INNER RADII OF TEICHMÜLLER SPACES OF FINITELY GENERATED FUCHSIAN GROUPS

Ву Ніго-о Уамамото

1. Introduction

Let Γ be a Fuchsian group keeping the lower half plane L invariant. The Teichmüller space $T(\Gamma)$ of Γ is a bounded domain of the Banach space $B(L,\Gamma)$ of bounded quadratic differentials for Γ . The inner radius $i(\Gamma)$ of $T(\Gamma)$ is the radius of the maximal ball in $B(L,\Gamma)$ centered at the origin which is included in $T(\Gamma)$. If $T(\Gamma)$ is not a single point, then by a theorem of Ahlfors-Weill [3] it holds that $i(\Gamma) \geq 2$. In particular, if Γ is finitely generated of the first kind and if $T(\Gamma)$ is not a single point, then the strict inequality $i(\Gamma) > 2$ holds (cf. [10]). Denote by $I(\Gamma)$ inf $i(W\Gamma W^{-1})$, where the infimum is taken over for all quasiconformal automorphisms W of the upper half plane compatible with Γ . Recently Γ . Nakanishi [10] proved the following.

THEOREM 1 (T. Nakanishi). Let Γ qe a finitely generated Fuchsian group of the first kind such that $T(\Gamma)$ is not a single point. Then $I(\Gamma)$ is equal to 2.

The purpose of this note is to prove the following generalization to Theorem 1.

Theorem 2. Let Γ be a finitely generated Fuchsian group such that $T(\Gamma)$ is not a single point. Then $I(\Gamma)$ is equal to 2.

The proof of Theorem 2 is immediate from Theorem 1 and the following.

THEOREM 3. Let Γ be a finitely generated Fuchsian group of the second kind. Then $i(\Gamma)$ is equal to 2.

A careful reading of the proof of Theorem 3 shows the readers an alternative proof of Theorem 1, though we omit it. Our proof of Theorem 3 depends on results on *B*-groups [1], [4] and Koebe groups [9].

The author expresses his hearty thanks to the referee and Professor H. Sekigawa for their pointing out a lot of errors in the original manuscript of this note.

Received September 13, 1990; revised December 21, 1990.

2. Preliminaries

- 2.1. Let $PSL(2, \mathbb{C})$ be the group of all conformal automorphisms of the extended complex plane $\mathbb{C} \cup \{\infty\}$. Denote by $PSL(2, \mathbb{R})$ the subgroup of $PSL(2, \mathbb{C})$ which consists of all conformal automorphisms of the upper half plane $U=\{z \colon \text{Im } z>0\}$. A Fuchsian group is a discrete subgroup of $PSL(2, \mathbb{R})$. A Fuchsian group is of the first kind (resp. the second kind) if it acts discontinuously at no point (resp. some point) of the real axis.
- 2.2. We define a hyperbolic metric $\rho_U(z)|dz|$ in U as $(2\operatorname{Im} z)^{-1}|dz|$. Let f be a holomorphic function of U onto a domain $D \subset C$ with more than two boundary points. Then the hyperbolic metric $\rho_D(z)|dz|$ is defined by $\rho_D(f(z)) \cdot |f'(z)| = \rho_U(z)$. Assume moreover that D is a connected and simply connected domain of C. Then $(4X(z))^{-1} \leq \rho_D(z)$, where X(z) is the Euclidean distance between a point z of D and the boundary of D. In particular, if $D = \{z : |\operatorname{Im} z| < \pi/2\}$, then $1/(2\pi) \leq \rho_D(z)$. If $D_1 \subset D_2$, then by Schwarz's lemma we see that $\rho_{D_2}(z) \leq \rho_{D_1}(z)$ [5; p. 45].
- 2.3. A holomorphic function $\phi(z)$ in the lower half plane $L=\{z \; | \; \text{Im} \; z < 0\}$ is a bounded quadratic differential for a Fuchsian group Γ if

$$\|\phi\| = \sup_{z \in L} \rho_L(z)^{-2} |\phi(z)| < \infty$$

and

$$\phi(\gamma(z))\gamma'(z)^2 = \phi(z)$$
 for all $\gamma \in \Gamma$ and all $z \in L$.

The space $B(L, \Gamma)$ of all bounded quadratic differentials for Γ can be regarded as a Banach space with the norm $\| \|$ defined above.

- 2.4. An element γ of Γ is primitive if $j^n = \gamma$ has no solution in Γ for $n \neq \pm 1$. The following lemma is well known but the author has never seen what is stated in this form.
- LEMMA 1. Let Γ be a Fuchsian group keeping the upper half plane invariant which contains a primitive parabolic element p(z)=z+1. Then for each $\phi \in B(L,\Gamma)$ it holds that

$$\sup_{(\operatorname{Im} z \leq -1)} \rho_L(z)^{-z} |\phi(z)| = \sup_{(\operatorname{Im} z = -1)} \rho_L(z)^{-2} |\phi(z)|.$$

Proof. Recall that $\phi(z)$ has a Fourier expansion $\sum_{n=1}^{\infty} \exp(-2\pi i n z)$ [5; p. 111]. Note that

$$4y^{2}|\phi(z)| = 4y^{2} \exp(2\pi y) |\sum_{n=1}^{\infty} \exp(-2\pi i(n-1)z)|.$$

where y=Im z. Then by the principle of the maximal absolute value and $d(y^2 \exp 2\pi y)/dy \ge 0$ for $y \le -1/\pi$, we have the desired conclusion.

2.5. Let $Q(\Gamma)$ be the set of all conformal homeomorphisms f of L admitting quasiconformal extensions \hat{f} to the extended complex plane which are

compatible with Γ , that is, $\hat{f}\Gamma\hat{f}^{-1} \subset PSL(2, \mathbb{C})$. For each $f \in Q(\Gamma)$, its Schwarzian derivative $[f] = (f''/f')' - (f''/f')^2/2$ belongs to $B(L, \Gamma)$. The Teichmüller space $T(\Gamma)$ of Γ is the image of $Q(\Gamma)$ under the mapping $f \mapsto [f]$. The inner radius $i(\Gamma)$ of $T(\Gamma)$ is $\inf_{\phi \in B(L, \Gamma) - T(\Gamma)} \|\phi\|$. If $g_1, g_2 \in PSL(2, \mathbb{C})$, then $[g_2 \circ f \circ g_1] = ([f] \circ g_1)g_1'^2$ and $\|[g_2 \circ f \circ g_1]\| = \|[f]\|$. In particular, if $g \in PSL(2, \mathbb{R})$, then $f \circ g^{-1} \in Q(g\Gamma g^{-1})$ and $i(g\Gamma g^{-1}) = i(\Gamma)$.

2.6. A component of the region of discontinuity of a Kleinian group G is called a component of G. An invariant component of G is a component of G which is invariant under G. A Kleinian group G is a B-group if G has exactly one simply connected invariant component. An Euclidean disc (including a half plane) D is a horodisc of a primitive parabolic element g of G if f(D)=D for each $f \in G \setminus G$, the cyclic group generated by g and $f(D) \cap D = \emptyset$ for each $f \in G \cap G$. A B-group G is regular if for each primitive parabolic element g of G there exist two mutually disjoint horodiscs of G (Abikoff [1]). A regular B-group is a Koebe group if each noninvariant component of G is an Euclidean disc. Note that our definition of a Koebe group is stronger than Maskit's original one [9].

3. Proof of theorem 3

3.1. Let Γ be a finitely generated Fuchsian group of the second kind such that L/Γ is a compact Riemann surface with finitely many points and $m \ge 1$ discs removed. Then classical is the existence of a hyperbolically convex fundamental region ω for Γ in L satisfying the following: There exist 2m sides S_1, \dots, S_{2m} of ω consisting of hyperbolic half lines and primitive hyperbolic elements $\alpha_1, \dots, \alpha_m$ of Γ such that $\alpha_k(S_k) = S_{k+m}$ and such that a component of $\mathbf{R} \cup \{\infty\}$ minus the fixed points of α_k is included in the region of discontinuity of Γ , $k=1, \dots, m$.

Let E_k be the geodesic included in ω tangent to S_k and S_{k+m} , $k=2, \cdots, m$. Let H_n , $H_{n'}$ and $E_{1,n}$ be geodesics included in ω such that S_1 , H_n , $E_{1,n}$, $H_{n'}$ and S_{1+m} lie in this order and such that the hyperbolically convex domain ω_n surrounded by all sides of ω together with H_n , $E_{1,n}$, $H_{n'}$ and E_2 , \cdots , E_m is of a finite hyperbolic area. Let $\varepsilon_k \in PSL(2, \mathbf{R})$ (resp. $\varepsilon_{1,n} \in PSL(2, \mathbf{R})$) be an elliptic transformation of order 2 keeping E_k (resp. $E_{1,n}$) and the middle point of E_k (resp. $E_{1,n}$) invariant, $k=2, \cdots, m$. Let γ_n be a hyperbolic transformation with $\gamma_n(H_n)=H_{n'}$ and $\gamma_n(\omega_n)\cap\omega_n=\emptyset$. Then Γ and γ_n and γ_n , γ_n , γ_n , γ_n generate a finitely generated Fuchsian group Γ_n of the first kind with the fundamental region γ_n . We assume that $\{\gamma_n\}_{n=1}^\infty$ converges to a parabolic transformation. Then $\{E_{1,n}\}_{n=1}^\infty$ necessarily degenerates to a point.

3.2. Let $p_{1,n}$, $p_{2,n}$, \cdots , $p_{t,n}$ be a maximal list of primitive parabolic elements of Γ_n whose fixed points lie on the boundary of ω_n such that $p_{r,n} \neq p_{s,n}^{\pm 1}$, $1 \leq r < s \leq t$. Let $D_{s,n} = \xi_{s,n}(\{z : \text{Im } z < -1\})$ be the horodisc of the primitive parabolic element $p_{s,n}$, where $\xi_{s,n}$ is the element of $PSL(2, \mathbf{R})$ such that $\xi_{s,n}^{-1} \circ p_{s,n} \circ \xi_{s,n}$ is of the form $z \mapsto z + 1$. The existence of such a horodisc is

immediate from Shimizu's lemma [5; p. 58]. For our later use, we prove a preliminary lemma.

LEMMA 2. Let u_n be a point of $\omega_n - \bigcup_{s=1}^t D_{s,n}$. Then $\{d_L(u_n, \gamma_n(u_n))\}_{n=1}^{\infty}$ is bounded, where $d_L(u_n, \gamma_n(u_n))$ is the hyperbolic distance between u_n and $\gamma_n(u_n)$ measured by $\rho_U(z)|dz|$.

Proof. The axis A_n of γ_n divides ω_n into ω_n^1 and ω_n^2 whose boundary includes $E_{1,n}$. Let v_n be a point of the closure of $\omega_n - \bigcup_{s=1}^t D_{s,n}$ such that $d_L(v_n, A_n) \geqq d_L(z, A_n)$ for all $z \in \omega_n - \bigcup_{s=1}^t D_{s,n}$. Note the existence of a compact subset of L containing all $v_n \in \omega_n^1$. Then $d_L(v_n, \gamma_n(v_n))$ is less than a constant for all $v_n \in \omega_n^1$. Let τ_n be the element of $PSL(2, \mathbb{R})$ such that $\tau_n(z_n^*) = -i$ and $\tau_n'(z_n^*) > 0$, where z_n^* is the fixed point of $\varepsilon_{1,n}$ in ω_n . Then $\{\tau_n \circ \gamma_n \circ \tau_n^{-1}\}_{n=1}^\infty$ converges to a parabolic transformation and a compact subset of L contains all $\tau_n(v_n)$ for all $v_n \in \omega_n^2$. By the same reasoning as above we see that $d_L(v_n, \gamma_n(v_n)) = d_L(\tau_n(v_n), \tau_n \circ \gamma_n \circ \tau_n^{-1}(\tau_n(v_n))$ is less than a constant for all $v_n \in \omega_n^2$. Note that $d_L(u_n, A_n) \le d_L(v_n, A_n)$. Then $d_L(u_n, \gamma_n(u_n)) \le d_L(v_n, \gamma_n(v_n))$. Now our assertion is obvious.

3.3. Now we begin to make a proof of Theorem 3. Let χ_n be the isomorphism of Γ_n onto a regular B-group $\chi_n(\Gamma_n)$ on the boundary of $T(\Gamma_n)$ such that an element $\chi_n(\gamma)$ of $\chi_n(\Gamma_n)$ is parabolic if and only if γ is either parabolic or conjugate to γ_n in Γ_n . Let w_n be a conformal homeomorphism of L onto the invariant component of $\chi_n(\Gamma_n)$ such that $\chi_n(\gamma) \circ w_n(z) = w_n \circ \gamma(z)$ for all $z \in L$ and all $\gamma \in \Gamma$.

The existence of such a χ_n and a w_n is shown in Bers [4] and Abikoff [1]. Maskit [9] proved that there exist a Koebe group G_n and a conformal homeomorphism j_n of the invariant component of $\chi_n(\Gamma_n)$ onto that Δ_n of G_n such that $j_n\chi_n(\Gamma_n)j_n^{-1}=G_n$ and such that $j_n\circ\chi_n(\gamma_n)\circ j_n^{-1}$ is parabolic if and only if so is $\chi_n(\gamma)$. Set $f_n=j_n\circ w_n$. Then $\zeta=f_n(z)$ is a conformal homeomorphism of L onto Δ_n and $f_n\circ\gamma_n\circ f_n^{-1}$ is parabolic, so that $[f_n]$ does not belong to $T(\Gamma_n)$. Since $\|[\eta\circ f_n]\|=\|[f_n]\|$ for all $\eta\in PSL(2,R)$, without loss of generality we may assume that $g_n=f_n\circ\gamma_n\circ f_n^{-1}$ is of the form $\zeta\mapsto \zeta+b_n$, $b_n>0$, and that two noninvariant components D_n^+ and D_n^- of G_n invariant under g_n are $\{\xi\colon \text{Im }\zeta>\pi/2\}$ and $\{\zeta\colon \text{Im }\zeta<-\pi/2\}$, respectively. Let z_n be a point of both the axis of γ_n and the fundamental region ω_n constructed in No. 3.1. Then by the same reasoning as above, we may also assume that $\text{Re }f_n(z_n)=0$. From basic properties of the hyperbolic metric stated in No. 2.2 we have

$$\begin{aligned} d_{L}(z_{n}, \gamma_{n}(z_{n})) &= d_{A_{n}}(f_{n}(z_{n}), f_{n}(\gamma_{n}(z_{n}))) \\ &\geq d_{L(z_{1}|Im \zeta_{1}|<\pi/2)}(f_{n}(z_{n}), g_{n}(f_{n}(z_{n}))) \geq b_{n}/2\pi \ . \end{aligned}$$

Since $\{\gamma_n\}_{n=1}^{\infty}$ converges to a parabolic transformation, the first term in the above inequalties converges to zero. Now we have the first assertion in the

following.

LEMMA 3. (i) The sequence $\{b_n\}_{n=1}^{\infty}$ of positive numbers converges to zero. (ii) The invariant component Δ_n of G_n includes the region $\{\zeta ; |\operatorname{Im} \zeta| < (\pi/2) - b_n\}$.

Proof. We have only to prove (ii). By the assumptions on χ_n we see that G_n is constructed from Fuchsian groups $H_n^+ = \{g \in G_n; g(D_n^+) = D_n^+\}$ and $H_n^- = \{g \in G_n; g(D_n^-) = D_n^-\}$ with the amalgamated parabolic cyclic subgroup generated by g_n via Maskit's combination theorem I. For terminologies see [6], [7] and [8].

For a Möbius tronsformation h of the form $z\mapsto (az+b)/(cz+d)$ with $c\neq 0$, that is, $h^{-1}(\infty)=-d/c\neq\infty$, we define the isometric circle I(h) of h as $\{z\,;\,|z-h^{-1}(\infty)|=1/|c|\}$. Denote by ext I(h) the unbounded component of C-I(h). The region $\omega_n^+=\{\zeta\,;\,0<\operatorname{Re}\zeta< b_n\}\cap(\cap^+\operatorname{ext}I(h))$ (resp. $\omega_n^-=\{\zeta\,;\,0<\operatorname{Re}\zeta< b_n\}\cap(\cap^-\operatorname{ext}I(h))$ is a fundamental region for H_n^+ (resp. H_n^-), where the intersection \cap^+ (resp. \cap^-) is taken over for all elements of $J_n^+=\{h\in H_n^+;h(\infty)\neq\infty\}$ (resp. $J_n^-=\{h\in H_n^-;h(\infty)\neq\infty\}$). Maskit's combination theorem I shows that $\omega_n^+\cap\omega_n^-$ is a fundamental region for G_n . Note that centers $h^{-1}(\infty)$ of the isometric circles of $h_n\in J_n^+$ (resp. J_n^-) lie on the line $\{\zeta\,;\,\operatorname{Im}\zeta=\pi/2\}$ (resp. $\{\zeta\,;\,\operatorname{Im}\zeta=-\pi/2\}$). Since G_n contains the element $g_n(z)=z+b_n$ the radius of the isometric circle of each element of $J_n^+\cup J_n^-$ is less than or equal to b_n by Shimizu's lemma. Therefore Δ_n includes the region $(\bigcup_{n=-\infty}^\infty g_n^s(\omega_n^+\cap\omega_n^-))\cap\{\zeta\,;\,|\operatorname{Im}\zeta|<\pi/2\}$, which also does the region $\{\zeta\,;\,|\operatorname{Im}\zeta|<(\pi/2)-b_n\}$.

3.4. Denote by A_n the axis of γ_n .

LEMMA 4. There exists a sequence $\{t_n\}_{n=1}^{\infty}$ of positive numbers converging to zero such that $f_n(A_n)$ is included in $\{\zeta : |\text{Im } \zeta| < t_n\}$.

Proof. Assume that our assertion is false. Let a_n be the subarc of A_n bounded by z_n and $\gamma_n(z_n)$. Let ζ_n be a point of $f_n(a_n)$ such that $|\operatorname{Im} \zeta_n| = \max_{\zeta \in a_n} |\operatorname{Im} \zeta|$. Then without loss of generality we may assume the existence of a subsequence, again denoted by $\{\zeta_n\}_{n=1}^{\infty}$, of $\{\zeta_n\}_{n=1}^{\infty}$ such that $\{\operatorname{Im} \zeta_n\}_{n=1}^{\infty}$ converges to a positive number v_0 . By means of basic properties of the hyperbolic metric stated in No. 2.2, we have

$$\begin{split} &\int_{a_n} \rho_L(z) |dz| = &\int_{f_n(a_n)} \rho_{J_n}(\zeta) |d\zeta| \\ &\geq &\int_{f_n(a_n)} \rho_{(\zeta;|\operatorname{Im} \zeta| < \pi/2)}(\zeta) |d\zeta| \geq (1/2\pi) \int_{f_n(a_n)} |d\zeta|. \end{split}$$

Since the first term converges to zero, so does the Euclidean length $\int_{f_n(a_n)} |d\zeta|$ of $f_n(a_n)$. Therefore for a sufficiently large n on, the arc $f_n(a_n)$ is included

in $\{\zeta; \operatorname{Im} \zeta > v_0/2\}$, and so is $f_n(A_n) = \bigcup_{s=-\infty}^\infty g_n{}^s(f_n(a_n))$. The geodesic $f_n(A_n)$ in Δ_n divides Δ_n into the upper half Δ_n^+ and the lower half Δ_n^- , both of which are invariant under $\langle g_n \rangle$. The region Δ_n^+ is included in $\Pi_n^+ = \{\zeta; v_0/2 < \operatorname{Im} \zeta < \pi/2\}$ and by Lemma 2 Δ_n^- includes $\Pi_n^- = \{\zeta; (-\pi/2) + b_n < \operatorname{Im} \zeta < v_0/2\}$. Let $S_{1,n}, S_{2,n}, S_{3,n}$ and $S_{4,n}$ be sets of all loops separating two boundary components of $\Delta_n^+/\langle g_n \rangle$, $\Pi_n^+/\langle g_n \rangle$, $\Pi_n^-/\langle g_n \rangle$ and $\Delta_n^-/\langle g_n \rangle$, respectively. Denote by $\lambda_{k,n}$ the extremal length of $S_{k,n}$. Then $\lambda_{1,n}^{-1} \ge \lambda_{2,n}^{-1} > \lambda_{3,n}^{-1} \ge \lambda_{4,n}^{-1}$ if n is large enough so that $v_0/2 > b_n$ [2; p. 15]. On the other hand, the Moebius transformation r_n of the form $z \mapsto -iz$ maps $f_n^{-1}(\Delta_n^+) = \{z; -\pi/2 < arg z < 0\}$ onto $f_n^{-1}(\Delta_n^{-1}) = \{z; -\pi < arg z < -\pi/2\}$ and it holds that $\gamma_n \circ r_n = r_n \circ \gamma_n$. Hence the conformal homeomorphism $f_n \circ r_n \circ f_n^{-1}$ maps Δ_n^+ onto Δ_n^- and $f_n \circ r_n \circ f_n^{-1} \circ g_n = g_n \circ f_n \circ r_n \circ f_n^{-1}$. Therefore $\Delta_n^+/\langle g_n \rangle$ is conformal to $\Delta_n^-/\langle g_n \rangle$ and $\lambda_{1,n} = \lambda_{4,n}$. This contradiction yields us to conclude that our assertion is true.

3.5. Let u_n be a point of the closure of $\omega_n - \bigcup_{s=1}^t D_{s,n}$ with $\rho_L(u_n)^{-2} | [f_n(u_n)]| = \sup_{z \in L} \rho_L(z)^{-2} | [f_n(z)]|$. The existence of such a point is immediate from Lemma 1. Without loss of generality we may assume that $d_L(u_n, A_n) \leq d_L(u_n, \gamma(A_n))$ for all $\gamma \in \Gamma_n$ and that $0 \leq \operatorname{Re} f_n(u_n) < b_n$. As is stated in No. 3.2, the point $z_n \in \omega_n$ lies on the axis of γ_n .

Now two cases can occur: (i) $\{d_L(u_n, z_n)\}_{n=1}^{\infty}$ is bounded. (ii) Otherwise.

We shall prove that (ii) never happens. Assume that (ii) does. Then since $\{d_{J_n}(f_n(u_n), f_n(z_n))\}_{n=1}^{\infty}$ is unbounded, a subsequence, again denoted by $\{f_n(u_n)\}_{n=1}^{\infty}$, of $\{f_n(u_n)\}_{n=1}^{\infty}$ converges to a point ζ_0 , which is either $\pi i/2$ or $-\pi i/2$. Let, say, ζ_0 by $\pi i/2$. Then each $f_n(u_n)$ is contained in Δ_n^+ . Set $\eta_n(\zeta)$ (ζ -Re $f_n(u_n)-\pi i/2$)/|Im $f_n(u_n)-\pi/2$ |. Then η_n takes the point $f_n(u_n)$ and the line Im $\zeta = \pi/2$ into -i and the real axis, respectively, and $\eta_n(J_n) \subset L$. Note that $\eta_n(J_n)$ includes the domain surrounded by $\bigcup \eta_n(h(f_n(A_n)))$, where the union is taken over all $h \in H_n^+$. The parabolic transformation $\eta_n \circ g_n \circ \eta_n^{-1}$ is of the form $\zeta \mapsto \zeta + e_n$, $e_n > 0$. Note that

$$d_L(u_n, \gamma_n(u_n)) = d_{\eta_n \circ f_n(L)}(\eta_n \circ f_n(u_n), \eta_n \circ f_n(\gamma_n(u_n)))$$

$$\geq d_L(\eta_n \circ f_n(u_n), \eta_n \circ g_n(f_n(u_n))) = d_L(\eta_n \circ f_n(u_n), \eta_n \circ f_n(u_n) + e_n).$$

Since $\{d_L(u_n,\gamma_n(u_n))\}_{n=1}^\infty$ is less than a constant e_0 by Lemma 2, so is $\{e_n\}_{n=1}^\infty$. This together with Shimizu's lemma shows that each element of $\eta_n J_n^+ \eta_n^{-1}$ has the isometric circle whose radius is less than or equel to e_0 . Since $K_n = \inf_{\zeta \in \eta_n(f_n(A_n))} |\operatorname{Im} \zeta| \to \infty$ by Lemma 4 and since for each $h \in J_n^+$ the arc $\eta_n(h(f_n(A_n))) \subset \eta_n(\Delta_n)$ is included in $\{\zeta \in L : \operatorname{Im} \zeta > -e_0^{-2}/K_n\}$, the kernel of $\{\eta_n(\Delta_n)\}_{n=1}^\infty$ is L. Let ξ_n be the element of $PSL(2, \mathbb{R})$ such that $\xi_n(-1) = u_n$ and $(\eta_n \circ f_n \circ \xi_n)'(-i) > 0$. Then by Carathéodory kernel theorem $\eta_n \circ f_n \circ \xi_n$ converges locally uniformly to a conformal homeomorphism F which maps L onto the kernel L of $\{\eta_n(\Delta_n)\}_{n=1}^\infty$. Obviously F is a Möbius transformation and [F](z) = 0. Using a theorem of Weierstrass, we have

$$\begin{aligned} \| [f_n] \| &= \| [\eta_n \circ f_n \circ \xi_n] \| \\ &= \sup_{z \in L} |(2 | \operatorname{Im} z|)^2 [\eta_n \circ f_n \circ \xi_n](z) | \\ &= (2(-1))^2 |[\eta_n \circ f_n \circ \xi_n](-i)| \longrightarrow 4 |[F](-i)| = 0. \end{aligned}$$

This contradicts the fact $||[f_n]|| \ge 2$ due to Ahlfors-Weill [3], and the case (ii) never happens.

3.6. Now we shall complete the proof of Theorem 3 under the condition (i). Since $d_{A_n}(f_n(u_n), f_n(A_n)) = d_L(u_n, A_n) \leq d_L(u_n, z_n)$ is less than a constant for each n, Lemmas 3 and 4 show the existence of a subsequence, again denoted by $\{f_n(u_n)\}_{n=1}^{\infty}$, of $\{f_n(u_n)\}_{n=1}^{\infty}$ which converges to a point ζ_0 with $\operatorname{Re}\zeta_0=0$ and $|\operatorname{Im}\zeta_0|<\pi/2$. Let μ_n be the element of $PSL(2,\mathbf{R})$ such that $\mu_n(-i)=z_n$ and $(f_n\circ\mu_n)'(-i)>0$. Carathéodory kernel theorem together with Lemma 3 shows that $\{f_n\circ\mu_n(z)-f_n\circ\mu_n(-i)\}_{n=1}^{\infty}$ converges locally uniformly to $F(z)=3\pi i/2+\log z$ which maps L onto the kernel $\{\zeta\colon |\operatorname{Im}\zeta|<\pi/2\}$ of $\{f_n\circ\mu_n(L)\}_{n=1}^{\infty}$, where we take the branch of $\log z$ satisfying F(-i)=0. Let E be a compact subset of L containing all $\mu_n^{-1}(u_n)$. Then we see that

$$\begin{split} \|[f_n]\| &= \rho_L(u_n)^{-2} |[f_n](u_n)| \\ &= \rho_L \circ \mu_n(\mu_n^{-1}(u_n))^{-2} |[f_n \circ \mu_n](\mu_n^{-1}(u_n))| \\ &= \sup_{z \in E} \rho_L(z)^{-2} |[f_n](z)| \\ &\longrightarrow \sup_{z \in E} \rho_L(z)^{-2} |[3\pi i/2 + \log z]| = 2. \end{split}$$

Recall that $f_n \Gamma_n f_n^{-1}$ is a Koebe group. Then $T(\Gamma_n)$ does not contain the point $[f_n]$ and neither does $T(\Gamma)$. Therefore $2 \le i(\Gamma) \le \|[f_n]\| \to 2$. Now we obtain $i(\Gamma) = 2$ and complete the proof of Theorem 3.

Added in proof. After this note was completed, Professor T. Nakanishi informed the author that T. Nakanishi and J. A. Velling know a proof of the following Theorem A which is a generalization of Theorems 1, 2 and 3.

THEOREM A. Let Γ be a Fuchsian group keeping L invariant. Then $i(\Gamma)$ is equal to 2 if Γ satisfies one of the following:

- (I_1) For any positive number d, there exists a hyperbolc disc of radius d which is precisely invariant under the trivial subgroup of Γ .
- (I_2) For any positive number d, there exists the collar of width d about the axis of a hyperbolic element of Γ .

He also informed the author that their proof of Theorem A is different from the proof of Theorem 3 and depends on properties of a family of functions constructed in Kalme [11].

REFERENCES

- [1] W. ABIKOFF, On boundaries of Teichmüller spaces and on Kleinian groups III., Acta Math., 134 (1975), 211-234.
- [2] L. AHLFORS, Lectures on quasiconformal mappings, Van Nostrand, Princeton, 1966.
- [3] L. Ahlfors and G. Weill, A uniqueness theorem for Beltrami equations, Proc. Amer. Math. Soc. 13 (1962), 975-978.
- [4] L. Bers, On boundaries of Teichmüller spaces and on kleinian groups I., Ann. of Math. (2), 91 (1970), 570-600.
- [5] I. Kra, Automorphic forms and Kleinian groups, W. A. Benjamin, Reading, MA, 1972
- [6] B. Maskit, Construction of Kleinian groups, Proc. of the conf. on complex anal., Minneapolis, 1964, Springer-Verlag, Berlin, 1965.
- [7] B. Maskit, On Klein's combination theorem, Trans. Amer. Math. Soc. 120 (1965), 499-509.
- [8] B. Maskit, On boundaries of Teichmüller spaces and on kleinian groups II., Ann. of Math. (2), 91 (1970), 607-639.
- [9] B. Maskit, On the classifications of Kleinian groups: I, Koebe groups, Acta Math., 135 (1975), 249-270.
- [10] T. NAKANISHI, The inner radii of finite dimensional Teichmüller spaces, Tôhoku Math. J., 41 (1989), 679-688.
- [11] I. KALME, Remarks on a paper by Lipman Bers, Ann. of Math., 91 (1970), 601-606.

DEPARTMENT OF MATHEMATICS THE NATIONAL DEFENSE ACADEMY HASHIRIMIZU YOKOSUKA 239 JAPAN