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1. Introduction
We consider the second order linear differential equation
f7+Af=0, D

where A is an entire function. For an entire function f, let p(f) be its order,
p(f) its lower order and A(f) the exponent of convergence of its zeros. In addition,
we assume that the reader is familiar with the standard notations of Nevanlinna
theory (see [3]).

When A is a polynomial of degree n=1, S. Bank and I. Laine obtained the
following ([1]).

THEOREM A. Let A be a polynomial of degree n=1. If f=£0 is a solution
of (1), then

o(f)=(n+2)/2, 2
and if fi, fa are two linearly independent solutions of (1), then
max (A(f1), A(fD)=(n+2)/2. 3

If A is transcendental, we apply the lemma on the logarithmic derivative in
Nevanlinna theory to (1) and can deduce that any solution f==0 of (1) satisfies

p(f)=co. “)
We may hope that
max (A(f1), A(f2))=00, %)
where f, and f, are linearly independent solutions of (1). However, examples

in [1]J show that this is not the case. Specifically, for p(A) a positive integer
or infinity, there exist A and independent solutions f,, f, of (1) such that
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max (A(f1), Af)<ee.

When the growth of A is suitably restricted, the following were obtained.

THEOREM B ([6]). Let A be a transcendental entire function of finite order

and of lower order u<1/2. If f, and f, are two linearly independent solutions
of (1), then

max (A(f1), A(f2))=c°.

THEOREM C ([5]). Let A be a transcendental entire function of order p(A)<1.
If f, and f, are two linearly independent solutions of (1), then

2(f1f2)=00
or
p(A - A(f1f ) 1E2.

In this paper, we prove

THEOREM 1. Let A be a transcendental entire function of lower order
WAL, If f, and f, are two linearly independent solutions of (1), then

:«flfz):oo

or
(A A1 f) T E2.

Remark. Theorem 1 generalizes Theorem B and Theorem C. Furthermore,
we note that the condition p(A) is finite in Theorem B is not necessary.
Before stating Theorem 2, we introduce some definitions. Let

f2)= ;:}o anz"

be a transcendental entire function. We denote by A={2;}, M={p:} (k=1,2, )
the sequences of exponents n for which a,=0 and a,=0 respectively, arranged
in increasing order. We say that f(z) has Fabry gap if

2—"—)00 (n—o0).
n

Now we have

THEOREM 2. Let A be a transcendental entire function of lower order
w(A)< oo and have Fabry gap. If fi and f, are two linearly independent solutions
of (1), then

max (A(f1), A(fo))=00.
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2. Preliminaries

LEMMA 1. Let E be an entire function of finite order, then there exist a
positive integer q and a set AC[1, ) of finite linear measure, such that for
z&4*, we have

2|E"/E@)|+1E'/E(2)|*<|z|%,

where 4*={z: |z| SA}.

This lemma can be deduced from [2].
From [4, Theorem 4], we have

LEMMA 2. Suppose that A(z) is an entire function and has Fabry gap such
that for some arbitrarily large R we have

log M(R, A)<R*, (6)

where 2 1s a positive constant. Let 7., 1), be constants between 0 and 1, then there
exists a subset E of the real axis, such that the logarithmic measure of EN[1, R]
is at least (1—mn,)log R+0(1), as R—oo through values satisfying (6) and such
that we have, for r in E,

log L(r, A)>(1—n,)log M(r, A),
where L(r, A)=min|A(z)| and M(r, A)=max|A(z)|.
1zl=71 Zl=1

3. Proof of Theorem 1

Let f, and f, be two linearly independent solutions of (1). Set E=f,f,,
then we note as in [1] that

—4A=(c/Ey—(E'/E)’+2E"/E), @

where ¢ is the constant Wronskian of f, and f,. Applying Nevanlinna theory
to (7), we have

T(r, EY=NGr, 1/E)+ 5 T(r, A)+000g rT(r, E)) ®
as r—oo outside a set of finite measure.

We assume that p(E)<co. Since p(A)<1, A(z) must have infinitely many
zeros. Let ay, a,, -+, ag41 be g+1 zeros of A(z) with ¢ as in Lemma 1. Define

HE@)=A@) /T z—a),

then H is entire and of lower order u(H)=p(A)<L.
Set
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D(H)={z: |H(2)| >1},
D(E)={z:|E(z)| >1}.
Since H(z) and E(z) are transcendental, there exist z;=C (=1, 2) such that

‘H(zl)l >ey
| E(zz)| >e.

Let 2, (2,) be the connected component of D(H) (D(E)) containing the point
z:(z;). By the maximum modulus principle, we conclude that 2,(:=1, 2) are
unbounded.

Set

ro=max{1, |zl|) }22‘}°
Let 0.,(:=1, 2; r,<t<oo) be the part of the circle |z|=¢t in 2, and t0;(t) the

linear measure of 6.
By Lemma 1 and (7), we deduce that

4|AR)| < cl*+1z]7,  zeD(E)—4*. 9
But for ze D(H)—4* and |z| sufficiently large, we have
4@ 25 Izl (10)
From (9) and (10), we have for r,’ large enough
(D(E)—4¥)NN(D(H)—4*)N\{z: |z| >r '} =¢. (11)
(11) implies
0,@)+0.)<2x, tE4. (12)

By a theorem of Tsuji [7], we have

- air  dt
log| H(zy)| <0v Texp(—x | """ ") log M, H). (13)
(13) gives
arr  dt o
T Szro 0.0 <log log M(r, H)+log(9v'2). (14)
Set
Gr)=[2n, 37|~
and

dt

—N -1 0.1
a—lfl‘%le (log 7) nSG(T) 10:(8)

then, from (14), we have
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> SasuH). (15)
Similarly
nSGm o Slog log Mr, E)+1og(®V'2). (16)

By Cauchy-Schwarz inequality

04(t) d d '
Sa(r)TtdtSG(n tﬂét) g(Smr)l.‘_t)z’ =12 an

From (12) and (17) with /=1, we obtain

S 04(t) dtsg 2 —0,(t) dt
Gcry 1 ~Jer t

_ dt 04
_zzgo(r)t Sa(r) t d

dt\
cerrtls(t)
(18) and (17) with ;=2 give
S dt > (SG(T)%)Z
Gery 10, ~ (S c;t
o _\Jewr
o t SG(r)w:(f)
=%, (19)
2 — G(r)ét
6 t05(®)

Since 4 is of finite linear measure, from (16) and (19), we obtain

—log log M(r, E)
p(E)=Tim B0 20

dt

>lim o 10,t)
2l togr)s |, 7.

1
2=a

Sa—1" (20)
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Inequalities (15) and (20) give

(H)
>_ o/
p(E)z () =1
which implies

p(E) +p(A)'=2. @D

We assert that p(E)=co implies A(E)=co. If A(E)<co, we would arrive at
a contradiction.

Let E=Pe? where P is a canonical product formed by the zeros of E and
Q is an entire function, then p(P)<oo. Since p(E)=o0, @ must be transcendental.
From here, we conclude that u(E)=-co.

For any a>1, we have by (8)

—;—T(r, E)Y<N(ar, 1/E)+%T(ar, A), (r large enough). (22)

(22), u(A)<1 and A(E)<co imply
ME)< 0.

This gives a contradiction.
Similarly, we can prove that if p(E)<co, then A(E)=p(E). From (21), we
have

ME) '+ p(A) 2.

We have completed the proof of Theorem 1.

4. Proof of Theorem 2

Applying the Wiman-Valiron theory to (7), we conclude that there exists a
set D in [1, =) of finite logarithmic measure such that if »ED and z is a point
on |z|=r at which |E(z)|=M(r, E), then

y(r)\2
2141 =(2), (23)
where y(r) denotes the central index of E. It follows from Lemma 2 that there
exists a sequence »,—oo such that r,e E—D

L(ra, A)SM(r,, A2, (24)
From (23) and (24), we have for any positive integer N
ra¥ g X0n) (25)
Ya

which implies
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The proof of Theorem 2 can be completed in the same way as that of Theorem 1.
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