KILLING FIELDS PRESERVING TOTALLY GEODESIC, CODIMENSION-ONE FOLIATIONS

Antoni Ras-Sabidó

§1. Introduction

Let M be a complete manifold, endowed with a codimension-one foliation \mathcal{F} . We want to study the Lie algebra \mathcal{G} of Killing fields preserving the foliation (i.e., Killing fields such that the isometries of their one-parameter group send leaves of \mathcal{F} onto leaves of \mathcal{F}).

In [5], Johnson and Whitt proved that when the foliation is totally geodesic (i.e., leaves are totally geodesic submanifolds) and all the leaves are compact, then any Killing field preserves \mathcal{F} . Later, Oshikiri (see [7]) proved the same result for the case when the manifold is compact and \mathcal{F} is totally geodesic. Nevertheless, in the general case all Killing fields do not preserve foliations. For example, in the euclidean plane foliated by lines parallel to the 0X-axis, Killing fields associated to rotations do not preserve the foliation.

This paper is part of author's doctoral thesis. He wishes to thank his advisor Professor C. Currás-Bosch for his aid and constant support.

§2. Totally geodesic foliations

First of all, let us recall that any codimension-one foliation which admits an orthogonal Killing field must be totally geodesic (see [3] for instance). For this reason, from now on we shall only consider totally geodesic foliations. The universal cover of a manifold with such a structure verifies the following

THEOREM 1. (see [2]) Let (M, \mathfrak{F}) be a complete manifold with a codimensionone, totally geodesic foliation. Let \widetilde{M} be the universal cover of M. Then \widetilde{M} is trivially foliated as $\widetilde{L} \times \mathbf{R}$, where \widetilde{L} is the universal cover of any leaf and the induced metric reads $ds_{\widetilde{M}}^2 = ds_{\widetilde{L}}^2 + f^2 dt^2$, where $f: \widetilde{M} \to (0, \infty)$ is a C^{∞} function.

In order to simplify calculations, it will be convenient to give a characterization of Killing fields preserving foliations. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic foliation. With the notations of Theorem 1,

Partially supported by the CAYCIT, ref. 1085-84 Received January 16, 1991; revised May 28, 1991.

ANTONI RAS-SABIDÓ

PROPOSITION 1. Any Killing field $X \in i(\tilde{M})$ is of the form $X = X^t + \lambda \partial t$, where i) X^t is a Killing field on \tilde{L} with respect to ds_L^2 ; ii) $X^t f = -\partial_t(\lambda f)$; iii) $f^2 \cdot (Y\lambda) = \langle Y, [X^t, \partial t] \rangle$, $\forall Y \in T(\mathcal{F})$ with $[Y, \partial t] = 0$. Moreover, X preserves the foliation if and only if it verifies also that iv) $Y\lambda = 0$, $\forall Y \in T(\mathcal{F})$, or, equivalently, $[X^t, \partial t] = 0$.

Proof. See Propositions 1.1 and 1.2 of [4]. ■

Passing, if necessary, to a 2-fold cover, we may suppose foliations to be transversally oriented. Thus, from now on, we will assume this fact and call N the normal field to \mathcal{F} (i.e. an unitary vector field orthogonal to \mathcal{F}). According to the characteristics of the function f in Theorem 1, we will consider two cases:

i) Yf=0, $\forall Y \in T(\mathcal{F})$. Then, \mathcal{F} is a bundle-like foliation.

ii) Otherwise, we have the general case.

There is not much to say about bundle-like, totally geodesic foliations. Thus, we begin with case ii): let us assume for the moment that f is not constant in the leaves. Our goal now is to give the best bound possible for the dimension of \mathcal{G} , the Lie algebra of Killing fields preserving the foliation. First of all, let us give an upper bound for the dimension of its subalgebra \mathcal{G}^t of Killing fields tangent to \mathcal{F} . If n=dimension \mathcal{F} , it is clear that dimension $\mathcal{G}^t \leq (1/2)n(n-1)$. Before this, we need some Lemmas.

LEMMA 1. Let M be a complete n-dimensional manifold, endowed with a foliation \mathcal{F} of dimension m < n and let $X \in i(M) \cap T(\mathcal{F})$. If there is some leaf L in which $X_{1L} \equiv 0$, then $X \equiv 0$.

Proof. Let (ϕ_t) be the one-parameter group associated to X. We shall see that, for any $p \in L$, $(\phi_t)_{*p} = Id$, $\forall t$. In a neighborhood of p, let $(\partial x^1, \dots, \partial x^m, \partial y^1, \dots, \partial y^{n-m})$ be a basis such that the leaves of \mathcal{F} are locally of the form $\{y^1 = ctt., \dots, y^{n-m} = ctt.\}$. As in [9], we can modify it to a new basis $(\partial x^1, \dots, \partial x^m, \nu^1, \dots, \nu^{n-m})$, with $\nu^j = y\partial^j + \sum b_{ji}\partial x^i$, $\forall j$ and such that $\langle \nu^j, \partial x^i \rangle = 0$, $\forall i, j$. Now:

$$\begin{aligned} &(\phi_t)_{*p}(\partial x^i) = \partial x^i, \qquad (\phi_t)_{*p}(\partial y^j) = \partial y^j + \sum_{i=1}^m \mu_{ij} \partial x^i, \\ &(\phi_t)_{*p}(\nu^j - \partial y^j) = \nu^j - \partial y^j \qquad (\mathrm{as}(\nu^j - \partial y^j) \in T(\mathcal{F})), \end{aligned}$$

because X is tangent to \mathcal{F} and vanishes at the leaf L. Thus,

$$(\phi_i)_{*p}(\nu^j) = \nu^j + \sum_{i=1}^m \mu_{ij} \partial x^i \,. \tag{1}$$

 $(\phi_t)_*$ is an isometry and preserves the foliation. Then $(\phi_t)_{*p}(\nu^j)$ must be or-

478

thogonal to \mathcal{F} . It follows from (1) and the expression of the riemannian metric in the basis $(\partial x^1, \dots, \partial x^m, \nu^1, \dots, \nu^{n-m})$ that $(\phi_t)_{*p}(\nu^j) = (\nu^j), \forall j$. That is, $(\phi_t)_{*p} = Id_{T_pM}$. p was an arbitrary point and the manifold is complete, thus $(\phi_t) = Id$, i.e., $X \equiv 0$.

LEMMA 2. Let M be a complete manifold and \mathcal{T} a subalgebra of i(M). Assume that $\forall p \in M$, dimension $\mathcal{T}_p \leq m$. Then dimension $\mathcal{T} \leq r = : (1/2)m(m+1)$.

Proof. Let $p \in M$ with dimension $\mathcal{T}_p = m$. We can choose *m* fields, $X_1, \dots, X_m \in \mathcal{T}$, independent (as vectors) in a neighborhood *U* of *p*. In *U* let *S* be the distribution generated by $\{X_1, \dots, X_m\}$. It is easy to see that *S* is involutive and then defines a foliation \mathcal{F}_U of dimension *m* in *U*. If dimension $\mathcal{T} > r$, let $Y_1, \dots, Y_{r+1} \in \mathcal{T}$ be r+1 independent vector fields. Their restrictions to *U* are Killing fields tangent to \mathcal{F}_U , because $\mathcal{T}_q = (\mathcal{F}_U)_q$. Let *L* be (an *m*-dimensional) leaf of \mathcal{F}_U . Thus there are constants c_1, \dots, c_{r+1} such that $\sum c_j(Y_j)_{|L} = 0$. Let us assume, for example, $c_{r+1} \neq 0$ and let $Y = :c_{r+1}Y_{r+1} - \sum_{j=1}^r c_j Y_j$. By Lemma 1, $Y_{|U} = 0$. But *U* is open on *M*; then $Y \equiv 0$, which contradicts the assumption on $Y_1, \dots, Y_{r+1} = \blacksquare$

PROPOSITION 2. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, n-dimensional, totally geodesic (not bundle-like) foliation. Then, dimension $G^{t} \leq (1/2)n(n-1)$.

Proof. It is enough to show the theorem for the universal cover of (M, \mathcal{F}) . Therefore we may assume $M = L \times \mathbb{R}$ and $ds_M^2 = ds_L^2 + f^2 dt^2$. Let $Y \in \mathcal{G}^t$. Thus, by Proposition 1, $[Y, \partial t] = 0$ and \mathcal{G}^t has constant dimension along any \mathcal{F}^{\perp} -leaf. Therefore we may define $W = \{p \in L \mid dimension \ \mathcal{G}_{pxt_0}^t = n = dimension \ L\}$. If W were dense in L, the foliation should be bundle-like, by Proposition 1. Thus there is an open subset $U \subset L \setminus W$. If $\mathcal{G}_U := \{X_{|U}, \forall X \in \mathcal{G}^t\}$, then $\mathcal{G}_U \subset i(U)$ and $\forall p \in U$, dimension $(\mathcal{G}_U)_p = \text{dimension } \mathcal{G}_p^t \leq n-1$. By Lemma 2, dimension $\mathcal{G}_U \leq 1/2(n-1)n$. $\mathcal{G}^t \subset i(L)$ and U is open on L, thus, independent vector fields on \mathcal{G}^t give independent vector fields on \mathcal{G}_U and dimension $\mathcal{G}_t^t \leq \text{dimension } \mathcal{G}_U \leq (1/2)n(n-1)$.

Let us introduce some definitions:

Let $\mathcal{G}^n = : \{X \in T^{\perp}(\mathcal{G}) \cap \mathcal{G}\}.$

Let $\mathcal{J} = : \{Y \in T(\mathcal{F}) | \exists X \in \mathcal{G} \text{ and } Y = X^t\}.$

 \mathcal{G}^n and \mathcal{G} are subalgebras of \mathcal{G} and $\mathcal{G}^t \subset \mathcal{G}$. Moreover

PROPOSITION 3. Dimension $\mathcal{G}^n \leq 1$ and dimension $\mathcal{G}^n = 1$ if and only if the universal cover $(\tilde{M}, \tilde{\mathcal{F}})$ is a warped product (in the sense that $\partial_t f = 0$, in Theorem 1).

Proof. Let us assume M to be simply connected. If (M, \mathcal{F}) is a warped product, it is clear from Proposition 1 that ∂t is a Killing field.

Suppose now that $X = \lambda \partial t$ is a Killing field. Then $\partial_t(\lambda f) = 0$ and $\lambda = \lambda(t)$. (Moreover, λ never vanishes. See [4] for instance). If we reparametrize **R**

ANTONI RAS-SABIDÓ

with $\tilde{t} = \int (1/\lambda) dt$, then the metric reads as $ds^2 = ds_L^2 + (\lambda f)^2 d\tilde{t}^2$, which is a warped product and now $X = \partial \tilde{t}$. Finally let $\mu \partial \tilde{t}$ be another element of \mathcal{G} . Then, from ii) of Proposition 1 we may see that $\mu = \text{cotstant.}$

§3. Warped product foliations.

We shall restrict now our attention to totally geodesic foliations with a warped product structure in the universal cover, (but not bundle-like). I.e., $\partial_t f = 0$ in Theorem 1, but $f \neq constant$. This is equivalent to the fact that the 1-form θ associated to the vector field $\overline{V}_N N$ will be closed ($\theta(X) = :\langle \overline{V}_N N, X \rangle$, for any vector field X):

PROPOSITION 4. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic foliation. Let \tilde{M} be the universal cover of M. Then, the structure of $(\tilde{M}, \tilde{\mathcal{F}})$ stated in Theorem 1 is a warped product if and only if $d\theta = 0$.

Proof. Suppose that $(\tilde{M}, \tilde{\mathcal{F}})$ is a warped product. We may consider in M an orthonormal (local) basis $\{X_1, \dots, X_n, N\}$ for T(M), with $X_i \in T(\mathcal{F})$; $[X_i, \partial t] = 0$, $N = (1/f)\partial t$; and such that $\partial_t f = 0$. Then $V_N N = -\sum (X_i \cdot \log f) X_i$ and $\theta(X_i) = -X_i \cdot \log f$. Thus

$$d\theta(X_i, X_j) = -X_i X_j \log f + X_j X_i \log f + < \sum_{k=1}^n (X_k \cdot \log f) X_k, [X_i X_j] > = 0,$$

$$d\theta(X_i, \partial t) = \partial_t X_i \log f = X_i \partial_t \log f = 0.$$

For the converse, let us assume M to be simply connected. With the same notations as above, we have $X_i \partial t \log f = 0$, $\forall i$. Then f should be of the form $f = e^{g} \cdot e^{h}$, where g = g(t) and h is defined on L, the generic leaf. With the change of parameter $\overline{t} = \int e^{g(t)} dt$ we obtain a warped product metric for M.

Remark. After the change of parameter, the manifold should remain of the form $M=L\times \mathbf{R}$. For if M were equal to $L\times(a, b)$ and $a>-\infty$, for instance, we will consider geodesics with initial tangent vector $-\partial t$. Then, since leaves are totally geodesic submanifolds and translations in the direction of the 0t-axis are isometries (where they are defined), these geodesics should cross the extreme leaf $\{t=a\}$, which will contradicts the fact that M is complete.

PROPOSITION 5. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic foliation, whose universal cover has a warped product structure. Let $X \in \mathcal{G}$. Then $\nabla_N X^t = kN$, with k = constant.

Proof. Let us work in the universal cover of (M, \mathcal{F}) . As $X = (X^t + \lambda \partial t) \in \mathcal{G}$,

480

KILLING FIELDS

$$\nabla_{N}X^{t} = -[X^{t}, N] = -\left[X^{t}, \frac{1}{f}\partial t\right] = \frac{X^{t} \cdot f}{f^{2}}\partial t = -\frac{\partial_{t}(\lambda f)}{f^{2}}\partial t = -\frac{\lambda'}{f}\partial t$$

Actually, ∂t is a Killing field. Thus, $\lambda' \partial t = [\partial t, X] \in \mathcal{G}$ and $0 = \partial_t (\lambda' f) = \lambda'' f$, so $\lambda'' = 0$. If we put $\lambda' = -k$, then $\nabla_N X^i = (k/f) \partial t = kN$.

Remarks. (1) Observe that the constant k verifies: $k=(X^t \log f)$. As a consequence, Killing fields tangent to the foliation are just vector fields $Y \in T(\mathcal{F})$ such that are Killing fields with respect to the metric of the leaves and verify $V_N Y=0$. Moreover, every $X \in \mathcal{G}$ is of the form $X=X^t+(h-kt)fN$, for some constant h.

(2) The converse result is true when the manifold is simply connected (see [8]).

PROPOSITION 6. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic foliation, whose universal cover is a warped product. Then dimension $\mathcal{I} \leq dimension \ \mathcal{I}^{t}+1$ and dimension $\mathcal{I}=dimension \ \mathcal{I}+dimension \ \mathcal{I}^{n}$.

Proof. If there is some $Y_1 \in \mathcal{J} \setminus \mathcal{Q}^t$, we may take Y_2, \dots, Y_τ in order to form a basis $(Y_1, Y_2, \dots, Y_\tau)$ of \mathcal{J} . Thus, $\nabla_N Y_i = k_i N$, $\forall i$; and $k_1 \neq 0$. Let $Z_j := ((k_j/k_1)Y_1 - Y_j), j:2, \dots, r$. It is easy to see that $(Y_1, Z_2, \dots, Z_\tau)$ is a new basis of \mathcal{J} with $Z_2, \dots, Z_\tau \in \mathcal{Q}^t$ and $X_1 = Y_1 + (h_1 - k_1 t) f N \in \mathcal{G}$.

For the second part, if $\mathcal{J}=\mathcal{G}^t$, then $\mathcal{G}=\mathcal{J}\oplus\mathcal{G}^n$ and the result is obvious. Otherwise, let $X \in \mathcal{G} \setminus \mathcal{G}^n$, $X=X^t+(b-kt)fN$, where $\overline{V}_N X^t=kN$. But $X^t \in \mathcal{J}$, thus $X^t=a_1Y_1+\sum_{j=2}^r a_jZ_j$, $\overline{V}_N X^t=a_1k_1N$ and $k=a_1k_1$. We have $X=a_1Y_1+\sum_{j=2}^r a_jZ_j+(b-a_1k_1t)fN=a_1X_1+\sum_{j=2}^r a_jZ_j+(b-h_1)fN$. Then X_1, Z_2, \cdots, Z_r and $\partial t=fN$ (if ∂t is a global field) gives a basis of \mathcal{G} .

From Propositions 2, 3, 6, we can give now a complete description of the Lie algebra \mathcal{G} :

THEOREM 2. Let (M, \mathfrak{F}) be a complete manifold with a codimension-one, totally geodesic (not bundle-like) foliation of dimension n. Let $(\tilde{M}, \tilde{\mathfrak{F}})$ denote the universal cover of (M, \mathfrak{F}) . If $(\tilde{M}, \tilde{\mathfrak{F}})$ has a warped product structure, then dimension $\mathcal{G} \leq 2 + (1/2)n(n-1)$ and:

CASE	dim Ĝ ⁿ	dim Ĩ ^t dim Ĩ		dim Ĝ	
A	1	m	<i>m</i> +1	<i>m</i> +2	
В	1	m	m	m+1	

(1) For $(\tilde{M}, \tilde{\mathcal{F}})$ there are the following possibilities:

$$\left(with \ 0 \leq m \leq \frac{1}{2} n(n-) \right)$$

CASE	CASE on \widetilde{M}	$dim \ \mathcal{G}^n$	dim G ^t	dim I	dim G
<i>A</i> ₁	A	1	m'	m' + 1	<i>m</i> ′+2
A_2	A	1	m'	m'	m'+1
A_{3}	A	0	m'	m'+1	m'+1
<i>A</i> ₄	A	0	m'	m'	m'
<i>B</i> ₁	В	1	m'	m'	m'+1
<i>B</i> ₂	В	0	m'	m'	m'

(2) and for (M, \mathcal{F}) :

$$\left(with \ 0 \leq m' \leq m \leq \frac{1}{2} n(n-1)\right)$$

We will give now some examples of all cases enumerated in Theorem 2.

- (A) Let $M_1 = M' \times \mathbf{R} \times \mathbf{R}$, $\mathcal{F} \leftrightarrow (M' \times \mathbf{R}) \times \{point\}$, $ds^2 = ds_{M'}^2 + dx^2 + e^{2x} dt^2$. Here, ∂t generates \mathcal{G}^n , whereas $\mathcal{G}^t = i(M')$ and $\partial x - t \partial t$ is a preserving Killing field neither tangent nor orthogonal to \mathcal{F} . Since \mathbf{R}^2 with the metric $ds^2 = dx^2 + e^{2x} dt^2$ is isometric to the hyperbollic plane, M_1 is complete when M' is complete.
- (B) Let $M_2 = M' \times \mathbf{R} \times \mathbf{R}$, $\mathcal{F} \leftrightarrow (M' \times \mathbf{R}) \times \{\text{point}\}, ds^2 = ds^2_{M'} + dx^2 + e^{2(x+\sin x)}dt^2$. Also in this case, ∂t generates \mathcal{G}^n and $\mathcal{G}^t = i(M')$; but now $\mathcal{J} = \mathcal{G}^t$. It is possible to see that \mathbf{R}^2 with this metric is a complete manifold, by solving differential equations of geodesics and aplying Theorem of Peano to extend these geodesics for any value of the parameter. Thus, M_2 will be complete when M' were a complete manifold.
- (A₁) Let $M=M_1/\{\phi_1\}$ where $\phi_1(p, x, t)=(\tilde{\phi}(p), x, t)$ and $\tilde{\phi}$ is an isometry of M'. Let us consider in M metric and foliation induced by those in M_1 .
- (A₂) Let $M=M_1/\{\phi_2\}$, where now $\phi_2(p, x, t)=(p, x, t+1)$.
- (A₃) Let $M = M_1 / \{\phi_3\}$, where $\phi_3(p, x, t) = (p, x+1, e^{-t}t)$.
- (A₄) Let M=M'×T³_A, where M' is a complete manifold and T³_A is the so called "hyperbollic torus" and consider the product foliation M'×𝔅', 𝔅' the usual codimension-one folation of T³_A (see for instance [6]). Here, 𝔅^t=i(M') and there are no Killing fields in the hyperbollic torus preserving 𝔅'.

Remark. This case A_4 may not occur in surfaces (see [8]).

- (B₁) Let $M = M_2/\{\phi_1\}$, where $\phi_1(p, x, t) = (p, x, t+1)$.
- (B₂) Let $M = M_2/\{\phi_2\}$, where now $\phi_2(p, x, t) = (p, x+2\pi, te^{-2\pi})$.

KILLING FIELDS

§4. Bundle-like foliations

We shall consider now the special case when Yf=0, $\forall Y \in T(\mathcal{F})$. With a change of the parameter t, we may assume f to be constant and consequently \tilde{M} to be a riemannian product. Then it is easyly seen that $\tilde{\mathcal{F}}$ (and \mathcal{F} also) is a bundle-like (totally geodesic) foliation. Conversely, when \mathcal{F} is totally geodesic and bundle-like, the transverse one-dimensional foliation \mathcal{F}^{\perp} is also totally geodesic and bundle-like (see [5]). It follows from Theorem A of [1] that the universal cover of M is a riemannian product:

PROPOSITION 7. Let (M, \mathfrak{F}) be a complete manifold with a codimension-one, totally geodesic foliation. Then \mathfrak{F} is a bundle-like foliation if and only if the universal cover $(\widetilde{M}, \widetilde{\mathfrak{F}})$ of (M, \mathfrak{F}) is a riemannian product $\widetilde{L} \times \mathbf{R}$, foliated with leaves of the form $\widetilde{L} \times \{\text{point}\}$.

Let us consider the Lie algebra \mathcal{G} of Killing fields preserving the foliation. We will see that dimension $\mathcal{G} \leq 1+(1/2)n(n+1)$, where n=dimension \mathcal{F} .

PROPOSITION 8. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic, bundle-like foliation. Then

i) $\lambda \partial t \in \mathcal{G}^n \Leftrightarrow \lambda \partial t = hN$, $h \ a \ constant$.

ii) $\mathcal{G} = \mathcal{G}^t \oplus \mathcal{G}^n$.

Proof. i) Suppose that $\lambda \partial t \in \mathcal{Q}^n$. Thus, by Propositions 1 and 7 it follows that $\lambda f = h$ constant and $\lambda \partial t = \lambda f N = hN$. The converse follows by the same argument.

ii) Let $X = X^{t} + \lambda \partial t = X^{t} + \lambda f N \in \mathcal{G}$. Then, by Propositions 1 and 7, λf is constant and $\lambda \partial t \in \mathcal{G}^{n}$. So $X^{t} = X - \lambda f N \in \mathcal{G} \cap T(\mathcal{G}) = \mathcal{G}^{t}$.

As an obvious consequence, we have:

COROLLARY 1. Let (M, \mathcal{F}) be a complete manifold with a codimension-one, totally geodesic, bundle-like foliation of dimension n. Then $1 \leq \text{dimension } \mathcal{G} \leq 1 + (1/2)n(n+1)$.

Remark. In fact, the second inequality in Corollary 1 holds for any codimension-one, bundle-like foliation, also in the non-totally geodesic case (see [8]).

Let us give some examples which prove that inequalities in Corollary 1 are as fine as possible:

The (n+1)-dimensional euclidean space, foliated by parallel hyperplanes, gives us an example with dimension $\mathcal{G}=1+(1/2)n(n+1)$. Here \mathcal{G} is generated by $\{i(\mathbf{R}^n)\cup\{\partial x_{n+1}\}\}$.

Now let G be the group generated by the isometries of the euclidean 3-space ϕ and ϕ , where $\phi(x, y, t) = (-x, -y, t+1)$; and $\phi(x, y, t) = (x+1, y, t)$. Let M =

ANTONI RAS-SABIDÓ

 $(\mathbf{R}^2 \times \mathbf{R})/G$, with the foliation induced by the one in \mathbf{R}^3 whose leaves are of the form $\mathbf{R}^2 \times \{point\}$. Then, \mathcal{G} is generated by $\{\pi_*(\partial t)\}$ and has dimension one.

References

- [1] R. A. BLUMENTHAL AND J. J. HEBDA, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, Grenoble, 33 (1983), 183-198.
- [2] R.A. BLUMENTHAL AND J.J. HEBDA, Ehresmann Connections for Foliations, Indiana Math. J. 33 (1984), 597-611.
- [3] C. CURRÁS-BOSCH, Killing vector fields and holonomy algebras, Proc. Amer. Math. Soc., 90 (1984), 97-102.
- [4] C. CURRÁS-BOSCH, The geometry of totally geodesic foliations admitting Killing field, Tôhoku Math. J. 40 (1988), 535-548.
- [5] D.L. JOHNSON AND L.B. WHITT, Totally Geodesic Foliations, J. Differential Geom. 15 (1980), 225-235.
- [6] J. MEYER, e-foliations of codimension two, J. Differential Geom. 12 (1977), 583-594.
- G. OSHIKIRI, Totally geodesic foliations and Killing fields, Tôhoku Math. Journ, 35 (1983), 387-392.
- [8] A. RAS, Foliacions totalment geodèsiques de codimensió 1 i camps de Killing (Thesis). Universitat de Barcelona, 1988.
- [9] B.L. REINHART, Foliated manifolds with bundle-like metrics, Ann. of Math. (2) 69 (1959), 119-132.

Antoni Ras-Sabidó Departament de Matemàtica Aplicada i Telemàtica. Universitat Politècnica de Catalunya. Eduard Maristany, s.n.; 08800-Vilanova i La Geltrú, Spain