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GENERATED FUCHSIAN GROUPS

By Hiro-0 YAMAMOTO

1. Introduction

Let I" be a Fuchsian group keeping the lower half plane L invariant. The
Teichmiiller space T(I") of I" is a bounded domain of the Banach space B(L,I")
of bounded quadratic differentials for I". The inner radius i(I") of T(I") is the
radius of the maximal ball in B(L, I") centered at the origin which is included
in T("). If T{") is not a single point, then by a theorem of Ahlfors-Weill [3]
it holds that 7(/")=2. In particular, if I” is finitely generated of the first kind
and if T(I") is not a single point, then the strict inequality #(/")>2 holds (cf.
[10]). Denote by I(I") inf i{WI'W~™'), where the infimum is taken over for all
quasiconformal automorphisms W of the upper half plane compatible with .
Recently T. Nakanishi [10] proved the following.

THEOREM 1 (T. Nakanishi). Let I ge a finitely generated Fuchsian group
of the first kind such that T(I") is not a single pownt. Then I(I") is equal to 2.

The purpose of this note is to prove the following generalization to Theo-
rem 1.

THEOREM 2. Let I’ be a finitely generated Fuchsian group such that T(I")
is not a single point. Then I(I") is equal to 2.

The proof of Theorem 2 is immediate from Theorem 1 and the following.

THEOREM 3. Let I” be a finitely generated Fuchsian group of the second
kind. Then i(I") is equal to 2.

A careful reading of the proof of Theorem 3 shows the readers an alter-
native proof of Theorem 1, though we omit it. Our proof of Theorem 3 de-
pends on results on B-groups [1], [4] and Koebe groups [9].

The author expresses his hearty thanks to the referee and Professor H.
Sekigawa for their pointing out a lot of errors in the original manuscript of
this note.
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2. Preliminaries

2.1. Let PSL(2, C) be the group of all conformal automorphisms of the
extended complex plane C\U{co}. Denote by PSL(2, R) the subgroup of
PSL2, C) which consists of all conformal automorphisms of the upper half
plane U={z; Im 2>0}. A Fuchsian group is a discrete subgroup of PSL(2, R).
A Fuchsian group is of the first kind (resp. the second kind) if it acts discon-
tinuously at no point (resp. some point) of the real axis.

2.2. We define a hyperbolic metric py(z)|dz]| in U as (2Imz)"'|dz|. Let
f be a holomorphic function of U onto a domain DCC with more than two
boundary points. Then the hyperbolic metric pp(z)|dz| is defined by pp(f(2)-
| f'(2)]|=py(z). Assume moreover that D is a connected and simply connected
domain of C. Then (4X(z))'<pp(z), where X(z) is the Euclidean distance be-
tween a point z of D and the boundary of D. In particular, if D={z; |Im z|
<m/2}, then 1/2m)<pp(z). If D,C D, then by Schwarz’s lemma we see that
p0,(2)<pp,(2) [5; p. 457.

2.3. A holomorphic function ¢(z) in the lower half plane L={z; Im 2<0}
is a bounded quadratic differential for a Fuchsian group I if

ll=sup,erpr(z)"?|d(2)| < oo
and

o121’ (2)*=¢(z)  for all yeI" and all ze L.

The space B(L, I') of all bounded quadratic differentials for I” can be regarded
as a Banach space with the norm | | defined above.

2.4. An element 7 of " is primitive if ;=7 has no solution in I” for n+
+1. The following lemma is well known but the author has never seen what
is stated in this form.

LEMMA 1. Let I' be a Fuchsian group keeping the upper half plane invariant
which contains a primitive parabolic element p(z)=z+1. Then for each ¢&
B(L, I') it holds that

SUDP(Im 25-1)0L(2) | §(2) | =SUP(1m ;=-1; 0(2) % | §(2)].

Proof. Recall that ¢(z) has a Fourier expansion 3;_,exp(—2zinz) [5; p.
1117. Note that

4y*|d(2)| =4y* exp 2 y)| D=1 exp (—27i(n—1)z)|.

where y=Imz. Then by the principle of the maximal absolute value and
d(y*exp2ry)/dy=0 for y<—1/x, we have the desired conclusion. O

2.5. Let Q") be the set of all conformal homeomorphisms f of L admit-
ting quasiconformal extensions f to the extended complex plane which are
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compatible with I, that is, /I"'f'CPSL(2, C). For each feQ(), its Schwar-
zian derivative [ f1=(f"/f")—(f"/f")?/2 belongs to B(L, I'). The Teichmiiller
space T(I") of I" is the image of Q(I") under the mapping f—[f]. The inner
radius #(I") of T(I')is infgepcr. ry-rers gl 1f g1, 8. PSL(2, C), then [gsefogi]
=([f1-g.g."* and |[gef°g.JI=ILfJIl. In particular, if g&PSL(2, R), then
fog'eQ(el'g™) and i(gl'g " )=i(I").

2.6. A component of the region of discontinuity of a Kleinian group G is
called a component of G. An invariant component of G is a component of G
which is invariant under G. A Kleinian group G is a B-group if G has exactly
one simply connected invariant component. An Euclidean disc (including a half
plane) D is a horodisc of a primitive parabolic element g of G if j(D)=D for
each j=<g)>, the cyclic group generated by g and ;(D)ND=¢@ for each j&
G—<{g>. A B-group G is regular if for each primitive parabolic element g of
G there exist two mutually disjoint horodiscs of g (Abikoff [1]). A regular
B-group is a Koebe group if each noninvariant component of G is an Euclidean
disc. Note that our definition of a Koebe group is stronger than Maskit's
original one [9].

3. Proof of theorem 3

3.1. Let I' be a finitely generated Fuchsian group of the second kind such
that L/I" is a compact Riemann surface with finitely many points and m=1
discs removed. Then classical is the existence of a hyperbolically convex
fundamental region @ for I" in L satisfying the following: There exist 2m
sides S,, ---, S:m Of w consisting of hyperbolic half lines and primitive hyper-
bolic elements a, -+, an Of I" such that a,(S;)=S:.» and such that a com-
ponent of R\U{c} minus the fixed points of a, is included in the region of
discontinuity of I, k=1, ---, m.

Let E, be the geodesic included in w tangent to S, and Siim, £=2, ---, m.
Let H,, H,’ and E, , be geodesics included in ® such that S, H,, E; ., H,’
and S,;, lie in this order and such that the hyperbolically convex domain w,
surrounded by all sides of w together with H,, E, ., H,’ and E,, ---, E, is of
a finite hyperbolic area. Let ¢, &PSL(2, R) (resp. &, ,=PSL(2, R)) be an elliptic
transformation of order 2 keeping E, (resp. E, ) and the middle point of E,
(resp. E, ,) invariant, k=2, ---, m. Let 7, be a hyperbolic transformation with
ro(Hy)=H, and ¥,(@,)"\w,=@. Then I' and 7, and &, &, '+, &€n generate
a finitely generated Fuchsian group /', of the first kind with the fundamental
region w,. We assume that {7.}%-. converges to a parabolic transformation.
Then {E, .}%-1 necessarily degenerates to a point.

3.2. Let pin, Dan, -+, De.n be a maximal list of primitive parabolic ele-
ments of /", whose fixed points lie on the boundary of w, such that p, .+
Dsn*l, 1Sr<s<t. Let D, =& .({z; Imz<—1}) be the horodisc of the primi-
tive parabolic element p, ,, where &, , is the element of PSL(2, R) such that
& n Yo Py nobs n is Of the form z—z+1. The existence of such a horodisc is
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immediate from Shimizu’s lemma [5; p. 58]. For our later use, we prove a
preliminary lemma.

LEMMA 2. Let u, be a point of w,—\U4=1Ds.n. Then {dr(tns, 7n(Un))}3=1 7S
bounded, where dp(un, ¥-(un) is the hyperbolic distance between u, and 7.(u,)
measured by py(2)|dz|.

Proof. The axis A, of 7, divides w, into ®,' and ,® whose boundary
includes E, ,. Let v, be a point of the closure of w,—\Ji-,D, » such that
d1(Vn, An)=d (2, A,) for all zew,—\Ji-,D;, .. Note the existence of a compact
subset of L containing all v,Ew,'. Then dp(va., 72(vs)) is less than a constant
for all v,=w,!. Let 7, be the element of PSL(2, R) such that 7,(z,*)=—: and
7./ (2,*)>0, where z,* is the fixed point of ¢, , in @w,. Then {theTnTn '}5=1
converges to a parabolic transformation and a compact subset of L contains
all z,(v,) for all v,ew,®. By the same reasoning as above we see that
A1V, Taa))=d(Ta(Vn), TnoTroTs (Ta(vs)) is less than a constant for all v,Ew,’.
Note that dp(un, A2)<dr(vs, As). Then di(ua, 72(ur)Sd(Va, 72(va)). Now our
assertion is obvious. O

3.3. Now we begin to make a proof of Theorem 3. Let X, be the iso-
morphism of I, onto a regular B-group X,(I",) on the boundary of T(I",) such
that an element X,(7) of X,(I",) is parabolic if and only if 7 is either parabolic
or conjugate to 7, in I',. Let w, be a conformal homeomorphism of L onto
the invariant component of X,(I",) such that X,(7)ew.(2)=w,°7(z) for all z& L
and all y=!l'.

The existence of such a X, and a w, is shown in Bers [4] and Abikoff [1].
Maskit [9] proved that there exist a Koebe group G, and a conformal homeo-
morphism j, of the invariant component of X,(I",) onto that 4, of G, such
that j.X.(I"2)j»"*=G, and such that j,oX.(r»)°j»"! is parabolic if and only if
s0 is X,(7). Set fn=jn°w,. Then {=f,(z) is a conformal homeomorphism of
L onto A, and f,°7,°f,"' is parabolic, so that [f,] does not belong to T(I ).
Since |[[nef-]lI=ILf-]ll for all n& PSL(2, R), without loss of generality we may
assume that g,=f,°rn°f,»"" is of the form {—{+b,, b,>0, and that two non-
invariant components D,* and D, of G, invariant under g, are {&; Im{>n=/2}
and {{; Im{<—nr/2}, respectively. Let z, be a point of both the axis of 7,
and the fundamental region w, constructed in No. 3.1. Then by the same
reasoning as above, we may also assume that Re f,(z,)=0. From basic pro-
perties of the hyperbolic metric stated in No. 2.2 we have

dL(zm Tn(zn))zddn(fn(zn)’ fn(rn(zn))
gd(C;lIm(Kan)(fn(zn), Za(fn(Za)))Zbn/27 .

Since {r.}%-, converges to a parabolic transformation, the first term in the
above inequalties converges to zero. Now we have the first assertion in the
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following.

LEMMA 3. (i) The sequence {b,}5-1 of positive numbers converges to zero.
(ii) The invariant component 4, of G. includes the region {{; |Im{|<
(7/2)—ba}.

Proof. We have only to prove (ii). By the assumptions on X, we see that
G, is constructed from Fuchsian groups H,*={g=G»; g(D,*)=D,*} and H, =
{geGny; g(Dx")=D,"} with the amalgamated parabolic cyclic subgroup gener-
ated by g, via Maskit’s combination theorem I. For terminologies see [6], [7]
and [8].

For a Mobius tronsformation h of the form z—(az+b)/(cz+d) with c¢+0,
that is, A '(co)=—d/c#o, we define the isometric circle I(h) of h as
{z; |z—h~*(0)|=1/[|c|}. Denote by extI(h) the unbounded component of
C—I(h). The region w,*={{; 0<Re{<b,}N(N*extI(h)) (resp. w,"={{; 0<
Re{<b.} (N~ ext I(h)) is a fundamental region for H,* (resp. H,™), where
the intersection N* (resp. N~) is taken over for all elements of J,*={hcH,*;
h(oo)# o} (resp. J,"={h=H, ; h()#}). Maskit’s combination theorem I
shows that w,*Nw,” is a fundamental region for G,. Note that centers h~!(co)
of the isometric circles of h,=J,* (resp. J.”) lie on the line {{; Im{=x/2}
(resp. {{;Im{=—=r/2}). Since G, contains the element g,(z)=z+b, the radius
of the isometric circle of each element of jf,*\UJ,” is less than or equal to b,
by Shimizu’s lemma. Therefore A, includes the region (\Us—_«gr5 (@, "N, )N
{€; IIm | <=/2}, which also does the region {{; |Im{|<(x/2)—b,}. O

3.4. Denote by A, the axis of 7.,.

LEMMA 4. There exists a sequence {t,}5%-1 of positive numbers converging to
zero such that f.(Ay) 7s included in {C; |Im | <t,}.

Proof. Assume that our assertion is false. Let a, be the subarc of A,
bounded by z, and 7.(z,). Let {. be a point of f,(a,) such that |Im{,|=
maXceq,|Im{|. Then without loss of generality we may assume the existence
of a subsequence, again denoted by {C.}%-1, of {{.}%-, such that {Im{,}5-:
converges to a positive number v,. By means of basic properties of the hyper-
bolic metric stated in No. 2.2, we have

[, o@ldz1=]  pa@iaci
[, . pemaen@ldizazn|, 1dl.

Since the first term converges to zero, so does the Euclidean length S

14|
)]

of fu(a,). Therefore for a sufficiently large n on, the arc f.(a,) is included

n(lyn
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in {{;Im{>ve/2}, and s0 iS fu(An)=US_wgn’(fn(an). The geodesic f.(Axn)
in 4, divides A, into the upper half 4,* and the lower half 4,~, both of which
are invariant under <{g,>. The region 4,* is included in I7,*={{; vo/2<Im{
<r/2} and by Lemma 2 4,  includes II, ={{; (—x/2)+b,<Im{<v,/2}. Let
Si,n, Se.n, Ss.n and S,,, be sets of all loops separating two boundary components
of 4,%/Kgw>, H.*/Kgr>, I, /<{g.y and 4,7 /{g.>, respectively. Denote by A;.»
the extremal length of S, .. Then A, '24s,"'>2s,," 24,7 if n is large
enough so that v,/2>b, [2; p. 15]. On the other hand, the Moebius trans-
formation r, of the form z——:z maps f, '(A,")={z; —n/2<arg z<0} onto
fa YA, Y)={z; —n<argz<—=/2} and it holds that 7,.r,=7,°y,. Hence the
conformal homeomorphism f,e7,°f,"" maps A,* onto A,” and fher,efp legnr=
gnofnetnefn'. Therefore A,*/{g,> is conformal to A, /<{g.)> and Ay, =424 x-
This contradiction yields us to conclude that our assertion is true. O

3.5. Let u, be a point of the closure of w,—\Ui~1Ds, » With pr(un) 2| [ f ()]l
=sup,erpr(2)?|[fa(2)]l. The existence of such a point is immediate from
Lemma 1. Without loss of generality we may assume that di(u,, A.)<
d1r(un, 7(A,)) for all yeI', and that 0<Re f,(un)<b,. As is stated in No. 3.2,
the point z,=w, lies on the axis of 7,.

Now two cases can occur: (i) {dr(uns, z,)}5-, is bounded. (ii) Otherwise.

We shall prove that (ii) never happens. Assume that (ii) does. Then since
{d4,(fo(tn), fu(22))}%=1 is unbounded, a subsequence, again denoted by
{fa(un)ts<1, of {fa(un)}%-: converges to a point {, which is either =i/2 or
—ni/2. Let, say, {, by ni/2. Then each f,(u,) is contained in A,*. Set 9.({)
(C—Re fo(un)—=i/2)/|Im fo(un)—=/2|. Then 5, takes the point f.(u.) and the
line Im{=n/2 into —i and the real axis, respectively, and 9,(4,)C L. Note
that 7,(4,) includes the domain surrounded by \U%,(h(f.(A%))), where the union
is taken over all heH,*. The parabolic transformation 7,°g.°n,' is of the
form {—C+e,, e,>0. Note that

dL(uny 7n(un)):dﬂ"ofn(L)(ﬂn"fn(un); 77n°fn(rn(un)))
\édL(nrﬂfn(un); ﬂn°gn(fn(un))):dL(77n°fn(un)’ 77n°fn(un)+en)-

Since {dr(un, 72(%2))}5-, is less than a constant ¢, by Lemma 2, so is {e,}5-:-
This together with Shimizu’s lemma shows that each element of %,/."%, ! has
the isometric circle whose radius is less than or equel to ¢, Since K,=
infrey, crpcap»Iml—o0 by Lemma 4 and since for each heJ,* the arc
Na(A(f a(Ax)))CT9a(A,) is included in {{eL;Im{>—e,?/K,}, the kernel of
{92(An)}n=1 is L. Let &, be the element of PSL(2, R) such that &,(—1)=u,
and (9z°fn°a)(—2)>0. Then by Carathéodory kernel theorem %,cf,°§, con-
verges locally uniformly to a conformal homeomorphism F which maps L onto
the kernel L of {9.(4:)}%-:. Obviously F is a Mobius transformation and
[F](z)=0. Using a theorem of Weierstrass, we have
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IS = JI=1C9n°fno&all
=sup,ez|(2|Im 2| )*[9n°fno€al(2)
== (9 fnoéad(—)| —> 4|[F1(—i)|=0.

This contradicts the fact ||[f,]=2 due to Ahlfors-Weill [3], and the case (ii)
never happens.

3.6. Now we shall complete the proof of Theorem 3 under the condition
(). Since d4,(fa(un), fa(An)=dr(tn, An)<d(Un, 2x) is less than a constant
for each n, Lemmas 3 and 4 show the existence of a subsequence, again denoted
by {fn(un)}5=1, Of {fu(us)}5-, Which converges to a point {, with Re {,=0 and
Im &, <m/2. Let g, be the element of PSL(2, R) such that p,(—i)=z, and
(fneta)’(—i)>0. Carathéodory kernel theorem together with Lemma 3 shows
that {fnepn(2)— fropa(—2)}5-, converges locally uniformly to F(z)=3xni/2+log z
which maps L onto the kernel {{; |[Im{|<z/2} of {fnop.(L)}5-,, Where we
take the branch of log z satisfying F(—i)=0. Let E be a compact subset of
L containing all g, *(u,). Then we see that

ICf 2 ll=pr(ua)®|[fal(ua)l
=z ta(ptn™ (Ua)) [ fnoptn)(ttn ™ (un))|
=sup,ezp(2)*|[f21(2)]
—> sup,espr(2)"?|[3ni/2+log 2]|=2.

Recall that f,[,f,™ is a Koebe group. Then T(/',) does not contain the
point [f.] and neither does T(I"). Therefore 2<i(IM)Z||[f.]ll—2. Now we
obtain #(/")=2 and complete the proof of Theorem 3.

Added in proof. After this note was completed, Professor T. Nakanishi
informed the author that T. Nakanishi and J. A. Velling know a proof of the
following Theorem A which is a generalization of Theorems 1, 2 and 3.

THEOREM A. Let I' be a Fuchsian group keeping L invariant. Then i(I")
is equal to 2 if I' satisfies one of the following :

(I,) For any positive number d, there exists a hyperbolc disc of radius d
which is precisely invariant under the trivial subgroup of I.

(I.) For any positive number d, there exists the collar of width d about the
axis of a hyperbolic element of I.

He also informed the author that their proof of Theorem A is different
from the proof of Theorem 3 and depends on properties of a family of func-
tions constructed in Kalme [11].
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