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ANALYSIS AND TOPOLOGY OF HYPERPLANE
COMPLEMENTS: THE GENERALIZED WITT FORMULA

By MICHEL JAMBU

Introduction.

The classical Witt formula which gives the dimensions of the homogeneous
components of the free Lie algebra over a finite set, has a nice interpretation
as a relation between the topology, i.e. cohomology and homotopy of the com-
plement of a finite set of C, and the analysis, i.e. an ordinary linear differential
equation with regular singular points at this finite set of C.

Such a relation remains true for complements of some hyperplane arrange-
ments such as complexified Coxeter arrangements and fiber-type arrangements.

Namely, let A be a finite family of hyperplanes of C™ through the origin
and let M=C"\\Jye,H be the complement. The cohomology algebra H*(M ; K),
where K=Z, Q, R or C is isomorphic to &/I where & is the free exterior
algebra over A and [ is the ideal defined by some dependence relations between
the hyperplanes of 4. Moreover :

Px!{(t)zngo(l’ank Hp(jw))tpZZJGL(A)ﬂ(x)(—t)COdimX

where L(A) is the lattice of intersections hyperplanes ordered by reverse inclu-
sion, p(x)=p(0, x), ¢ being the Mobius function. These results are due to P.
Orlik and L. Solomon [OS].

The algebra of the integrable logarithmic connections along A is called the
holonomy Lie algebra of M and is denoted G,. T. Kohno [K1] showed that
Gy=Lib(A)/71 where |A|=|A| and 77 is the ideal defined by some dependence
relations between the hyperplanes of .

Let £y be the Malcev algebra of M which is obtained (cf Sullivan [S])
from the l-minimal model of M. Using the mixed Hodge structure on the
minimal model, T. Kohno [K2] showed that:

Gh=Ly

where G% is the nilpotent completion of G,.
Then T. Kohno [K3] proved that:

¢,(M)=dim (I3 /T 1418 y)=rank (I";x(M)/ I ) 1170:(M))
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and
oo XPHP =TI,z (1—217) 79110

where X(p)=dim €,(Gy), the dimension of the pth homogeneous component of
the universal algebra of Gy.

If A is a complexified Coxeter arrangement or a fiber-type arrangement, for
instance, then the following relation, called LCS formula is satisfied ([FR1]J,
(K47, [JD:

S peo X(PUP=T1,21 (1—17) 2190 =(Py(—1))™*

In this paper, we begin explaining how the LCS formula is a generalized
Witt formula. However, if for the complexified Coxeter arrangements and the
fiber-type arrangements, there are several methods to prove such a formula, M.
Falk and R. Randell [FR2] noticed that for an arbitrary arrangement “:--the
LCS formula is virtually impossible to verify ---”. Hence in the last section,
following a suggestion of T. Kohno, we develop some method which can be
useful to verify the LCS formula.

According to K. Aomoto [Ao], we consider the complex (R.,0d.) defined as
follows:

Ry=Home g, (E(Gu)RQeH* (M ; Q), E(G )
0:(fXx@¢)=f(x D pea Xa@(H Up))

where Xy is the element of the set A defining ¢, which corresponds to He A
and o= H* (M ; Q) and &(G) denotes the universal enveloping algebra of G,.

If H(R.)=0 for any j>0, i.e. the complex is acyclic, then the LCS formula
is satisfied. In order to prove the acyclicity of this complex, we introduce a
structure of graded algebra on H*(M) in such a way that the spectral sequence
of the associated filtered complex satisfies :

Elpq—:o if p+q:/ﬁ0

As an example, we construct such a filtration for the fiber-type arrange-
ments.

The author wants to express his deep gratitude to Mutsuo Oka for his in-
terest in this work and would like to thank Tokyo Institute of Technology and
the organizers of the Workshop on Singularities in August 1990 for their hos-
pitality.

Remark. Throughout the sections I to III we assume, for simplicity, K=C
although the results can be extended to @ or C.

I. Classical Witt formula.

I.1. Let A={X,, -+, X;} and let Lib(A)=P,»: Lib,(A) be the fre Lie
algebra.
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The dimensions of the homogeneous component of Lib(A) are given by the
classical Witt formula :

dim Lib,(A) :=Ny=n"" Da1n p(d)i™*™?
where g is the classical Mabius function given by :

g N*— {—1,0, 1}

n m— 0 if p|n where p is prime

n v (—1DF 0f n=p, - pr, PuFD,

The enveloping algebra £(Lib(A)) is the free associative algebra K(A) and
the canonical morphism

Lib(A) — KCA)

is injective. Moreover, there exists a sequence {z;, z,, --} of homogeneous Lie
elements with nodecreasing degrees such that:

{z1, 25, -} is a base of the space of the Lie elements

{200, o 2%y, 1S0,< - <1, k21, ey, -+, e, €N}U{1l} is a base of K{A).
Then {z,, ---, zy,} are the degree 1 elements, {zy,.1, -, Zv,+n,} are the degree
2 elements ---. The number of possibilities of selecting 7 objects (repetitions

allowed) out of a set of N different ones equals the coefficient of " in the power
series expansion (1—¢)"¥. On the other hand, dim K,{A>={", then:

Ipai A=) V=200 "t"=(1—1)"" (*)

Taking logarithms, differentiating with respect to ¢, after multiplication by ¢
and by application of the Mobius inversion, we obtain the classical Witt formula.
Henceforth, in the following we call the relation (*) the classical Witt formula.

Remark. Let ;F, be the free group on [ generators a;, ---, a; and let
(I’wFi).en be the lower central series. Then there exist natural isomorphisms
as abelian groups :

len<A) —> [‘nFl/['n+lFl

1.2. Topological interpretation of the classical Witt formula.
Let M=C\{ay, -, a;}, then:

7 (M; *)=F,, then N,=rank(I";x\(M; *)/I",,7\(M;*))
HM; Z)~Z, HYM; Z)~Z' and H(M; Z)={0} for i>1
and the Poincaré polynomial of M is:

Pyt)=1+1t
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The classical Witt formula (*) establishes a relation between the fundamental
group and the cohomology of M :

I (L—=2) Yo =(1—1t) "' =(Pu(—t))™*

The second term of the Witt formula (*), >,.0/"", is the Poincaré series
of the enveloping algebra K<{A) of the free Lie algebra L:b(A).
Consider the first order linear differential equation :

dY =wY

where w=(0"):5,,,sm and w¥=3}_,a",d log({—a;), a”,=C. o is a meromorphic
gl(m; C)-valued 1-form on M and defines a meromorphic connection V on the
trivial bundle C™XM—M by :

Vf=df—fw
where f: M—C™ is a locally defined function. This connection is holomorphic
on C and has regular singular points at {a,, -, a;}.

The transport function :
T:PM— Gl(im; C)

where PM denotes the space of piecewise smooth maps 7: [0, 1]—-M is defined
as follows: let 7,(s)=7(st), then T(7) is the solution at t=1 of the equation:

dT(1)=T()r*e, T(10)=1
An explicit formula for T is given in terms of w by Picard iteration along 7

where Swm ---w are sterated integrals [Ch]:

T(=1+] o+| wot -

Moreover w is integrable, i.e. w Aw=dw=0, then the value of T on the path 7
depends only on its homotopy class relative to its endpoints.
Thus, T induces the monodromy representation:

o:m(M;*)—> Gi(m; C)
7 ]—I—S w—I—S 0o+ -
7 T
Notice that the series converges absolutly.
Examples. 1) M=C~\{0} and dY =Pz 'dzY, P=M,(C). Let 7: [0, 1]--M

r times

where 7(t)=exp (2iwt). Then 7*w=2iw Pdt where w=Pz 'dz, S o =2z P)" /7!
r
and p(7)=exp(2ixP).
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2) M=C~{0, 1} and dY =wY where

0 z7'dz 0
w=| 0 0 (1—2)'dz
0 0 0

Let 2=C~\{]—o0, 0]U[1, +oo[}. The matrix
1 logz (dilogz
wz=0 1 log(l/1—z2)
0 0 0

satisfies the equation du=wu on £, where we take the principal determination
of the logarithms and dilogz is the analytic continuation of the series 33,..t"/n?®
which converges for [t|<1.

Let M=C~{a,, ---, a;} and dY =wY as above. We can express w in terms
of w*=dlog(t—ay), k=1, -+, !

=Xt w* A*

where each A* is a constant matrix.
Let A={X,, ---, X;} and the homomorpeism :

0 : (M ; *) —> CLAYD
7 s 215i1§~-~gzk§l Srwu QJlszl sz

The monodromy representation p is obtained by substituting A¥<gl(m; C)
to X,,. Finally, let us point out that Lib(A) is the primitive part of C{(ADD,
then 33,.,/"" is the Poincaré series of the enveloping algebra of the holonomy
Lie algebra Lib(A) of M.

II. Witt formula for the braid groups

1. Braid groups

A braided n-path is a set of n paths f,, ---, f, in R?® satisfying:

i) for any t<[0, 1], fi)+#f,@) if i+

iit) f4(0)=¢ for i=1, -+, n

i) {f:«), -+, falD}=AL, -, n}.

Two braided n-paths are equivalent iff it is possible to deform one into the
other respecting the three above conditions throughout the deformation.

A n-braid is an equivalence class of braided n-paths.

Examples.
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Two braids can be multiplied and we get the group B(n).
The map p : B(n)—S,, where S, is the symmetric group

vav> Uj:< )
f1(1) - fa(1)

is a homomorphism.

Ker p :=C(n) is called the colored (or pure) braid group.

Let M=C" U <.<;sn H,; where H,,={(z,, ---, z,)EC™ such that z;#z;}. The
set of the hyperplanes H,, is the complexified Coxeter arrangement of type A,_,

Cn)=m(M;*)

2. Cohomology of M

PROPOSITION [Ar]. Let A, be the algebra of holomorphic differential forms
generated on C by w"”=dlog(z;—z,) for 1=i<j<n where z=(zy, -, z,)=C".
Then A,=H*(M; C) where at " is associated its de Rham cohomology class
[w¥]. A presentation of A, can be given by

—the generators w¥ for 1<i<j<n

—the relations ¥ N&’*+@’* Nw**+w** Nw’=0 where i, j, k are distinct and
oV=¢". 1

COROLLARY. The Poincaré polynomial Py(t) is
Py(t)=TI} (1+-kt). =

Notice that {1, ---, n—1} is the set of the exponents of the Coxeter group
of type A,_:.
The proofs of these results follow from the tower of fibrations:
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C~{n—1 points} ——> M=M,=C"\\UH,,

l

C~\{n—2 points} —— M, _,

%
l

C~{1 point} —_— M,
C*
where M,—M,_, is the projection on the last #—1 factors. Moreover M is an

Eilenberg-MacLane space of type K(C(n); 1).

3. Holonomy Lie algebra of M.
Let w=3151<j<n A¥@" be the 1-form on M where A is a mXm complex
constant matrix and

dF=wF

The solutions are holomorphic gi(m; C)-valued functions defined in open
sets of M. Let 7 be a loop in M,

7:00,1]—M

and let F, be a solution in a neighborhood of 7(0). By analytic continuation of
F, along 7, we get the solution F; in a neighborhood of 7(0)=7(1). This solu-
tion is given by the Lappo-Danilevsky formula:

F(2)=F(2)T(1)

where T(7)=2]pz0 Srw .

As in the preceding section, let V be the associated connection on the trivial
bundle C™ X M—M.

LEMMA. The connection N 1s flat iff :
LAY, At*+ A7*1=0 for 1, j, k distinct
[AY, A¥1=0 for i, 7, k, | distinct.
Proof. The curvature vanishes i.e.:
do+o/N\w=0

iff @ Aw=0 which is a consequence of the defining relations of i, given in the
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proposition II.2. =

Therefore the monodromy representation is given by :

p:m(M;*) —> Gl(m; C)
7 v p(T)=ZS7w~-w

Now, define R:=C{{( Xy, =+, Xy, ==+, Xu_1,22>/1, 1=Zi<j<n where I is the
ideal generated by the elements:

[X.,, Xix+X5:] for 4, 7, k distinct
[X. X1 for 4, j, R, | distinct.

Let 0=2}1c<jisn 0" X ;€ A,QR which is called universal integrable 1-form
on M and the homomorphism :

0:n,(M;*— R
T M Zkgogrwlljl wlkllelh ‘X1kfk

The monodromy representation o is obtainod from @ by substituting AYe
glim; C) to X,,.

R is a Hopf algebra where the coproduct A is defined by A(X,,)=X.;Q1+
1®X,, i.e. X,, is a primitive element. The primitive part of R, denoted Gy is
called the holonomy Lie algebra of M.

THEOREM [K3].
ILe: (1=1) a1 =3 X(P NP =(P(—1))"
where ¢,(M)=rank of I";C(n)/I",1,C(n)

Spz0X(PX?P is the Poincaré series of the enveloping algebra of Gy
Py(t)=TI2= (1+kt) is the Poincaré polynomial of M.

In [K4], T. Kohno extends this result to the other complexified Coxeter
arrangements. Notice that the left hand side equality is true for any comple-
ment of hypersurfaces.

III. Generalized Witt formula

Let A be a finite family of codimension 1 linear subspaces of C™ and let
M=C"\Uges H.

1. Cohomology of M
E. Brieskorn [B] generalized the result of Arnold as follows; let .y be the
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algebra of holomorphic differential forms on M generated by w=d log ¢ where
ker o=H for He . Then there exists a natural isomorphism :

Ay —> H¥M; C)
o ~wo [w]

Let €=A(A) be the free exterior algebra over A. If J={s, S
{1, -, |Al}, we write e;=H, A - /\Hlp and Oe; =30 (—1)* "H, A - AH, A
/\H,p where ~ means deletion. [ is called dependent if codim (H,,N --- /\Hlp)
<p.

Let p: &—Jy be the algebra map which sends H, to «* for any /=1, -, | A].

PROPOSITION [OS]. The map p: E—Ay is surjective and ker p is the ideal
I generated by {0e,;, | dependent}. M

ProrosITION [OS]. The Poincaré polynomial is
PM(t)zzpzo(dim HP(M))tpzzzeL(A) ﬂ(x)(—‘t)COdim x

where L(A) is the intersection lattice ordered by reverse inclusion, p(x)=p(0, x),
p being the Mobius function. m

Then Ay=&/l.

Let us consider a linear order on A: H\<H,< ---. A set {AH“, e, Hlp} is
called a circust if codim ﬂg;lH,j:p—l and codim (H, ;N -~ NH,,N - f\Hlp)z
p—1 for any k=1, ---, p. Suppose H,,<H,, if j<k. Then the subset {H.,
-, Hlp_l} is called a broken-circuit. We define the module C(M)=@P s Cr(M)
where CoM)=K is the ground ring and C,(M) is the free module with the
base {H, A --AH,,} such that {H,, -, H,,} does not countain any broken-
circuit.

PropPoOSITION [JT]. &€=CM)DI. =
Then Ay=H*(M)=&/I1=C(M).

2. Holonomy Lie algebra of M

Let o=3w*Ar=Ax®gl(m; C), the summation is taken for all w*=d log ¢,
where ker ¢,=H,=J. As above, this l-form defines a connection V on the
trivial bundle C™XM—M.

Notice that dw=0, then V is flat iff

wNA\w=0
i.e. S Ao*[A, A¥]=0

where [A, B]=A.B—B. A.
The exterior product of differential forms corresponds to the cup product
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for the cohomology classes [w]:
HY\M)xHYM)— HXM)
Let {»!, ---, vP} be a base of H*%M), then:
[ Ao* 1=’ TULw* T=302 a?* 1t

Therefore wAw=0 iff 33,<; a’*,[A’, A*]=0, I=1, -, p.

Let 6: H(M)—H,(M)xH,(M) be the dual morphism of the cup product
morphism and let {X,, ---, X,} be the dual base of the base {[®'], -+, [w"]} of
HY(M).

Consider the algebra R=C{X,, -+, X>>/I where I is the ideal generated
by the image of §, i.e. by the elements 3,«; a’*;[X,, X:], (=1, -, p.

Let o= 0* X*€AyQR and let be the following homomorphism :

6:m,(M;*—> R
2’ A Ekgogra)ll w’szl “es sz

The monodromy representation :
o: m(M; *) —> Gl(m; C)

is again obtained from @ by substituting A*<gil(m; C) to X,.
The holonomy Lie algebra of M, denoted G, is the primitive part of R.

Remark.  corresponds to the identity of (H'(MYQ(H'(M))* and is inde-
pendent of the choice of the bases.

PROPOSITION [K1]. Gy is isomorphic to Lib(Xy, -, X,)/91 where 91 is the
ideal generated by the elements [25-1 X, X, ] such that codim (\§-, H,,=2 and
codim (("\§=1 H, )NH>2 for any H&{H,, -, Hy}o ®

3. Some examples

1. Let M=C™\U!_,H, where H,={z=(z,, ---, z,))&C* such that z,=0}.
Then ¢y=H'M) and dim &,(¢x)=! if p=1 and =0 if p>1, i.e. p{M)=0 if
7=1. On the other hand, Py(t)=(1+t)" and the Witt formula is satisfied.

Remark [Ao]. If A@®)=p.0a,t? and B(t)=31,:0b,t? are two power series
with real coefficients, define A(#)<B(t) if a,<b, for all p=0. Then (1—t)'<
Spze X(PNP<(1—1t)"* where (1—1)" corresponds to the arrangement of coordinate
hyperplanes of C* thus to the holonomy Lie algebra which is abelian and (1—/)!
to C\{[ points} thus to the holonomy Lie algebra which is free.

2. This arrangement denoted %,, [FR], does not satisfy the Witt formula.
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><
>

4. Fiber-type arrangements

DEFINITION. The arrangement A in C" is fiber-type if there is a tower of
bundle maps:

Da Do
M=M, ——> M, , —> -+ —> M, —> M,=C*

such that for each %, 2<k<n:

(i) M, is the complement of an arrangement in C*

(ii) ps is the restriction of a linear map C*—C*"!

(iii) the fiber F, of p, is a copy of C\{finite points}.

These numbers {a,, ---, a,} of points removed of C in each fiber are called
exponents of A and

Pyt)=II-1(1+a)

Notice that the complexified Coxeter arrangements of type A,_, are fiber-
type with exponents {1, 2, ---, n—1}.

THEOREM [J]. Let the bundle map p,: M—M,_ =N, then the natural map:
¢: Lib(A)PGy —> G
where Ay={X,, ---, Xa,} is a graded linear isomorphism. M

COROLLARY [J]. Let A be a fiber-type arrangement of C™; then there exists
a graded linear i1somorphism :

By Lib(A) —> Gy
where |Al=a, for 1=1, -, n. m

CoroLLARY [FR], [J], [K]. The Witt formula s satisfied for the fiber-type
arrangements. M

Examples. The arrangement denoted J, is not fiber-type does not satisfy
the Witt formula [FR] and is free, Py(t)=(141)(143¢)%
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Je

The arrangement denoted 2, is not free, not fiber-type and satisfies the
Witt formula, Pu(t)=(14+1)1+43¢).

X,

IV. Aomoto’s complex

1. A resolution of @

Let M be the complement of an arrangement A4 of C*. Let {®!, ---, 0"}
be a base of H'(M; Q), e.g. w'=d log ¢; where ker o,=H;& and let {X,, ---,
X,.} be the dual base of H,(M; Q). Let

R*=&E(0)QeH*(M; Q), k=0
and define the &(Gy)-modules morphism :
0: R¥* — R?
1Qp o T Xi®(@'Ve),  ¢€H*{(M; Q)
Let R,=Homg, (R*, &9x)), k=0 and
0v: Ry, —> R,y

the dual morphism of §*.
Then (R., d.) is a complex and the differential d,, £=0, does not depend of
the choice of the bases. This complex was introduced by K. Aomoto [Ao].

PROPOSITION [K3,4]. If the complex (R.,0.) satisfies H{R.)=0 for j>0 then:
i) there is a resolution of Q as a &(Gy)-module :
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n €
0—> Ry —> Ryt —> - —> Ry —> Ry —> @ —> 0

where rank R,=dim H’(M; Q) and ¢ 1s the augmentation morphism
ii) M satisfies the Witt formula

Il (1—7) 001 =31 AP HP=(Pu(—1))'. m

The following lemma (which is due to T. Kohno [K4]) is used to prove the
next proposition.
Let ® be a subset of .

LEMMA. Let d?:&(Gy)%2—E(Qy) be the (right) E(G y)-module morphism defined
by
d*w)=0 u X, for u=(u,)=&Gy)® and H,c 3.

Let <v be the degree 1 part of Ker < and denote Lib(A)g the Lie subalgebra
of Lib(A) generated by the X, such that H,e 8. Let ¢: NP NLib(A)g—Y be
the linear map defined by :

o(r)=(0r/0X,) for i such that H;e 3.

Then Ker d? is generated by €V as a &(@y)-module. Moreover ¢ is an isomor-
phism of vector-spaces. m

PROPOSITION. 0, 1s injective.

Proof. Define a linear order < on the set A of hyperplanes:
H1<Hz< <H;J1

and denote H:=H, . Let us recall (I12) that C(M)=@,:0 C:(M) where Cy(M)
=@ and C,(M) is the Q-linear space with the base {{, A --- AH,,} such that
{H,,, -, H,;} does not countain any broken-circuit. If we assume #; <7, << -+ <z,
then this base is called BC-standard. Then the BC-standard base of C,(M) is
{p AH such that ¢ belongs to the BC-standard base of C,_, (M)}, {IQ(eAH)
for all such ¢} is a base of R™ and by duality {IQ(@AH)* for all such ¢} is the
dual base of R,. Therefore for ¢ and ¢ in the BC-standard base of C,_,(M):

0,(1&Q(e AH*N1RP)=(1R(@ AH ¥ (X 5yea X QUEH, A¢))
and
0, (1R NH ) 1Qp)= = X+3.(+X,) where X,#X

(1o NH*(1Q¢)=225(+= Xs) where Xp+X and ¢#¢.

Let 3, f ,0.(1Q(@A\NH)*))=0 where f,=&(Gy) and the sum is over ¢ in the BC-
standard base of C,_,(M). Suppose there exists f,#0, then:
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3/ 0. (1@ NH ) YARP)=f (£ X+ Do £ (X)) +Zprg [ (£ Xp))

where X, and Xp+X. Let us denote f4=f"4-Xy, then f,. X=f';.X,.X. By the
lemma, there exists v such that f,=—f",.X.

F0.(1QWAH ¥ 1Qv)=f,- X+ [, 2+ X;)
=—f'e-X— [y XZ(£ X)
J o0 (1@ ANH ¥ X1Qv)=f nZa(£ Xa).
Using lemma, we get:
2o [ 01 AH J*N1Qv) =0

and the result follows. m

THEOREM [K4]. The complex (R,, 0,) associated with the Coxeter arrange-
ments of type A, Ci, D, are acyclic. m

N.B.: The main difficulty of the proof is the injectivity of 0.

IV.2. Acyeclicity of the Aomoto’s complex
Suppose there exists a structure of graded algebra on H*(M; Q) and let
K. H¥(M; Q) be the associated decreasing filtration :

K_,H¥M; Q)={x=H*(M; Q), such that deg x<p}
Let:
Gr_pH¥M; Q=K_,HXM; Q)/K_,..H¥M; Q)

The filtration K. on H*(M; Q) induces a filtration on the complex (R., d.) by
K_pRi=Home,(E(¢n)Re K-y H¥ (M ; Q); E(41))
The natural projection map:
np: K ,HY(M; @) —> K HY(M; Q)
induces an injective morphism of &(Z,)-modules:
K_ 1Ry —> K_,R,
LEMMA. 0 is compatible with the filtration, i.e.

ak(K_ka)g:K_ka-l

Proof. Consider the map:
0 : (@m)QK_yH* (M ; Q) —> E(Gu)RK_,H (M ; Q)
1Qp M= 2t X[ ]\Ue)
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and the commutative diagram:

EG QK H* (M; Q)

| &G
G u) QK- H*M; Q) —

The result follows. =

Thus we obtain a structure of filtered complex on (R., d.).
Consider the spectral sequence of this filtered complex. We put:

ZP ={x=KyR_p_ ¢ 0x=Kpr R_p_gi1}
B, ={x=K,R_,_, there exists yeK_,_,R_,_,, such that x=0y}
EPe, =710 J(BP4,  +ZPHhat )
GroR_p-e=KpR o/ KpirR_p-q
Then quo‘—’GVrR—p—quome(gm(é’(gM)@Q GrpH_p—q(l\/h Q), E(Gu)).

PROPOSITION. Suppose that E*%=0 1f p-+q+0. Then the complex (R.,0.)is
acyclic, i.e. H(R.)=0 for j>O0.

Proof. The differential d,: E?%4,—E?*"4, is the zero map. Hence we have
E?e,=FE?¢, By induction, we prove that the differential:

d,: EPY, —> Eperoa-ri
is the zero map for »=1. Then
EPy=FE?,= ... = EP,
Since E*%=K,H_ ,_ (R.)/ Ky H_ ,_(R.), the result follows. m
COROLLARY. [If E?4,=0 for p+q+0, then M satisfies the Witt formula. =

IV. 3. Filtration of the Aomoto’s complex
Let us consider a chain of L(A) of lenght »<r(L(A)) such that:

O=xo<x < - <xp<<x,=1

Let A=\;-, A, be the disjoint union where UL, A,={Hed, H¥x,_,}. Let
us define a linear order < on A such that H,<H, if H;e4, H;=, and 1<].
We begin to define a decreasing filtration on the algebra &: K_,&={H, N - /\qu,
such that there exists {1, -+, g} where H,,€d,_ .\ - Ud,}.

Therefore : o &=K_,&DK_ 1,0 DK €DK E=Q= -
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and
K e NK_(ECK_(p19€.

Then & is a filtered algebra with the following gradation:

Grop&=K_p,&/K_p1 &
={H, A -+ AH,, such that there exists j= {1, ---, q}
where H,,€A; p1 and H,,& M\ - Ud,_p for

k=1, ---, q}.

In fact, K_,&=B¢:0(K_,&), where (K_,&), is the Q-vector space with the base
Hy N\ -+ NH, such that H, < <H,, and quedl,_pﬂu <+ U, and (Gr_,&),
is the @-vector space with the base H, A - AH,, such that H, < -<qu and
queujlr—pﬂ-

Let us recall that £=C(M)PI, then C(M)=¢&/1.

PROPOSITION. The above filtration K. on & induces a decreasing filtration K.
on C(M) (as algebra).

Proof. Let a=A\j-, H,, and b=A}-, H,, be two elements of the standard
BC-base of K_,C(M) (resp. K_,C(M)); then a=K_,€ and b= K_,&, then aAb
EK_pip€. Moreover a Ab=c+d where ce C(M) and d<l. For simplicity,
we denote a=Aj-, H, and b=A}t,, H,. Suppose {H,, -, H,} is a broken-

circuit included in {H,, :=1, ---, s}\U{H,, :=s+1, ---, s+t}. Then there exists
H,,,>~H, for any :=1, -, s+t such that {H,, -, H,, H,,,,} is a circuit.
Therefore H,;=;, and H,,, EAs,,, Where ki1 2k, for any j=1, -, [. Repeat

ing this operation, we finally get a sum of terms without countaining any
broken-circuit, i.e. a sum of terms which belong to the BC-base and which is
the element ¢. Moreover ceK_(,.C(M) and C(M) is a filtered algebra. m

The main application of this result is the following and the proof is
straighforward :

PROPOSITION. Let A be a fiber-type arrangement of C' and K. the filiration
on C(M) associated with a maximal modular chain of L(A). Then (Gr_,C(M)),
s the Q-vector space with the standard BC-base H, N --- NH, . such that H, <
Air-ps1 and each H,,&4,, where k=1, -, q—1 and j,<I—p+1, 7. pairwise
distinct. W

COROLLARY. The spectral sequence of the associated filtered complex (R.0.)
satisfies E?4,=0 for p+q+0 and this complex is acyclic. ®

It is another way to prove that a fiber-type arrangement satisfies the LCS
property, i.e. the generalized Witt formula [FR], [J], [K].
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