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ON THE COMPLEX OSCILLATION OF NON-HOMOGENEOUS
LINEAR DIFFERENTIAL EQUATIONS WITH
MEROMORPHIC COEFFICIENTS

By CHEN ZONG-XUAN and GAO SHI-AN

Abstract

In this paper, we investigate the complex oscillation of
FEO4byafhDt b f=B(2),

where b04-;(J=1,---, k) are rational functions, B(z) is a meromorphic funciton,
and obtain general estimates of the exponent of convergence of the zero-
sequence and the pole-sequence of solutions for the above equation.
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§1. introduction and results.

For convenience in our statement, we first explain the notations used in this
paper, we will use resperctively the notations A(f) and A(1/f) to denote the
exponent of convergence of the zero-sequence and the pole-sequence of a mero-
morphic function f(z), 2(f) and A(1/f) to denote the exponent of convergence
of the sequences of distinct zeros and distinct poles of f(z), ¢(f) to denote the
order of growth of f(z), ';(r) to denote the centralindex of entire function

f(z). By the Wiman-Valiron theory, we have o( f):l—i_n—l%ir(l)—.
700
In addition, other notations of the Nevanlinna theory are standard (e. g. see
[3]), the individual ones will be shown when they appear.

We also need the following Definition.

DEFINITION. If the meromorphic function f(z) has infinitely many zeros,
we call f(z) is oscillatory.

The complex oscillatory problems of the non-homogeneous linear differential
equation
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f‘”‘f‘hqf”"”’l" +aof:F

are a very important aspect in the complex oscillation theory of differential
equations which has been an active research area recently. Just lately, Gao
Shi-an proved in [2].

THEOREM A. Let F be a transcedental entire function with g(F)<oo, a,.,
(7=1, ---, k) polynomials. Then for every solution f of

f®dar fE D4 o daf=F (k=1) 1.1)

(@) If F is oscillatory, then f is also oscillatory.
(b) AN)z=AF).
(c) If o(F) is not a positive integer, then

Af)=a(f)za(F)=AF).
(@) If a(f)>a(F), then Af)=a(f)>a(F).
THEOREM B. For the equation
f74a.f =PiePo 1.2)

where ao, po, P1 are polynomials, deg a,=n, deg p,<1+(n/2).
(@) 1f n>1 and deg Pi<n, then every solution f of (1.2) satisfies

n

ANH=2=e(f)=1+ 5 >deg P,

(b) If deg p,=n=0, then the solution f of (1.2) either satisfies A(f)=A(f)
=0(f)=1+(n/2)>deg Py, or s of the form f=Qe™, where Q is a polynomial.
And if (1.2) has a solution of the form Qeo with Q polynomial, then (1.2) must
have solutions which satisfy A(f)=i(f)=a(f)=14(n/2)>deg P,.

In this paper, we investigate the complex oscillatin of non-homogeneous
linear differential equations with meromorphic coefficients, and obtain general
estimates of the exponent of convergence of the zero-sequence and the pole-
sequence of solutions for the considered equations.

In fact, we will prove the following theorems in this paper.

THEOREM 1. Let Ax0, be_;(=1, ---, k) be rational functions, b,_, have a
pole at <o of order n,_,=20, k=1, P be a polynomial deg P=p satisfies
Moy
1+lrgjz>}§ ; <B<eo. (1.3)

If the differential equation
FEFbp fF D4 oo b f=AeP (1.4)
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has a meromorphic solution f, then

(@) o(f)=B, f has only finitely many poles.

(b) suppose that A has a pole at = of order ny If ny<k(B—1), then A(f)
=Af)=a(f)=P, 1f na=k(f—1), then all meromorphic solutions of (1.4) satisfy
AN=Af)=a(f)=P, except at most a possible one. The possible exceptional one
is of the form f,=A.ef (A, is rational).

THEOREM 2. Let Ax0, b,_j(j=1, ---, k) be rational functions, b,_, have a

1575k

pole at o order ny,=0, k21, P be a polynomial, deg P=B<1+ max "’]"f. If
(1.4) has a meromorphic solution f, then
Ne-y
<
(@) B=o(f)=1+ max i
(b) If a(f)>B, then A(f)=Af)=a(f).

, [ has only finitely many poles.

THEOREM 3. Let b,_j(j=1, ---, k) be rational functions having a pole at «
of order n,_,20, k=1, B(z) be a transcendental meromorphic function, ¢(B)=p

satisfying (1.3). If all solutions of the differential equation
FE by D4 +hf=B(z) (1.5)

are meromorphic functions, then

@ o(=8. o

(b) AA/N)=A1/B), a1/ f)=a(1/B). If AB)>A1/B), then Xf)=A(B).

(¢) If B>max{A(B), A(1/B)}, then all solutions of (1.5) satisfy A(f)=A(f)=a
(f)=B, except at most a possible one. The possible exceptional one f, satisfies

Af)<B.

THEOREM 4. Let b,_jj=1, ---, k) be rational functions having a pole at
of order n,_,=20, k=1, B(z)x0 be a meromorphic function satisfying ¢(B)=p

_S_l—l—lma)g LLIN ( f all solutions of (1.5) are meromorphic functions, then
=7
@) B<o(f)<1+ maxEL, (1.6)

1sysk )

(b) 2(/f)=A1/B), A1/ f)=21/B). If AB)>A1/B), then A(f)=A(B).
©) If o(f)>B, then 2(f)=A(f)=a(f).

§2. Lemmas.

LEMMA 1. Let the set ES[0, +o0) have finite logarithmic measure, 1 (r) be
a nondecreasing function on [0, ). Then

m log 7'(r) — i log Y'(r)
log 7 log r

700 700
rE€[0, +00) refo, +oo) ~E
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Proof. We clearly have

m lolg Y(r) > Tm lolg r(r) .

el 08T elim, g 087

On the other hand, setting L%Zlog 0< oo, for a given {r;}, r,<[0, o), r;—00,
there exists a point »,&[7n, (6+1)rp1—FE. From

logY'(ry) _ log X'(ra) _ log 1'(rs) _ log¥(ra)
log 74, logr, = logr,+log(1/0+1)  logr,(14+0(1)’

it follows that

im log Y'(rz) < im log Y'(r,) < Tm Eg r(r) )

; logry, T rpe logr, T log r

oo €10, +o)~E

Since {r;} is arbitrary, we have

— logY(r —  logY(r

om gl _ o _l_go_Q
relo, Foo) et im-g 0BT

This proves Lemma 1.

LEMMA 2. Let f be a solution of the differential equation

fPFaraf* P+ Faf=0 (kz]) 2.1)

with ao, -+, ar_y polynomials. Then f is entire of order
1s7sk 7
Proof. see [1].
LEMMA 3. Let by-, (=1, -, k) be rational functions having a pole at « of
order n,-,=0, k=1, f be a meromorphic solution of the differential equation
FE 4 p, D4 p f=0 2.2)
Then, o(f)<1+ max -2
1s)sk ]

Proof. If f is a rational function, then Lemma 3 holds. Thus, we can
now suppose f is a transcendental meromorphic function. If f has a pole at z,
of order a, and b,_;, ---, by are all analytic at z,, then f* 4b,_f* D4 ... 4-bof
must has a pole at z, of order a+k. This contradicts (2.2) and implies that
the poles of f can only occur at the poles of b,_, (=1, ---, k). Hence f has
only finitely many poles. Now let f, denote the sum of the principal parts of
all poles of f, then f, is a rational function with |f;|=0("?), and f,=f—f,
is a transcendental entire function. Now substituting f=/f,+f, into (2.2), we
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obtain
T80 4bpaf§$F 04 o Fbofo=—(f{+brof 04 - +bof 1) 2.3)
For sufficiently large |z|. we have b,_,=B,_;z"*-i(140(1)) (B;-,>0 are con-

stants). Now let z be a point with |z|=# at which |f.(z)|=M(r, f,). Since
f1 is rational, we get

lim fl(k)'l"bk—-l]il(k_l)'*‘ o Fbofy :lim_fjfk)+bk—1f1(k_1)+ +bofl
T >0 fz(z) T =00 11’1(?’, fz)

From the Wiman-Valiron theory (see [4], [6], [7]), we have basic formulas

=0. (2.4)

(6] J
““;2‘(_‘(;252‘ :(1{;'(1")*) (1+0(1))) J :1} A k ’ (25)

where |z|=7r, |f(2)|=M(, fJ), ¥EE, SE%’: < 0,1 s,(r) denotes the centralindex

of fi(z). Substituting (2.4), (2.5) into (2.3), we have

(Lfi(—r)*)kﬂﬂ(l»wk—lz"k“(ﬂﬁ')k"<l+o<l>>+ w4 Boz"o(14-o(1)=0(1).
(2.6)

Since the solutions of an algebraic equation are continuous functions in its
coefficients (see [4, P. 2287]). As r—co, the solutions of (2.6) are asymptotically
equal to the solutions of the algebraic equation

(FA) Bz (FA) gz, @7

The solution 17;,(r) of (2.7) is the centralindex of the solution g of the differ-
ential equation with polynomial coefficients

g4+ By gzt k-1gh P4 o+ Byzhg=0.

So by Lemma 2 we have a(g)<1+ ma>§~n—§~1, and by the Wiman-Valiron theory,
1)<

we obtain

o=l 5 o(r,

r
log r
G(f):a(fl+f2):0(fz)§l+lrgzi)é_n.’;;{ .
LEMMA 4. Let A#0, b._, (j=1, ---, k) be retional functions, b,_, have a

pole at oo order n,-,=0, k=1, P be a polynomial such that deg P=f, and f be
a meromorphic solution of equation (1.4). Then f has only finitely many poles.

If 0(f)>ﬁ, then O'(f)gl—}- maxn_;::’ .

1sisk
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Proof. By the same proof as in the proof of Lemma 3, we see that poles
of f can only occur at poles of b,_, /=1, .-+, k). Hence f has only fimitely
many poles. If ¢(f)>pB, we let f,, f. denote the same as in the proof of lemma
3. Now substituting f=f,+f. into (1.4), we obtain

8 4be S0+ o Fbofo=Ae?—(F P b1 f P+ o bof1)Ae?—C, (2.8)

where C=f{®+b,_f{* V4 .- +byf;. Now let z be a point with |z|=r at
which | fx(z)|=M(r, f,). From the Wiman-Valiron theory (see [4], [6], [7]),
(2.5) holds. Now for a given ¢, 0<3e<a(f)—pB, there exists {r;} (r,—o0)such

that M(r}, f.)>exp{ri?/>-¢}. Setting SEE}:log 0< oo, there exists a point 7,
&[ry, @0+r]—E. At such points »,, we have

ra(f)-ﬁ

W} >exp {rg -2} .

M(ra, f)ZM(rh, f>explrid=t} >exp]

In addition for sufficiently large », we have

| Ae?—C| <exp{rf*}.
So
Ae?—C
[m Sexp{rf"—ri7%} —> 0 (r,— o).
Therefore, at such points |z,|=r, ", EF, | fo(z2)| =M(r,, f,)), substituting (2.5)
into (2.8), we have

(F22Y 1oyt Bacszgros(FTDY ™ ko - + Bzl oD)=o).
2.9)

As r,—oo, at the points 7,, a solution 1 ,(r,) of (2.9) is asymptotically equal to
a solution of an algebraic equation

(L) 1 oo T’Z(’")) +o +Ba=0.  (210)

Thus
Yy (ra)~ers (2.11)

where c,%0 is a constant, the possible values of a, should coincide with the
possible orders of growth of transcendental solutions of equation

94 ByLig 1 f 04 By f,=0.

But Lemma 3 gives a,=
1575k ]

On the other hand, differentiating (2.8) gives
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FEO40ur A a b0+ o b f = AleP - Ap’eP—C
AI ’ A’ ’ ’
=(G+o7Jder— O (G )€

=AY Hbasf 4 bSO+ p7)—C,
f;k+l>+[bk-1—(ijl—'+p')]f;k>+[b;-l+bk-2—(%+p')bk-,]fsk~l>+

oG] re=c(E ),

i.e. f, also solves a linear differential equation with rational coefficients, since
f» is a transcendental entire function, by the reasoning in [6, P.106-108], for
sufficiently larger » we have 1", ,(r)~c.r*¥(r EE), with ¢, a constant, a, a rational
number. But by (2.11), we have c¢,r§i~c#52. So ¢1=c¢,, a;=a, must hold. And by
Lemma 1 we get ¢(f)=a, <1+ maf%i. Therefore, o(f):a(f2)§1+lma>§—?l-§"] .
1278 <7<

LEMMA 5. Let b,_, (=1, ---, k) be rational functions having a pole at <o
of order n,_,=0, k=1, B(z) be a meromorphic function with a(B)=p satisfying
(L.3). If all solutions of the differential equation (1.5) are meromorphic functions,
then a(f)=p.

Proof. It is easy to see that ¢(f)=¢ (B)=p from (1.5). On the other hand,
all solutions of (2.2) that is the corresponding homogeneous differential equation

of (1.5) are meromorphic functions, we assume that {f,, ---, f.} is a funda-
mental solution set of (2.2). By Lemma 3 we have o(fi)gl—{—glj?f—nf;:]— (2=
1, -, k).
By variation of parameters, we can write
=A@+ - +Aw@f e, (2.12)
where A,(z), -+, Aw(z) are determined by

Aifit o + A x=0
Aifit o +Afi=0

Af{ D4 e 4 A O=B.

Noting that the Wronskian W(f,, -+, f) is a differential polynomial in f,, -, /.,

1

. . - Ny
with constant coefficients, it is easy to know that ¢(w)<1+ ma)kcwi .
1575 )

Set
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S L0, -, fa

=l: : =B-g,, i=1, -, kb,
flfk_l), Tty B; ) flgk_l)

W,

where g, are differential polynomials in f,, ---, f; With constant coefficients. So
Ne-y . ’ W, Bg. Nk-;
N < —_— . e T = -
a(g )_1+11£1]a;>§ ; also hold. Since A W W and o(B) ‘8>1+g1]a§>§ ]
we have g(A)<B, d(A.)=0(A;)<B. And from (2.12) we get o(f)<p Hence
a(f)=p must hold. (It is not difficult to see that we can suppose all A, are
meromorphic functions here.)

LEMMA 6. Let Ux0 be a meromorphic function with a(U)<co, bi_, (j=
1, .-+, k) be rational functions. If f is a meromorphic solution of the differential
equation

F® by fEDf o b f=U (2.13)
such that a(U)<a(f)<oco, then A(f)=A(f)=a(f).

Proof. We can write from (2.13)

1 1 f(k) f(k—l)
2 . , 14
7 ( Ftbe +bo) (2.14)
Since o(f)<oo, we have m(r, (f9°/f)=0(logr) (=1, ---, k), thus,
1 1 f(k) f/
m(r, 7)§m(r, [7)+m<r, 7 )+ +m<r, —f——)+0(log 7)
1
=m(r, L—,)—i—O(log 7). (2.15)
Because b,_,, -+, b, are rational functions, b,_;, -+, b, must be analytic at z, as

|zo| is sufficiently large. If f has a zero at z, of order 3 (>%), then U must
have a zero at z, of order §—%. Hence,

n(r, %,—)g kﬁ(r, %)+n(r, %)+O(l),
and

N(r, %)gk]\—/(r, %)—i—N(r, Ui)+0(1og 7). (2.16)

(2.15) and (2.16) give

TG, f)=T<r, %)+ o= kz\‘f(r, %)-f—T(r, Ui)+0(10g )
=kN(r, -jl;)+T(r, U)+0(log 7). @.17)

Setting o(f)=a>a(U), there exists {r,} (r,—o0) such that
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lim o8 T( ) _
T oo log »

For a given ¢ with 0<2¢e<a—a(U), as r, is sufficiently large, we have
T(ra, H>ri7,  T(ra, U)<ry®*.
Therefore

T(ra, U)
T(ra, 1)

<rEETO) —>  (ry0)
and

T(rs, )55 Tire, f)

holds for sufficiently »,. From (2.17) we obtain
1

Tra N2eN(re,

)+0<1og )

for such r,. Thus,
log T(ra, f) _ — log N(rs, (1/1))

=a= lim ——""-"~ <i
(f)=a 711’3,0 log 7, :rlfglm log 7, =4)-
So we get A(f)=Af)=0a(f).
LEMMA 7. Let by, (=1, -+, k) be rational functions having a pole at co

of order n,_,=0, k=1, B70 be a meromorphic function with o(B)=p<. If
all solutions of the differential equation (1.5) are meromorphic functions, then

A1/f)=x1/B), A1/ f)=i1/B),

1 1 .
max {(/), x(-f—)} Zmax {X(B), x(E)} . (2.18)
Proof. Since b,., (=1, ---, k) have only finitely many poles, and as
br-1, -+, bo are all analytic at z,, f has a pole at z, of order « if and only if B

has a pole at z, of order a4k, we have A(1/f)=2(1/B). From (a-+k/2k)=
(a/2k)+(1/2)La, it follows that

o5 7, BHOWEn(r, NEn(r, BHOW),
and

o Ner, B1+000g N=N(r, )SNr, B1+0(og 7).

Therefore, A(1/f)=A(1/B),
By the proof of Lemma 5 we know that ¢(f)<e. So we can write

f:z’"l%e”l, B=z"‘2—g—2~e”2, (2.19)
1 2
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where m,, m, are integers, H, and H, are canonical products formed respectively
with the nonzero zeros of f and B, @, and @, are canonical products formed
respectively with the nonzero poles of f and B, P, and P, are polynomials with
deg P,.<a(f). deg P,<g(B). Substituting (2.19) into (1.5) we have

H,
F(H,, Q)=z""eF+F1, (2.20)
Q-
where F is a rational function in H,, Q, and H®, Q¥ (=1, ---, k) with poly-

nomial coefficients. From (2.20), we get

max (o(H), o(Q} Za(F)=o(z" | e"+~) zmax{o(1), o(Qa).

2

So (2.18) holds.

LEMMA 8. Let B be a positive integer and B>1, by-, (j=1, ---, k) be rational
functions having a pole at o of order j(B—1), k=1, g be a meromorphic solution
of the homogeneous differential equation

gE b, gD+ o 4 bog=0. (2.21)
Then a(g)=4.

Proof. Using the same proof as in the proof of Lemma 3, we see that g
has only finitely many poles. Now let g, denote the sum of the principal parts
of all poles of g. Then g, is a rational function with |g,|=o0(r"!), and g,=
g—g, is an entire function. Substituting g=g,+4g, into (2.21), we obtain

88V +bra g8 V4 o boge=—(g{F +bi gt TP+ o +bogy).  (2.22)

If g, is a polynomial, then there is only one term b,g, with degree A(f—1)+
deg g, being the highest one in (2.22). This is impossible. So g, must be a
transcendental entire function. Now, we use the same proof as in the proof of
Lemma 3. Let z be a point with |z|=r at which |g.(2)|=M(r, g.), T ,,(r)

denote the centralindex of f,(z), EC[0, ) be a set such that SE%C<OO.

Similarly to (2.6), as *&FE, we have

(FY ot Bzt (LY o -+ B0 o=ath.
(2.24)

Set g(g;)=a. Then by the reasoning in [6, P.106-108] we have 1, ,(r)~cz“
(lz|=rE€E, c¢x=0 is a constant) as r—oco. Substituting it into (2.24), it is easy
to see that the degrees of all terms of (2.24) are respectively

k(a—1), j(B—D+(k—j)Xa—1) (=1, -, k=1), k(B—1).

From the Wilman-Valiron theory we see that «=p is the only possible value.
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Therefore, by Lemma 1 we get a(g.)=p, and o(g)=0a(g:)=p.

LEMMA 9. Let B, by, (j=1, ---, k) be the same as Lemma 8, A%0 be a
rational function having a pole at oo of order n, consider the differential
equation

P 4bi 1 8* V4 - +hog=A. (2.25)

If n,<k(B—1), then every meromorphic solution g of (2.25) is of a(g)=p.
If ny=Fk (B—1), then all meromorphic solutions of (2.25) satisfy ¢(g)=p except
at most one possible. The possible exceptional one g, is a rational function.

Proof. Assume g is a meromorphic solution of (2.25). Clearly, g has only
finitely many poles. Let g, denote the sum of the principal parts of all poles
of g. Then g, is a rational function, and g,—=g— g, is an entire function. Now
substituting g=g,+g, into (2.25), we get

88 +by g8Vt o boge=A—(g{" +bi1gF TV + - Fbogy)  (2.26)

Divide the discussion into two cases. Case I. n, =k (f—1). In this case,
if g, is a polynomial solution, thus g,=g,+4g. is a rational solution of (2.25).
If g, is a transcendental entitre function, we can use the same proof as in
Lemma 8 to get (g)=0(g:+4:)=0(g.)=5.

Case 1. n,<k (B8—1). In this case, if g, is a polynomial, then there is
only one term b,g, with degree k(8—1)+deg g, being the highest one in (2.26).
This is impossible. Therefore, g, is a transcendental entitre function. Using
the same proof as in Lemma 8, we can get o(g)=0(g:+g:)=0(g:)=p.

We affirm that equation (2.25) can only possess at most one exceptional
rational solution g,. In fact, if g, is the other one, then g(g,—g,)<B. But
8¢—4&o is a solution of the corresponding homogeneous equation (2.21) of (2.25).
This contradicts Lemma 8.

LEMMA 10. Let B, bi-, (j=1, -+, k) be the same as Lemma 8, U0 be a
meromorphic function with a(U)<B, If all solutions of the equation

GB by gF Ve b hog=U (2.27)

are meromorphic functions, then all solutions of (2.27) satisfy o(g)=p except at
most one possible. The possible exceptional one g 1s of a(g)<p.

Proof. Assume that {g, ---, g:} is a fundamental solution set of (2.21)
that is the corresponding homogeneous differential equation of (2.27). By Lemma
8, we have a(g)=8 (j=1, ---, k).

Using the method of variation of parameters as in Lemma 5, we can prove
that all solutions of (2.27) are of ¢(g)<p.

Using the same proof as in the proof of Lemma 9, we see that (2.27) pos-

sesses at most one exceptional solution g of order ¢(g)<f, the other solutions
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g are all of order o(g)=8.

§3. Proof of Theorems.
Proof of Theorem 1. (a) By (1.4) we have o(f)=c(Ae?)=p. If a(f)>pB,

k=g

from Lemma 4 we have o(f)<1+ ma>§£] This is a contradiction. There-
1s7s

fore g(f)=p. And f has only finitely many poles from Lemma 4.
(b) Set f=ge?. Then A(f)=2(g), A(f)=4(g). Substituting f=ge? into (1.4),
we have

gMd, gt V4 o fdig=A, @3.1)
where d,.,, ---, do are rational functions. To work out ¢(g), we need d,_,

(=1, -+, k) in more detailed form. It is easy to check by induction that we
have for m=2 (see [5])

fm={g™4mp g™+ DLk +Hi(p01g™Ofer,  3.2)

where H,_,(p’) are differential polynomials in p’ and its derivatives of total
degree i—1 with constant coefficients. It is easy to see that the derivatives of
H,_(p") as to z are of the same form H,_,(p’)-C% is the usual notation for the
binomial coefficients. (1.4) and (3.2) give

dk—fzbk-j+(k'_]._Z')bk—nlpl‘i“é;bk—ni(ci-”i@')l+Hz-1(]3'))
(]:2; Tty k: bkzl): (3-3)
dk-1=bk-1+kP'.

Since B>14 max n,;_]’ the degree 7(8—1) of the term b,Ci(p'yY=Ci(p') (2=7)

1sysk

is the highest one in the first equality of (3.3). Hence d,_, must have a pole
at oo of order j(B—1). If ny,=k(8—1), then from Lemma 9, (3.1) may have
one exceptional rational solution A, the other meromorphic solutions are all of
d(g)=p. By Lemma 6 we have 2(g)=4(g)=0(g)=p. Therefore (1.4) may have
one exceptional solution f,=A.e? (A, is a rational function), the other meromo-
rphic solutions f=ge” are all of 2(f)=A(f)=a(f)=2(g)=p. If n,<k(f—1), then
from Lemma 9 and Lemma 6, all meromorphic solutions g of (3.1) are of (g)
=2(g)=0(g)=p. Therefore all meromorphic solutions f=ge? of (1.4) are of

A(N)=Af)=a(f)=B.
Proof of Theorem 2. (a) It is easy to see that ¢(f)=f from (1.4). If

o(f)>pB, then a( f)§1+glas>££;.~5 from Lemma 4. And by Lemma 4, f has only
7

finitely many poles.
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() If a(f)>pB, then 2A(f)=4(f)=a(f) from Lemma 6.

Proof of Theorem 3. (a) From Lemma 5, we have o {f}=§.

(b) By Lemma 7, we see that A(1/f)=A(1/B), i(1/f)=i1/B). If AB)>
A(1/B), we have A(f)=A(B) by Lemma 7.

(¢) If B>max{A(B), A(1/B)} we can write

H
B=z’"—0~e”(”=Ue”(” ,

where m is an integer, H and Q are canonical products formed respectively
with the nonzero zeros and nonzero poles of B, U=z"(H/Q), a(U)<f, then B
must be an integer, p(z) is a polynomial with deg P=§.

We set f=ge?. Then A(g)=A(f), 2(g)=A(f). Substituting f=ge? into (1.5),
we have

M 4dy 1 g* V4 o dog=U 3.4)

where d;_,, -+, d, are retional functions.

Using the same proof as in the proof of Theorem 1 (b), we see that d,_,
must have a pole at « of order j(8—1). Hence from Lemma 10, we see that
all meromorphic solutions of (3.4) satisfy ¢(g)=p except at most one possible.
The possible exceptional one g is of a(g)<B. If a(g)<pB, then A(Z)<B. If
a(g)=P, by ¢(U)<B and Lemma 6, we have i(g)zl(g)zo(g)zﬁ. Therefore
the equation (1.5) may have at most one exceptional solution f,=ge? with A(f,)
=(8)< B, the other meromorphic solutions f=ge? of (1.5) are all of 2(f)=A(f)

=2(g)=4.

Proof of Theorem 4. (a) By (1.5), we have ¢(f)=p. On the other hand,
since all solutions of (1.5) are meromorphic functions, all solutions of (2.2) that
is the corresponding homogeneous equation of (1.5) are meromorphic functions.

Assume {fi, -+, f»} is fundamental solution set of (2.2). By Lemma 3 we have
o(f)<1+ max AL (=1, -, ).
1575k 7

By variation of parametes, for a solution f of (1.5), we can write

=A@ 1+ - + A=) .

Using the same proof as in the proof of Lemma 5 and noting that S<1+

max -2 we have a(A;)=0(A})<1+ max-£-~. Therefore f<o(f)<1+ max "*77,
1sysk ] 1595k ] 155k ]

(b) By Lemma 7 we have A(1/f)=A(1/B), 2A(1/f)=A(1/B), max{A(f), A1/f)}
>max{A(B), A(1/B)}. Therefore, A(f)=A(B), if A(B)=A4A(1/B).
(¢) If ¢(f)>0a(B), then by Lemma 6 we have i(f)=A(f)=a(f).
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§4. Examples for the exceptional solution.
Example 1. (concerning the exceptional solution in Theorem 1)
Fo=ef? solves f7—4zf'4z2f=(9z'+3z° 4224 62)e*. There 1+ max 472 =2,

155k 7

B=3, deg A=4=k(Bf—1). And f, satisfies that A(f)=0<a(f,)=3=0(AeP).

Example 2. (concerning the exceptional solution in Theorem 3)
s=sinz-e?® is an exceptional solution of f”— f=(4zcosz+4z%sinz)e’’. There
=1, f=0a(B)=2, f>max{A(B), A1/B)}. And f, satisfies a(fo)=2,

M-
1+ max—=*
1sysk ]

Afo)=1<8B.
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