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Introduction

There have been many works to generalize the Nevanlinna theory (especially,
his second main theorem) to higher dimensional case (cf., e.g., [5], [17], [21]).
While the so called equidimensional holomorphic or meromorphic mappings
/ : W—>V between algebraic varieties have been well studied, we do not know
very much about f:W-+V with άimW<άimV (cf. Noguchi [13], [14] and Siu
[20]). So far, we have to put some special restriction on target spaces or on
the divisors of the target spaces. In this paper, we will establish an inequality
of the second main theorem type for meromorphic mappings into a compacti-
fication of a locally symmetric space.

Let 3) be a bounded symmetric domain in C m and Γ a neat arithmetic discrete

subgroup of the holomorphic transformation group Aut (3)) of 3). Let / : Cn->Γ\β)

be a meromorphic mapping, where Γ\3) is a smooth toroidal compactification

of Γ\3). Nadel [11] proved that if Γ is sufficiently small, then the image

/(C) (w=l) of any non-constant holomorphic curve / : C~+Γ\3) is contained in

some special analytic subset of Γ\3). Here we assume that f(Cn)Γ\(Γ\3))Φ0.

Then, of course, / hits the boundary divisor D=Γ\3)—(Γ\3)), since Γ\3) is

(complete) hyperbolic. We are concerned with how often / hits D. We prove

the following inequality of the second main theorem type for / : Cn->Γ\£) of

maximal rank:

(i) K{Tf{r, [D])+T / (r , K(Γ\3)))}

£N(r, Supp /*0)+O(logr)+O(log+T/(r,

Here K is a positive constant depending only on 3) and n, Supp/*D is the
support of the pull-back divisor f*D and the sign " | | " means as usual in the
Nevanlinna theory that the estimate holds as r-^oo outside an exceptional sub-
set with finite length (see Theorem (2.2)).

In the Nevanlinna theory for meromorphic functions, one dimensional com-
plex projective space P\C) minus three distinct points (α, b and c) is of a
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crucial importance. Note that P\C)— {a, b, c) is biholomorphic to Γ(2)\H.
where H is the upper half plane and Γ(2)aPSL{2, Z) is the congruence sub-
group of level 2 (cf. § 3).

The proof of (i) is based on some current inequalities similar to those in
Nadel [11] and Noguchi [16]. We derive from (i) a certain defect relations

(ii) Θf(D)£θo<l,

where θ0 is a constant independent from / (see §3).
In § 4, we discuss the generalizations of the domain space Cn of / to an

affine algebraic variety and to a finite analytic covering space of Cn. We also

consider a holomorphic mapping / : A*—>Γ\£) from the punctured disc Δ* into

T\<D. In this case, if / does not hit D, then an inequality similar to (i) im-

plies that / extends holomorphically from Δ into Γ\W (cf. Kobayashi-Ochiai

[8], Borel [3], Kiernan [6], Kobayashi [7], Kwack [9] and Noguchi [13], [15]).

1. Preliminaries

(a) Lemmas on currents. Let M be a paracompact complex manifold of
dimension m. We set

For a locally integrable function φ on M, we denote by ddc[φ'] the dd^deriva-
tive in the sense of current.

LEMMA (1.1) (cf., e.g., [5] or [17]). Let F be a holomorphic function on M
with zero divisor (F) and h a positive valued C°°-function on M. Then

(i) d

(ii) ddcllog(log (I F\ 2h))2~]=ddc log (log (| F\2/ι))2.

Let D be a hypersurface of M with only normal crossings. Let po^D and
take a holomorphic local coordinate neighborhood system U(wu •••, wm) around
po so that

(1.2) U

/>o=(O, - , 0) and ί/πfl=|«Ί uii=0[,

where K K m . Let ω0 be the following Kahler form on ί/-D^

(L3) ω » = S \ w ^ Λ ^
=ddcφ0,
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where

(1.4) ^o=-Σlog(log|u; y |
2)2+ fj \w

DEFINITION (1.5). We say that a smooth (1, l)-form ω on M-D has at
most Poincare growth near p0 if \ω\=O(ω0) on U, and that ω has at most
Poincare growth near D if it has at most Poincare growth near any point of D.

Note that if ω has at most Poincare growth near D, then ω is locally inte-
grable on M.

LEMMA (1.6). Let M and D be as above. Let φ: M—D-+R be a smooth
function which is bounded from above. Let ωx and ω2 be real smooth (1, 1)-forms
on M—D such that ω^O and ω2 has at most Poincare growth near D. Assume
that

on M—D.

Then we have the following:
(i) φ is locally written as the difference of two plurisubharmonic functions;

i.e., locally on M, φ=ψ\—φ% with plurisubharmonic functions ψx and <p2,
(ii) ωx is locally integrable on M,

(Hi) ddc[φ2^ωι+ω2 on M.

This was implicitly proved in Nadel [11]. Here we give a simplified proof
due to Noguchi [16] for a convenience.

Proof. It suffices to show (i)~(iii) around a point po^D. Take a holo-
morphic local coordinate neighborhood system U(wu ••• , wm) as in (1.2). Let
φ0 be a function on U—D defined by (1.4). Then φ0 is plurisubharmonic on U
and there is a constant C>0 such that

Cddc

Put

Then we have

(1.7) ddtyi^

on U—D. Thus φx is plurisubharmonic and bounded from above on U—D, so
that ψι is plurisubharmonic on U (cf., e.g., [17, Chap. III]). As Cφ0 is pluri-
subharmonic on U, (i) is proved. We obtain (ii) also from (1.7). By Lemma
(1.1), (ii), we see

(1.8) ddclφ1l=d

Let dd^φ^ — ηreg+Vsing be the Lebesgue decomposition into regular and singular
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parts. Then (1.7) implies

so that

Hence we deduce (iii). Q. E. D.

(b) First main theorem. Let z—{zly ••• , zn) be the natural complex coordi-
nate system in Cn and set

n; \\z\\<r}9

a=dd°\\z\\\

η=d° log \\z\\*Λ(dd° log \\z\\*)"-1.

For a (1, l)-current 9) of order 0 on C, we set

where X^r) denotes the characteristic function of B(r). We recall well-known
Jensen's formula (cf. [19] for a proof).

LEMMA (1.9). Let u be a function on Cn such that u is locally written as
the difference of two plurisubharmonic functions. Then

uη~[ uη=2[Rn(t, ddc\_u~\)^
Λ> ' JScr) ' Jr t

for R>r>0.

Let N be a compact complex manifold and / : Cn->N a meromorphic map-
ping. Let ω be a real (1, l)-form on N such that the pull-back /*ω of ω by /
is locally integrable. Then we set

Tf(r, ω)=N(r, f*ω)

and call it the characteristic function of / with respect to ω.
Let L-*N be a holomorphic line bundle over N with a hermitian fiber

metric | | and ω its Chern form. We set

Tf(r, L)=Tf(r,ω).

Let \L\ denote the complete linear system of L and J 9 e | L | . Choose a global
holomorphic section σ<^H\N, L) so that the divisor (σ) defined by a is D and
| σ | < l . Let SuppZ? be the support of D. Assume that /(Cn)c):Supρ D. Set
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THEOREM (1.10). Let the notation be as above. Then we have the following.
(i) (First Main Theorem)

Tf(r, L)=N(r, f*D)+mf(r,

where 0(1) stands for a bounded term as r—>+oo.
(ii) (Nevanlinna Inequality)

N(r, f*D)£Tf(r,

For the proof, we see by Lemma (1.1) that

(1.11) ddc[log\f*σl*l=f*D-f*ω.

In the next section, we deal with the case where M is Moishezon and M—D
is quasi-projective; in this case, we deduce Theorem (1.10) from Lemma (1.9)
and (1.11). For the general case, see Stoll [21].

An inequality of the second main theorem type is, in short, an estimate
opposite to (ii) that is, it provides a bound of Tf(r, L) in terms of N(r, f*D).
We define the defect Θf(D) of D by

It is clear that 0^Θf(D)£l, and that if /(Cn)πSuppZ)=0, then Θf(D)=l.

2. Inequality of the second main theorem type

Let 3) be a bounded symmetric domain in Cm and g the Bergman metric
on 3) normalized so that the Ricci curvature

We denote by H(X, Y) the holomorphic bisectional curvature of g. Then it is
known that H(X, Y)<Q and

(2.1) H(X, XU-γ

for some number γ such that 1 / m ^ ^ l (cf., e.g., [2, p. 219]).
Let ΓcAut(3)) be a neat arithmetric discrete subgroup ([1]). Then V=

Γ\3) is a smooth quasi-projective algebraic variety. Let V be a smooth toroidal
compactification of V such that D—V—V is a hypersurface with only normal
crossings ([1], [10]). We denote by K(V) the canonical bundle over V.

Let / : CΛ-»F be a meromorphic mapping and /(/) the indeterminancy locus
of / . Then / is holomorphic in Cn-I(f). Define



VALUE DISTRIBUTION OF MEROMORPHIC MAPPINGS 325

rank/=max{rankcf/(z); zeC n -/(/)} .

We denote by Mer*(Cn, F) be the set of all meromorphic mappings / : Cn->V
of maximal rank (i.e., rank/=min{m, n}) such that f(Cn)Γ\VΦ0.

Let A(r) and B(r) be real functions defined on [1, +00). We write

if Ea[l, +00) is a Borel subset with finite measure and if A{r)<B(r) for r e
[1, + o o ) - £ . We set

log+s=logmax{l, s) for se/2.

THEOREM (2.2). Let l<n<m and /eMer*(Cn, V). Then we have

(2.3) γ{Tf(r, ID1)+Tf(r, K(V))}<N{r,

where for any ε>0,

(2.4) S(r)=n(l+e) ilog+T /(r, [D])+εw(2

In the case of n>m, we have a similar but better estimate:

THEOREM (2.5). Let n^m'^1 and /eMer*(Cn, V). Then

(2.6) T/(r, IDJ)+Tf{r, K{V))^N{r, Supp /*ΰ)+S(r),

where S(r) is a small term as in (2.4).

Remark. See Sakai [18] for a more general theorem for equidimensional
holomorphic mappings with maximal rank. The method we are going to use
is different from his.

We will give the proofs of Theorems (2.2) and (2.5) step by step in what
follows. First we assume n<m.

Let /<=Mer*(£"*, V) and ω be the Kahler form associated with g. Since V
is complete hyperbolic, / is holomorphic in Cn—f~ιD and f~ιD is a hyper-
surface. Put

E={z(ΞCn; rank dfizKnjUf-'D

and U=Cn-E. Then E is a thin analytic subset of C\ We put

(2.7) (f*ω)n=ξαn

on U. First we show that

(2.8) ϊ-f*ω^ddc\ogξ on U.

Since f\U: U->V is an immersion, U may be considered as a locally closed
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complex submanifold of 3). Thus we have (2.8) by the following lemma.

LEMMA (2.9). Let N be an n-dimensional submanifold of 2) with inclusion
mapping c: N—>£). Let Ricjv(X, Y) the Ricci curvature of c*g. Then

Proof. Let HN(X, Y) be the holomorphic bisectional curvature of c*g. By
[4], we see HN(X, Y)<H(X, Y)<0. Let XZΞTP(N) be a unit holomorphic tan-
gent vector. Take an orthonormal basis {eίf •••, em\ of TP(N) with ex—X.
Then by [4], p. 226, we see that

Ric*(Z, X)= Σ HN{X, βj)< Σ H(X, e3)
3 = 1 3 = 1

This completes the proof of Lemma 2.9. Q. E.D.

LEMMA (2.10). Let the notation be as above.
(i) /*<y is locally integrable on Cn.

(ii) log£ is locally written as the difference of two plurisubharmonic func-
tions.

Proof, (i) It suffices to show that the local integrability of f*ω around a
point p^E. Take a neighborhood W of p and a proper modification π : (W, E')
->(W, Ef) with E'—WΓ\E satisfying the following:

(a) There exists a holomorphic mapping f:W->V such that f—f°π.
(b) W is smooth and π\w-E' iffi—E'-^W—E' is biholomorphic.
(c) E' is a hypersurface with only normal crossings.

Then it suffices to show the local integrability of π*/*ω=/*α> around a point
p^E'. Take a holomorphic local cordinate system (wu ••• , wm) around p such
that p=(0, " , 0) and E' is locally defined by

wx ••• wk=0.

We may assume that the coordinates w3 are defined in a neighborhood {| w3- \ < 1}.
Let (ϋo be the Kahler form defined by (1.3). Then by (2.1) and Schwarz's
lemma, there exists a positive constant C such that

Therefore /*<*> is locally integrable around p.
(ii) Taka a holomorphic function F on Cn so that (F)=Supp/*D. Then

we see in the proof of (i) that log(£|F| 2 ) is locally bounded from above on C \
On the other hand, we have
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(2.11) ddc ?

on U, so that l o g ( | | F | 2 ) is a plurisubharmonic function on Cn. Since

we have (ii). Q.E.D.

By Lemma (2.10), we see that Tf(r, ω) and

are defined.

LEMMA (2.12). We have

-Tf(r, ω)<N(r, Supp/*Z))+/ι(r)+O(l).

Proof. Let F be as in (2.11). Then by Lemma (1.6) and (2.8), we have

] ^ f
7Γ

It follows from this, Lemmas (1.1) and (1.9) that

-Tf{r, ω)£N(r, Supp f*D)+μ(r)+ 0(1).

Q.E.D.

LEMMA (2.13). We have

T,(r, [Z>])+7V(r, K{V))

<-Tf(r, a>)+O(log+Tf(r, [£>]))+O(l).

Proof. Let Ψ be a C00-volume form on V. By [10, p. 256], there exists a
positive constant C and a positive integer / such that

Ψ

η2lωm=:=
\σ\\log\σ\η2lω

on V, where | | is a hermitian metric in [J9] and σ^H\V, [D]) with
and (σ)=D. Put

Then we have
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dd° log ζ^f*Cl(K(V))--f*ω

+f*c1(tD3-lddcίlog (logI f*σ \ Ύl.

on U. By making use of Lemma (1.1), (ii), Lemma (1.6) and the argument in
the proof of Lemma (2.10), (i), we infer that

- -f*ω

)-Wd ί[log (log I f*σ \2)2] .

Applying Lemma (1.9), we have

Tf(r, K(V))+Tf(r,

-Tjir, ω)+1log+mf(r,
TZ

-T,(r, ω)+O(log+Tf(r,
7Γ

Q.E.D.

By Lemmas (2.12) and (2.13), it remains to obtain an estimate of μ(r) for
the proof of Theorem (2.2).

LEMMA (2.14). ξιιnan^{l/π)f*ω/\an'1.

Proof. Put

Then our claim follows from

nξ1/n=n(άet(aj-k))1/n

Q.E.D.

The following lemma is well known:

LEMMA (2.15). Let h(r) (>0) be a monotone increasing function in r ^
Then h(r) is differentiable at almost all r and
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for any ε>0.

LEMMA (2.16). For ε>0, we have

μ(r)<n(l+εYlog+Tf(r, [Z>])+βn(2n-l)logr \\EW.

Proof, By making use of the concavity of logarithm function, we have

Applying Lemma (2.15) to h(r)=\ ξί/nan, we see that

It follows from Lemmas (2.14) and (2.15) that

so that

(2.17) tfr) ^ - | n(2n-1) log r + lo

We infer from Lemma (2.12) that

(2.18) log+T/(r, ω/s)^log+y {N(r, Supp f*D)+μ(r)\+0(1)

+N(r, f*D)+ϊog+μ(r)+O(l)

Thus we have by (2.17) and (2.18)
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+ " ^ " 2

 x ; c logr+O(l)

Since

for all large μ(r), we have

D])+ n(2n-l)e log

r, [D])+n(2n-l)βlogr

Q.E.D.

Thus we have completed the proof of Theorem (2.2).

Proof of Theorem (2.5). In the case of l ^ m g n , we may assume that

(f*ωT

We define a function £ by

(cf. (2.7)). Since Riccig= —1, we immediately see that (2.8) holds with γ— — 1.
The remainder of the proof is the same as in that of Theorem (2.2) (cf. [5]).

3. A defect relation and a ramification theorem for f*D

In this section we prove some defect relations for /<=Mer*(Cn, V), a de-
generacy theorem and a ramification theorem. We keep the same notation as
in §§ 1 and 2. We put

(3.1) θo=θo(<3), Γ)=inf {μ^Q; \v(K(V)+μ\_D'])\ has no base

point in V for some v

where \v(K(V)+μ[D'])\ denotes the complete linear system of the line bundle
v(K(V)+μlD]) with μv^Z.

Remark. Note that ΘO<1. In fact, it is known that for some
\vK(V)+(v—1)[/?]| has no base point in V. Unforunately, we can not deter-
mine the exact value of θ0, but in the case where 3) is a Siegel upper half
space <&g and Γ a Siegel modular group Γ(k), we can give some estimate in
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terms of Siegel modular cusp forms (cf. [16]).

THEOREM (3.2). Let ft=Mer*(Cn, V).
(i) // n<m, then Θf{D)<l-γ{l-θ,).

(ii) If n^m, then

Proof. We assume that n<m. Since V is hyperbolic, f(Cn)Γ\Dφ0, so
that

N(r,

for all large r, where C is a positive constant. By Theorem (1.10), we have

Tf(r,

We deduce from Theorem (2.2) that

(3.3) θf{D) £ l - r ( l + l i m sup Ί
\ r+

Take a rational number μ>θ0. By the definition of θ0, there exists a global
section τ<=H°(Ϋ, v(K(V)+μ[DJ)) with V<BZ+ such that /*r^0. It follows from
Theorem (1.10) that

r, K(V))+μTf(r,

Then

^ Γ T/(r,

^ - l l m t u p r / ( r ,
so that

We have by this and (3.3)

In the case of rc^ra, we use Theorem (2.5) instead of Theorem (2.2) in the
above proof and obtain

θf(D)£θ0.
Q.E.D.

COROLLARY (3.4) (cf. [11]). // l^n<m and θo=θo(<3), Γ K l - l / r , then the
image of any non-constant holomorphic mapping from C into V must be disjoint
from V.

DEFINITION. We say that /<=Mer*(Cn, F) ramifies over D with order at least
λ if
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f*D>λSuppf*D.

COROLLARY (3.5) (Ramification Theorem). // /eMer*(Cn, V) ramifies over
D with order at least λ, then

1

Remark. To see what Theorem (3.2) amounts to, we consider the case
where 3) is the upper half plane H. The assumption for Γ to be neat and
arithmetric is used only to ensure a good compactification Γ\H of Γ\H, and
the argument works in the case where ΓaPSL{2, R) is a Fuchsian group cor-
responding to a finite Riemann surface S=S—{/>*}?=i Here S denotes a com-
pact Riemann surface with genus g and pt are distinct points of S. In this
case we have

r=i, D=:^ιP^

0/(10=1-7h

where Tf(r) is the characteristic function with respect to the point bundle over
S. Therefore Theorem (3.2) yields the classical defect relation:

Σ
1

4. The case of other domains than Cn

(a) We consider a meromorphic mapping / : X->V of maximal rank from
a finitely sheeted covering space X over Cn into V (cf. [12] and [14]). Let R
be the ramification divisor of X->Cn and assume that n<m. We define Tf(r, ώ)
and N{r, Supp/*D) and etc. in the same way as in [12]. Then we have

(4.1) γ{Tf(r, IDJ)+Tf(r, K(V))} £N(r, Supp f*D)+N(r, R)+S(r),

where S(r) is the same as in (2.4). Note that X-^Cn is algebraic if and only if

N(r, R)=O(logr).

Therefore, if X is an affine algebraic, then the term N(r, R) is included in S(r).

(b) Let Δ be the unit disc (\z\<l)aC and J*=J-{0}. Let / : J*-+F be
a non-constant holomorphic mapping such that f(Δ*)Γ\Vφ0. We deal with
the behavior of / around the isolated singularity 0. Changing the coordinate
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of J*, we write

J*={u/e=C; \w\>l\

and assume that / is defined on

for a small <5>0. We define Tf(r, ω\ N(r, Supp f*D) and etc. as in [13]. Then
we have

(4.2) γ{Tf(r, [J9])+T/(r, K{V)) £N(r, Supp f*D)+S(r),

where S(r) is the same as in (2.4).

As an application, we give a Nevanlinna theoretic proof of the extension
theorem due to [8] and [3].

THEOREM (4.3). Let f: {0< | ^ | <1}-^V be a holomorphic mapping. Then f

extends to a holomorphic mapping from { |2|<1} to V.

Proof. It follows from (4.2) that

Tf{r,

since N(r, Supp f*D)=Q. This is sufficient to conclude the extension of / (see
[13]). Q.E.D.

Remark. See also [6], [9], [13] and [15] for related results.
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