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0. Introduction

In [5], Chen gives a classification of null 2-type surfaces in the Euclidean
3-space and he shows in [6] that a similar characterization cannot be given for
a surface in the Euclidean 4-space. In fact, helical cylinders in Euclidean 4-
space are characterized as those surfaces of null 2-type and constant mean
curvature.

In this paper we give a characterization of null 2-type hypersurfaces in a
space of constant sectional curvature Mn+ί(k) and an approach to hypersurfaces
of null 3-type. Indeed, we get a generalization of Chen's paper [5] not only
by considering hypersurfaces, but also taking them in space forms.

In spherical and hyperbolic cases we show that there is no null 2-tyρe
hypersurface, so that the Euclidean case becomes the most attractive situation
where our classification works on. Actually, we show that Euclidean hyper-
surfaces of null 2-type and having at most two distinct principal curvatures are
locally isometric to a generalized cylinder. Why the hypothesis on principal
curvatures? First, we think this is the most natural one, because, after Chen's
paper, we know that cylinders are the only surfaces of null 2-tyρe in Euclidean
3-space. Secondly, it is well-known that a Euclidean isoparametric hypersurface
has at most two distinct principal curvatures, so that if it has exactly two,
then one of them has to be zero. Our classification depends strongly on that
isoparametricity condition. Finally, bounding the number of principal curvatures
is not as restrictive as one could hope. As a matter of fact, the families of
conformally flat and rotational hypersurfaces satisfy that hypothesis and both
are sufficiently large so that it is worth trying to give a characterization of
some subfamily of them in order to get along in their classifications. To this
effect, we characterize rotational and conformally flat hypersurfaces of null 2-
type.

As for hypersurfaces of null 3-type one immediately sees that they are not
difficult to handle when they have constant mean curvature, because a nice

* Partially supported by a DGICYT Grant No. PS87-0115-C03-03.
** Supported by a FPPI Grant, Program PG, Ministerio de Education y Ciencia.
Received August 7, 1990; revised March 5, 1991.

406



NULL FINITE TYPE HYPERSURFACES IN SPACE FORMS 407

formula for Δ2H can be given. In that case, we show that there is no spherical
or hyperbolic hypersurface of null 3-type. It turns out again that our only hope
to get some more information concerns with Euclidean hypersurfaces. Now,
following a similar reasoning as in the null 2-type case, we are able to say that
there is no Euclidean hypersurface of null 3-type having constant mean curvature
and at most two distinct principal curvatures.

We wish to thank to Prof. M. Barros for many valuable comments and
suggestions.

1. Preliminaries

Let x: Mn->Rm be an isometric immersion of a connected n-dimensional
Riemannian manifold M into the Euclidean space Rm. We represent by Δ the
Laplacian operator of M (with respect to the induced metric) acting on the
space of smooth functions C°°(M). The manifold M is said to be of &-tyρe if
the position vector x of M can be decomposed in the following form:

χ—χo+xtl-{— +Xιk, (1.1)
where

Δx%=λXjx%J, (1.2)

λtl< ••• <λtk, Xo is a constant vector in Rm (when M is compact, x0 is the
center of mass of M in Rm) and Δ is the extension of the Laplace operator to
REvaluated smooth functions on M in a natural way. A manifold M is said
to be of finite type if it is of &-type for some natural number k otherwise, M is
said to be of infinite type. A special case appears when some λtJ=0; then M
is said to be of null £-tyρe or null finite type.

If M is of finite type, for example of &-type, from (1.1) there exists a
monic polynomial, say Q(t), such that Q(A)(x — ΛΌ)=0. If we suppose that Q(t)
=tk+dιt

k~ί-\- ••• +dk-it+dk then coefficients dt are given by

where {λtv ••• , λtk} are the associated eigenvalues giving the &-type character.
Therefore, by the formula Ax = — nH, where H is the mean curvature vector
field of M in Rm, we have the following differential equation:

Ak-1H+d1A
k~2H+ ... + d Λ _ 1 / / - - ^ ( j C - j C o ) = o . (1.3)

We note that dk=0 when M is of null β-type and therefore (1.3) only contains
terms involving the mean curvature vector H.

Let Rf- be the m-dimensional pseudo-Euclidean space with the standard flat
pseudo-Riemannian metric of signature (s, m—s) and x: Mn-^Rf an isometric
immersion of a connected pseudo-Riemannian (or space-like) submanifold M in
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R?. Then, in this context, we can introduce the finite type notion in a similar
way as in the Euclidean case. Thus we can characterize the pseudo-Riemannian
(or space-like) submanifolds of &-type by equation (1.3), in this case H is the
mean curvature vector field of M in /2f. For the general knowledge on Finite
Type Submanifolds in pseudo-Euclidean spaces, see for instance [3, 4].

2. The spherical case

Let M'n be a hypersurface in the unit sphere Sn+ί centred at the origin of
Rn+2. Let us denote by x: Mn->Sn+1dRn+2 the immersion and by 7, D, Df

the Riemannian connection of M, the normal connection of M in Rn+2 and the
normal connection of M in Sn+ι, respectively. Let a and H (resp. a' and Hf)
be the second fundamental form and the mean curvature vector of M in Rn+2

(resp. of M in Sn+1) and let A be the Weingarten map of M in Sn+ί. Then
from [1, Lemma 4] we have the following expression of AH:

AH=ADΉ' + jVa2+2trADIΓ + \σ\2H'-na2x, (2.1)

where a2=(H, H} and tr ADH> =trace {(X, Y)->ADχH.Y). Assume now M is of
2-type, i.e., AH~bH+c{x — x0). Let / : M-+R be the function defined by f(x)
=<x, xoy. Then for any tangent vector field X to M, we have

Γ , X>=-cX(f),

where (AH)T means the tangent component of AH in M. Then

{AH)τ=-clf. (2.2)

By using (2.1) one gets

<Δ#, x>=-na2 (2.3)

and again from the 2-type condition we have

<AH, x>=-b+c-cf . (2.4)

From (2.3) and (2.4) we deduce

that jointly with (2.2) yield to

(AH)τ=-nVa2. (2.5)

On the other hand, since AD' denotes the Laplacian associated with Df and one
has the formula

AH'={Aa')N+a'AN+2A(laf), (2.6)

where H'—a'N and A=AN, then
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ADΉr=(Aaf)N. (2.7)

The above formulae allow us to write down

AH=-nla2+(Aa')N+1 σ \ 2Hf~na2x . (2.8)

At this point, the 2-type condition can be rewritten in the following useful
form

c(x-xo)=--ήVat+{Aa'+\σ\*a'--ba'}N+{b--na2}x. (2.9)

In [1], studying the compact case with the additional condition of having
at most two distinct principal curvatures, it is shown that M is of 2-type if
and only if it is a product of two spheres with appropriate radii. In our case,
if we drop the compactness condition, then one of the eigenvalues could vanish,
but that can not hold as the following result shows, which can also be de-
duced from [7, Theorem 1].

PROPOSITION 2.1. There is no spherical hypersurface of null 2-type.

Proof. If M is a spherical hypersurface of null 2-tyρe, then c—0. Now
from (2.9), the x-component vanishes and then a is constant. Since M is not
minimal, from the iV-component, we have that \σ\2 is also constant. Using
again (2.9), one gets \σ\2=na2, which is a contradiction with the following
lemma and the proof finishes.

LEMMA 2.2. Let M be a spherical hypersurface. Then the following in-
equality holds

and the equality holds if and only if M is of 1-type.

Proof. Let us denote by μu •••, μn the principal curvatures of M and take
the vectors V—{μly •••, μn) and W=(l, •••, 1). Then from the own definitions
of a' and | σ r | 2 and the Cauchy-Schwarz inequality the first part of lemma fol-
lows. Moreover, the equality holds if and only if M is totally umbilical and
therefore of 1-tyρe.

In the realm of finite type submanifolds, as far as we know, the 3-type
case has been rather scarcely studied. This is because it is difficult to find a
nice expression for A2H. Therefore, we shall assume that M is of constant mean
curvature.

Then, a straightforward computation from (2.8) yields

-{n\σ\2a'2+n2a2}x. (2.10)

Now, if M is of 3-type, i.e., A*H=aAH+bH-\-c(x — x0), we have
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+ {A\σ\2+\σ\4-n\σ\2+n2a2-a\σ\2-b}H'

-{n\σ\2a'2+n2a2-ana2-b}x. (2.11)

We are ready to give another non-existence result.

PROPOSITION 2.3. There is no spherical hypersurface of null 3-type with con-
stant mean curvature.

Proof. If M is a spherical hypersurface of null 3-type, then c=0. Since
the mean curvature ar of M is a non-vanishing constant, from the x-component
in (2.11), one has |<τ|2 is also a constant. Then, once more from (2.11), we get

n\σ\2-n2a2+b=\σ\\\σ\2-a)=na\\σ\2-a), (2.12)

from which we deduce

( | < 7 | 2 - n α 2 ) ( | ( τ | 2 - α ) = 0 . (2.13)

But \σ\2=na2 can not hold from Lemma 2.2. If \σ\2=a>0, from (2.12) and
Lemma 2.2 it follows that b<0. Then we can find a real number pφO, (in-
deed, p is a solution of the equation p2—ap—b~0) such that if we write

Λ, r Y y Λ Y

p -j-D p -\-Q

we have

where

_ b

showing that M is of 2-type, which is a contradiction.

3. The Euclidean case

In order to make a similar study to the spherical case, we start giving a
formula for AH, which for surfaces was found by B. Y. Chen in [5].

LEMMA 3.1 Let x: Mn->Rn+1 be an orientable Euclidean hypersurface. Then
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where H—aN, , N being a global unit normal vector field.

Proof. Let p be in M, {Elf •••, En] a local orthonormal frame tangent to
M such that yE.Ej(ρ)=0 and 7 the connection in Rn+1. From the following
formulae

lE.H^Ei{a)N-aAEly

%%%tH=E%Ei(a)N-2Ei(a)AEi-a{φ]BiA)Et+σ(AEuEt)}f

we have
AH=2A(ya)+atrC7A)+{Aa+a\A\2\N, (3.1)

where tr Q7A)= Σ {1EΛ)E1.

To compute tr(7i4), let {Xu •••, Xn\ be the local orthonormal frame of
eigenvectors of the Weingarten map, i.e., AXι=μtXt. Then, using the well-
known equations

we have

tr (7i4)= Σ Xfa)X,+ Σ (μt-μM

Now, from Codazzi's equation C7χ.A)Xj=(yXjA)Xt, one gets

X/,μ%)=(μt-μj)ωl(Xχ) - (3.3)
Then

(3.4)

and the lemma follows from here and (3.1).
Now, if M is of 2-tyρe, i.e., ΔH—bH+cx (where we assume without loss

of generality that x0 is the origin of Rn+1), from the above lemma we have

cx=2A(Va)+ -^-Vα2+ {Δα+α | A \2-ba}N. (3.5)

This formula allow us to get three easy and interesting consequences,
chiefly the third because it will be very useful through this section. The first
and second ones have already been obtained by Chen and Lue in [7].

COROLLARY 3.2. // M is a non minimal Euclidean hyper surf ace of at most
2- type and constant mean curvature, then one of the two following possibilities
holds:

(i) M is of null 2-type,
(ii) M is an open piece of Sn.

COROLLARY 3.3. // M is a compact Euclidean hyper surf ace of at most 2-
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type, then M has constant mean curvature if and only if M is isometric to
sphere Sn.

Remark 3.4. The above corollary shows that there is no compact hyper-
surface of 2-type having constant mean curvature.

COROLLARY 3.5. // M is a Euclidean hypersurface of null 2-type, then

The problem of characterizing Euclidean hypersurfaces of null 2-type does
not seem an easy task without additional hypothesis and actually it is more
difficult than spherical case (see Proposition 2.1). The constancy of the mean
curvature does not even provide, in principle, enough information to get such
characterization. Nevertheless, we have the following result.

PROPOSITION 3.6. Let M be a Euclidean hypersurface with at most two prin-
cipal curvatures. Then M is of null 2-type and constant mean curvature if and
only if it is locally isometric to a product RpxSn~p(r).

Proof. If M is of null 2-type and has constant mean curvature, by using
(3.5) we have \Λ\2 is a constant. Furthermore, the hypothesis on principal
curvatures yields to M has exactly two constant principal curvatures. From
[10] M is an open piece of RpxSn'p(r). The converse is trivial.

In the proof of the above proposition, to use the Segre's result, it has been
crucial to deduce that M is isoparametric and for that to be possible we have
needed the hypothesis on principal curvatures. The isoparametricity condition
on M is rather strong and owing to the recent results showing the close rela-
tion between Dupin and isoparametric hypersurfaces, one can get another appro-
ximation to characterize null 2-type hypersurfaces.

PROPOSITION 3.7. // M is a Dupin Euclidean hypersurface of null 2-type,
then M has constant mean curvature.

Proof, If the mean curvature a were not constant, from Corollary 3.5, at
the points of the open set <V—{p^M\ la\p)Φθ], we can choose a local ortho-
normal frame {Elf -••, En] tangent to M such that Ex is parallel to la2. That
means E2(a)= ••• = En(a)=Q. Since M is a Dupin hypersurface and Ex is a
principal direction with principal curvature —(n/2)a, then Ei(a)=0, which is a
contradiction.

COROLLARY 3.8. Let M be a Dupin Euclidean hypersurface with at most two
principal curvatures. Then M is of null 2-type if and only if M is locally iso-
metric to a product RpxSn~p(r).
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To get down to- work in a more general situation we need a previous
lemma.

LEMMA 3.9. Let M be a Euclidean hypersurface of null 2-type with at most
two principal curvatures. Then cv is empty or, at the points of <V, —(n/2)α is
a principal curvature with multiplicity one.

Proof. At the points of c[/, by using Corollary 3.5, —{n/2)a is a principal
curvature with associated principal direction Vα2. Let VΊ be the open subset
of <JJ where the mean curvature does not vanish. Then VΊ is not empty, if cy
is not, and on VΊ there are exactly two distinct principal curvatures. Choose
the local orthonormal frame {Eu ••• , En) of principal directions such that Eλ

is parallel to la\ Let D={X^T<=V\ AX=-(n/2)aX] be the distribution asso-
coiated with the eigenvalue —(w/2)α, which is differentiate and involutive in
the open set Vx. If we assume d i m D > l , from [9, Proposition 2.3], we have
X(—(n/2)a)=0 for any vector field X<EΞD. In particular, ϋΊ(α)=0 on VΊ, so
that being Ex and Vα2 parallel, we get a is a constant on Vu which is a con-
tradiction. Therefore, dim D=l and —(n/2)a has multiplicity one.

Now, the main result of this section states as follows.

THEOREM 3.10. Let M be a Euclidean hypersurface with at most two prin-
cipal curvatures. Then M is of null 2-type if and only if M is locally isometric
to a product RpxSn~p(r).

Proof. Suppose Mn is a Euclidean hypersurface. Our goal is to prove that
Mn has constant mean curvature. If a were not constant, then by the Lemma
3.9 <V is not empty and the vector 7α 2 is an eigenvector of A corresponding
to the eigenvalue — (n/2)a with multiplicity 1. Choose a local orthonormal
frame {Elt ••• , En}y in an open set of c[S, satisfying that {Eu ••• , En) are
eigenvectors of A and Ex is parallel to la2.

Now by hypothesis AH=bH so that from Lemma 3.1 we have

ADH=φ-\A\*)H; Aφa)+jala=0. (3.6)

Let {ω1, "-, ωn) and {ω{}, i, / = 1 , •••, w + 1, the dual frame and the connection
forms of the chosen frame. Then we have

<ύi+i=-^aω1; ωi+ι= — ̂ -^γaώf, j=2, —, n. (3.7)

da=E1(a)ω1. (3.8)

From the first equation of (3.7) we have

^ (3.9)
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Using now the second equation of (3.7) and the structure equations, one has

? (3.10)
I n—1

These two last equations mean that

dω'=0. (3.11)

Therefore one locally has ω1=du} for a certain function u, which along with
(3.8) imply that da/\du—ΰ. Thus a depends on u, a=a(u). Then da—a'du —
af(u)ωι and so Eι(ά)=ar.

Taking differentiation in the second equation of (3.7) we have

Δ n — 1 I n — \

and, also by the structure equations:

(3.13)

Consequently

ω}=~^— ω3, y=2, •-, n , (3.14)

that is

(n+2)aω}=3a'ώf, 7 = 2 , ••• , n. (3.15)

Differentiating (3.15) and using (3.7) and (3.14) we have

d(aω})= ^ ^afΛoϊ+adΰή, (3.16)
71 "τ~Δ OL

. (3.17)3 4 n—1 n+2 a\ n+2 a

On the other hand

d(afωi)=a//ω1AωJ+a/dωJ. (3.18)

Hence from (3.15) to (3.18) we obtain

Putting y=(a')
2 the above equation turns into

a 4(n+5) n\n+2)
a'y n+2 y n-1 ' ( υ )

and then
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(^^)O*, (3.21)

\ Δ\n — l)/

with C a constant.
Now we use the definition of Aa, the fact that E1 is parallel to la2 and

equation (3.14) to obtain

. (3.22)

As we know ADH=(Aa)N, hence from (3.6) we get

aAa=φ-\A\2)a2. (3.23)

Since |^ | 2=(n 2(72+8)/4(n-l))α 2, combining (3.22) and (3.23), we have

Thus, putting together (3.19) and (3.24) one has

We deduce, using (3.21) and (3.25) that a is locally constant on qp, which is a
contradiction with the definition of <V. Hence α is constant on Mn and the
result follows from Proposition 3.6. The converse is trivial and the proof
finishes.

Then we obtain the following consequence, which B.Y. Chen already gave
in [5].

COROLLARY 3.11. Let M be a surface in R\ Then M is of null 2-type if
and only if M is locally isometric to a circular cylinder.

A we did in the spherical case, we now approach the Euclidean hyper-
surfaces of null 3-type with the additional assumption of having constant mean
curvature. Then a direct computation from Lemma 3.1 yields to

A2H=2aAe7\A\2)+{A\A\2+\A\'}H. (3.26)

Thus, if M is of 3-type, we have

cx=2aA(V\A\2)+{A\A\2+\A\4-a\A\2-b}H, (3.27)

and then we obtain the following

PROPOSITION 3.12. There is no Euclidean hyper surf ace of null 3-type with
constant mean curvatnre and having at most two distinct principal curvatures.

Proof. Let M be a Euclidean hypersurface of null 3-type. From (3.27),
since a is a non vanishing constant, we have A(^I\A\2)~0. If we consider the
open set W-{p<Ξ:M\ l\A\\p)Φ<d), then at the points of W,1\A\2 is a principal
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direction with 0 principal curvature. Therefore, since M has at most two
principal curvatures and a is constant, if λ is the other principal curvature,
then λ is also a constant. Then M is isoparametric and so it can not be of
null 3-type.

4. The hyperbolic case

Let !??+ 2 the (w+2)-dimensional pseudo-Euclidean space with metric tensor
given by

<, y=-dx1®dxι+?ϊί

where (xu •••, Xn+2) is a rectangular coordinate system in R7}*2. Then (Λΐ+2,
< , > ) is a flat pseudo-Riemannian manifold with signature (1, w+1). We define

Hn+1(R)={x^Rn

ί

+2:<xf χ}=z-R\ x1>0}y

and Hn+1=Hn+1(l) the (w+l)-dimensional hyperbolic space.
Let Mn be a hypersurface in Hn+1 and denote by x : M n ->i/ n + 1 cΛ? + 2 the

natural immersion. We now use the same notation as in Section 2, where the
symbols concerning there with Sn+ί (resp. Rn+2), will be here the corresponding
for Hn+1 (resp. Λ?+ ί).

We start with a useful expression for AH, which essentially is given in [3].

LEMMA 4.1. Let M be a hypersurface in Hn+1. Then

Proof. It suffices to work as in the Euclidean case (Lemma 3.1) taking into
account the following facts:

H=H'+x,

σ(AEt, Et)=<σ(AEt, Et), N>N-<σ(AEt, Ex), x>x .

If M is of 2-tyρe in Rn^2, then from Lemma 4.1 we get

c(x-x,)=2A(la')+^laf2+{Aaf+a'\A\2-na'-baf)N

+ {na'2-n-b}x, (4.1)

where, as above, AH=bH+c(x — Xo).
As an example of a hyperbolic hypersurface of 2-type in R^+2 we define

I f w e p u t y i = ( x u x*> — , Λ ; » - * , 0 , •••, 0 ) a n d 3 > 2 = ( 0 , •••, 0 , x n - * + i , •••, ̂ n + 2 ) , i t
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is easy to see that x=yι+y2 where Δ;yi=(—(n — k)/l+r2)y1 and Ay2—{k/r2)y2,
so that x is of 2-type in Rn

x

+2.
However, for the null 2-type case we have

PROPOSITION 4.2. There is no hyperbolic hyper surf ace of null 2-type.

Proof. If M is a hyperbolic hypersurface of null 2-type, then from (4.1)
both a' and \Λ\2 are constant and furthermore \A\2=na'2. This will mean
that M is totally umbilical and then of 1-tyρe, which is a contradiction.

To finish this section we shall study the hyperbolic hypersurfaces of 3-type
with constant mean curvature. Indeed, a straightforward computation from
Lemma 4.1 gives

A2H=2a'A(l\A\2)+{A\A\2+\A\*-\A\zn-n2at2+n2}H'

+ {na'2\A\2-2n2a'2+n2}x. (4.2)

When M is of 3-tyρe, we have

+ {A\A\*+\A\A-\A\*n-n*a'*+n*-a(\A\*-n)-b}Hf

+ {na'2\A\2-2n2a'2+n2-a(naf2-n)-b}x. (4.3)

Therefore, in a similar way as in the spherical case, we have

PROPOSITION 4.3. There is no hyperbolic hypersurface of null 3-type with
constant mean curvature.

5. Conclusions

Now, we are going to get together in a more general situation the results
we have get in the above sections.

MAIN THEOREM. Let Mn be a hypersurface in a space form Mn+1(k). Then
we have:

(i) // M is of null 2-type, then k=0. Moreover, if M has at most two
distinct principal curvatures, then M is locally isometric to a product Rn~kxSk(r).

(ii) Assume that one of the following assertions holds:
1) kΦO,
2) k=0 and M has at most two distinct principal curvatures.
Then either M has non constant mean curvature or M is not of null 3-type.

Now, we can deduce a few interesting consequences.
In [2] it is shown that a rotational hypersurface in a space of constant
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curvature has two principal curvatures, one of them having multiplicity at least
equal to n —1. Therefore, we have

COROLLARY 5.1. Let x: Mn~>Mn+ι(k) be a rotational hypersurface of null
2-type. Then k=0 and M is locally isometric to a product RxSn~\r).

_ It is a well-known fact (see [8]) that, for n>3, a hypersurface Mn m
Mn+\k) is conformally flat if and only if at least n—\ principal curvatures are
all equal. Then we get

COROLLARY 5.2. Let x: Mn-+Mn+1(k), w>3, be a conformally flat hyper-
surface of null 2-type. Then k=0 and M is locally isometric to a product Rx
Sn-\r) or Rn~ιxS\r).

If M is an Einstein hypersurface, we know M has at most two distinct
principal curvatures. Then from [9, Theorem 3.1] we have

COROLLARY 5.3. Let x: Mn-+Mn+\k), n>2, be an Einstein hypersurface of
null 2-type. Then k=0 and M is locally isometric to Rn~1xSι(r).

Added in proof. After this paper was referred, prof. Chen kindly pointed
out to us that himself and S. J. Li have shown, in a joint paper, that Proposi-
tion 2.3 holds for every 3-type spherical hypersurface. We wish to thank to
the referee and prof. Chen for their careful suggestions in order to improve
this article.
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