding homogeneous equation of (1.5) are meromorphic functions.
Assume {/i, •••,/*} is fundamental solution set of (2.2). By Lemma 3 we have

-̂ (ί=l, ••• , k\
j

By variation of parametes, for a solution / of (1.5), we can write

f=Al(z)fl+. .+Ak(z)fk.

Using the same proof as in the proof of Lemma 5 and noting that /9^

max - - , we have σ(Aj)=σ(Λ^l+max-. Therefore β£σ(f)£l+ max -^-.
] l^jzk j Ig s A r J

(b) By Lemma 7 we have λ(l/f)=λ(l/B), J(l//)=?(l/5), max{^(/), λ(l/f)}
ax{λ(B),λ(l/B)}. Therefore, λ(f)^λ(B\ if λ(B)=λ(l/B).
(c) If σ(f)>σ(B\ then by Lemma 6 we have
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§ 4. Examples for the exceptional solution.

Example 1. (concerning the exceptional solution in Theorem 1)

f o = e f z * solves ///+2//+z2/-(9z4H-3^+^+6^23. There 1+
J

β=3, degΛ=4^fc(0-l) And /„ satisfies that λ(fJ=Q<σ(f0)=3=σ(Aep).

Example 2. (concerning the exceptional solution in Theorem 3)
/o— sinz £22 is an exceptional solution of /" — /=(4zcosz+4ε2sin£)022. There

1+ max-^^-=l, β=σ(B)=2, β>max{λ(B), λ ( l / B } } . And /0 satisfies <τ(/0)=2,

Acknowledgement. The authors would like to thank the referee for valuable
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