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TIME OPTIMAL CONTROLS FOR SEMILINEAR DISTRIBUTED

PARAMETER SYSTEMS— EXISTENCE THEORY

AND NECESSARY CONDITIONS*

BY JIONGMIN YONG

Abstract

For a semilinear controlled evolution system with state dependent control
domain, we study the existence of admissible trajectories, the properties of
attainable set as well as the existence of time optimal controls. For the case
the control domain is independent of the state, a PontryaghYs type maximum
principle is proved.

§ 1. Introduction.

In this paper, we consider the following controlled evolution system

(1.1)

where A : £)(A)c:X-*X generates a Co-semigroup eAt on the underline space X,
u(t) is the control function valued in some metric space U, x(f) is the state of
the system valued in Xanά / : [0, oo)χZx£7— >Xis a given map. Let us denote

<U[s, r]={w( ): [s, r~\-*U\u( ) is measusable},

for any 0^s<r<oo. For any ytΞX, 0^s<r<co and u(-)^cU[,s> r], a function
;c( )^C([s, r]; X) is called a (mild) solution of (1.1) corresponding to (y, w( )),
if it satisfies the following integral equation

(1.2) x(f)=eA^'^y+^eA^'^f(τf x(τ), u(τ))dτ , ίe[s, r] .

Now, we are also given (multivalued) maps Γ: [0, oo)χj^->2^ and Q: [0, oo)
-»2*. They will be the (state dependent) control domain and the target set.

DEFINITION 1.1. Let (Ks<r<co and ytΞX. We say (*(•), M( ))^
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C([s, r]; Z)X<U[s, r] is an admissible pair (corresponding to y^X) on [s, r],
if (1.2) is satisfied and

(1.3) M(f)€=Γ (f , jc(0) , a. e. ίe [s, r] .

In this case, we refer *(•) and u( ) admissible trajectory and control, respec-
tively.

We denote

, r]; ;y)={(x( ), κ( ))eC([s, r] *)χ<U[s, r] | (*(•), M( )

is an admissible pair corresponding to y^X],

, r]; 3>)={*( )eC([s, r]; *) I (*(•), M( ))e=Λ([s, r]; y),

for some M( )<Ξ^[S> r]j,

; s, 3>)={*(r) I x( )e=2r([s, r] y)}.

Next, we let

; 30= {(*(•), M( ))e U^([s, r]; 3^) I *(i)e(2(i), for some ί^s},
r>s

U
s<r<oo

Then, our time optimal control problem can be stated as follows:

PROBLEM T. Let ^(s; ^)^0. Find (**(•), M*( ))^JS(S;
such that

(1.4) ί*= min inf £T(%(0).

If **(•), u*( ), ^* exist solving Problem T, we refer **(•), u*( ), U*(0, M*( ))
a time optimal trajectory, control, pair, respectively and ί* the minimum hitting
time.

Time optimal control problems were studied by many authors. We refer
the readers to [4, 17, 18] for finite dimensional (linear and nonlinear) cases, to
[1, 3, 10, 13] for infinite dimensional linear case and to [19] for infinite dimen-
sional semilinear case. We should note that [19] discussed the necessary con-
ditions for a semilinear distributed parameter system with target sets having
nonempty interior. Thus, the results of this paper differ those of [19] in the
following two aspects. First, we discuss the existence of the admissible trajec-
tories as well as optimal controls for the case of state-dependent control domain.
Second, we prove a Pontryagin's type maximum principle for the case of state-
independent control domain and the target sets not necessarily having non-
empty interior. Also, the method used in proving the necessary conditions is
adopted from [15] and is different from that used in [19].
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§ 2. Preliminaries.

We refer the readers to the Appendix for results about multivalued mapp-
ings. Now, we list basic assumptions for our control problem:

(HI) X is a reflexive Banach space, U is a Polish space ([5]).
(H2) The operator A : £)(A)c.X-*X generates a compact Co-semigroup eAt

on X.
(H3) /: [0, oo)χXχU->X is Borel measurable in (t, x, u\ continuous in

(x, u) and there exists a constant L>0, such that

f |/(f, x, u}-f(t, x, u)\^L\x-x\, We[0, oo), x,
(2.1)

f, x, M)!^

(H4) Γ: [0, <χ>)χX-*2u is pseudo-continuous.
(H5) Q: [0, oo)χ^->2jr is pseudo-continuous.
(Hβ) For almost all fe[0, oo),

(2.2) Πco/(ί, %M, Γ(%(ί, x)))=/(f,
δ>0

where %00={*e^f| | jc— Λ|<β} and similar for 31$, x).
Following result gives a sufficient condition for (Hβ).

PROPOSITION 2.1. Let Γ: [0, oo)χX-*2u be upper semicontinuous and take
closed set values and let f ( t , x, u) be uniformly continuous in (x, u) and te[0, oo).
Then, (Hβ) holds iff f ( t , x, Γ(t, x)) is closed and convex.

Proof. It suffices to prove the sufficiency. By the uniform continuity of
f ( t , x, u) in (x, u), for any ε>0, there exists a σ>0, such that

f ( t , m,(x\ mβ(Γ(t, x)))Cf».(/(ί, x, Γ(t, x))).

Then, by the upper semicontinuous of Γ, there exists a δ with Q<δ^σ, such
that

Then, (2.2) follows. Π

Remark 2.2. (Hβ) is a sort of Cesari property ([1, 4]).

Remark 2.3. In [1], the existence theory of optimal controls for the dis-
tributed parameter systems was given under the framework of strong solutions
of the evolution equations. It was asked if one can do the same thing under
the framework of mild solutions. This paper actually gives a positive answer
for the time optimal control problems of a class of distributed parameter sys-
tems. For various other optimal control problems of distributed parameter sys-



242 JIONGMIN YONG

terns, the above approach will also work. We will carry out the full details as
well as some related problems in a forthcoming paper.

§ 3. Existence of Adimissible Trajectories and Time Optimal Controls.

In this section, we first establish the existence of adimissible trajectories.
Then, we will discuss the existence of time optimal controls.

THEOREM 3.1. Let (H1)-(H4) and (H6) hold. Then, for any y^X, (Ks^

(3.1) *([s,r];3θ*0.

Moreover, the set 3£([s, r~\ y) is compact in C([s, r] X).

We note that in the case Γ(t, x)=Γ(t\ V(f, *)e[0, oo)χZ, i.e., the control
domain is independent of the state x, then, to get (3.1), we only need that
Γ( ) : [0, oo)-»2^ is measurable, A generates a Co-semigroup on X and (2.1) holds.
However, in the case Γ(t, x) depends on x, the problem becomes a little com-
plicated. To prove the above Theorem 3.1, we need the following lemma.

LEMMA 3.2. Let eAt be a compact Co-semigroup on X. Then, for any p>l,
the operator

(3.2) Ste( ))=/c -r)*(r)<fr, V*( )eL*(s, r; Z),

is a compact operator from Lp(s, r\X) to C([s, r] X).

Proof. Without loss of generality, we let [s, r]=[0, 1]. Next, we let
;*) with

(3.3) ll**( )IU*co.i;;r>£l,

We need to prove that {S(#*( ))}**ι is relatively compact in C([0, 1]; X). To
this end, we first claim that for each te[0, 1], the set {S(£*( ))(0}**ι is rela-
tively compact in X. In fact, the case f=0 is trivial. Let fe(0, 1]. Then, for
any ε>0, we can find a δ with 0<δ^ί, such that

(3.4) Γ β*'-r>
Jt-δ

Next, it is clear that if we put

then, the set {y*}*δι is bounded in X. Thus by the compactness of eAδ, we
can find a finite set {^t, 1^/^m} in X, such that
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(3-5)

Then, we see that

(3-6)
1=1

Hence, for each fe[0, 1], {S(£*( ))(0}*2ι is relatively compact in X. Next, we
show that {S(#*( ))}**ι is equicontinuous on [0,1]. In fact, for t'>t>0 and

f, we have

Γ
Jί-δ

It is easy to see that for some constant C,

l/.I^Cί.

Thus, by the fact that eAt in continuous in the operator topology in (0, oo) ([16]),
we obtain the equi-continuity of the set {S(#*( ))} on [0, 1]. Then by Arzela-
Ascoli Theorem ([20]), we have our conclusion. Π

Proof of Theorem 3.1. Again, we only prove the case [s, r]=[0, 1]. For
any &ί>l, let

We set

* 0, 1] .,.

Here, uj's are constructed as follows: First, we take

By (2.1), we know that there exists a unique **(•) satisfies
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Xk(t}=eAty+VeA«-^f(r, x»(τ), w")rfr , Vίe[ί0,J O

Then, we take

We can continue the above procedure to obtain #*(•) on [tlt f2], etc. By induc-
tion, we end up with the following:

We[0, 1],

By GronwalΓs inequality and (2.1), we see that

(3.8) [**(OI^C, Vie [0,1],

(3.9) |/α, jc»(ί), uk(t})\<C, a.e. ίe[0, 1],

By Lemma 3.2, we know that {xk( )}k^\ is relatively compact in C([0, 1]; X\
Then we may assume

(3.10) *,(.)_!>£(.), in C([0, 1];Z),

for some jc( )^C(CO, 1] Z). Also, we may let

w
(3.11) /(-, x*( ), «*(• ))—>/(•), in Lp(0, l -Y),

for some f ( )(ΞLp(Q, 1; J?). By the compactness of the operator S, we have

(3.12) jc(i)=^^ + (Vct'r7(r)dr, ίe[0, 1] .
Jo

By (3.10), for any <5>0, there exists a fe0, such that

(3.13) %,(Oe%(Jc(0), Vie [0,1], & ^ & 0 .

On the other hand, by the definition of uk( \ one may assume

(3.14) κ*(OeΓ(f,, x*

Next, by (3.11) and Mazur Theorem, there exist au^O ( ^l and finitely many
i for each 7) with ^^alj—l) such that for some p<°o,

(3.15) ^-(0- Σ^/( , Λi( ), tti(O) —>/(•), in L'(0, 1; Jf).

Then, we may assume

(3.16) 0X0 — > /(ί) , in X, a. e. ί e [0, 1] .
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On the other hand, by (3.13) and (3.14), we see that for large,

(3.17) ψj(t)tΞco f ( t , 3lδ(x(t)), Γ(mάf, *(0))) , a. e.

Thus, for any β>0, we have

(3.18) /(ί)ecδ/(ί, md(x(t)\ Γ(mδ(t, jc(0))), a.e.

By (H6), we get

(3.19) /(βe/(f, jc(0, Γ(ί, jc(ί))), a.e.

By Theorems A.3 and A.4 of the Appendix, we know that there exists a ΰ( )
(=<U[0, 1], such that

f w(Oe=Γ(f, jc(0), a.e. fe=[0, 1] ,
(3.20) J

ί /(*)=/(*, *(0, w(0) , a. e. f e[0, 1] .

Combining (3.20) and (3.12), we see that

(*(•), *( ))eΛ([0, 1];3;).

Thus, (3.1) follows. Finally, let {.**( )}^ιCl3Γ([0, 1]; y) with

Then, as in the above proof, we see that {x*( )\kzι is relatively compact in
C([0, 1] X). Moreover, if for some subsequence (still denoted by itself), one
has

**( )-^>*(0, in C([0, 1] *) .

Again, by (Hβ), we have *( )€=3?([0, Y];y\ Thus, 3?([0, 1]; 3;) is compact in
C([0, 1];^). Π

COROLLARY 3.3. Let (H1)-(H4) and (H6) hold. Then for any y^X and
o, the set 3ί(r9 s, 3;) is nonempty and compact in X.

PROPOSITION 3.4. Let (H1)-(H4) and (H6) hold. Then, for any ytΞX and
se[0, oo), the map 3l( s, y ) : [s, oo)->2x is continuous (with respect to the Haus-
dorff metric

Proof. By Theorem 3.1, we know that for the given y^X, se[0, oo) and
any re[s, oo), we can find a continuous, nondecreasing function ω: [0, oo)->
[0, oo) with ω(0)=0, such that

(3.21) l*(0-*(ni^ω(U-Π), ί, ί^[s, r], *(0e=2:([s, r] 3^) .

Then, it is easy to see that
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(3.22) pπWt; s, y\ &(tf s, y)}^ω(\t-t'\) , Vί, f'e[s, r] .

This proves the continuity of the map &(• s, y). Π

THEOREM 3.5. Let (H1)-(H6) hold. Then, Problem T admits at least one
solution.

Proof. Let x^X, (**(•), M*( ))e^(0; *0), i*e£r(**(-)) and

(3.23) limί*=ί*= inf inf£r(*( ))

Thus, by the definition of £Γ(;e *(•))> we have

(3.24)

On the other hand, by Theorem 3.1, we may assume that all #*( )'s are defined
on [0, ?j] and we may also let

(3.25) ^, (.)_Λ f (.), in C([0, ίJ J?),

for some £( )<Ξ.2£([0, fx] Λ:O). As a consequence, we have

(3.26) ^(f^)—^^*), in X.

By Proposition 3.4 and (3.24), we have

(3.27) jc(f*)e^(f*;0, *„).

It follows from (3.23) that for any ^>0, provided k large enough, one has

Thus, by the pseudo-continuity of Q( \ we have

which gives,

jc(ί*)e5l(ί*;

and our conclusion follows. D

§4. Necessary Conditions for Time Optimal Controls

In this section, we prove a Pontryagin type maximum principle for our
time optimal control problem. To this end, let us first make the following
assumptions :

(Ml) X is a Banach space with strictly convex dual A"*, U is a metric
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space.
(M2) A : £>(A)c:X-*X generates a Co-semigroup eAt on X.
(M3) /: [0, oo)χXχU->X is measurable in ί, continuously Frechet differ-

entiable in x and continuous in u. Moreover, fx(t, x, u) is bounded.
(M4) Γ : [0, oo)->2C7 is measurable (see Appendix).
(M5) Q : [0, co)->2JΓ is continuous (with respect to pH) taking closed convex

set values.
We define

cuad={u( ) : [0, oo)-»£/|w( ) is a measurable selection of /"(•)}.

Sometimes, by 'Vadl.a, b~\ we mean the elements cϋad restricted to the interval
[0, b~\. It is clear that under (M2)-(M3), for any xQ^X and w(-)e^ad, there
exists a unique solution of

(4.1) x(t)=eAtx0+eA^-r^f(τt x(τ\ u(τ}}dτ ,

Thus, (*o, w( •)>-**(•) is a well-defined map from Zx^α^ to C([0, oo); χ\
Sometimes we use the notation x( u( \ XQ) or x( u( )) to indicate the corre-
sponding dependence. It should be pointed out that the conditions on the map
/ can be slightly relaxed. But we prefer not to give the most general one.

We find that due to the different nature of the existence theory and the
necessary conditions, the sets (H1)-(H6) and (M1)-(M5) are quite different. From
[2], we know that if X is reflexive or separable, then one can renorm the
space so that the dual X* is stractly convex.

Now, we let (#(•), «(•)) be an optimal pair with t being the optimal hitting
time. We set

(4.2) + l ( ί - r ) [ / ( r , x(r\ u(r))-f(r, x(r\

e[0, ί], M

We usually refer the set A( ) the reachable set of the variation system alone
the pair (x( \ ίί( )) Following notion will be necessary.

Definition 4.1. A subset KdX is said to be finite codimensional if for some
x<^cδK, span{cδ^ί— x} is a finite codimensional subspace of X and cδK—x has
nonempty relative interior part in span{cδK— x}.

Our main result of this section is the following

THEOREM 4.2 (Maximum Principle). Let (M1)-(M5) hold. Let (jc( ), «(•), ί)
be optimal. Suppose &(t)—Q(t) is of finite codimension. Then, there exists a
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0( •)=£(), such that

(4.3) #0=*"cϊ ' W ) + * c r ~ 0 / * ( r , jc(r), ΰ(r))*φ(r)dr , fe=[0, ί] ,

(4.4) φ(t), f ( t , x(t), ΰ(t))ydt= max
r

(4.5)

Moreover, if U is a Polish space, then, (4.4) becomes

(4.6) <φ(t), f ( t , x(t), «(*))>= max <#f), /(f, *(0, M)> , α. e. ίe[0, T] .

Proof. Let T>ί be a fixed constant. We define

(4.7) 3(u(-), β( ))=meas{ίe=[0, T] : u(t)Φu(t}}, V M ( ),

Then, similar to [11, 15], we see that ("Uα^O, T], <7) is a complete metric space.
Next, we define

(4.8)
ΞΞ inf

It is clear that Fe( ) is continuous on (^UαdCO, T], J). Also, by the optimality
of (£(•)> w( ), ?)> ^ε( ) is strictly positive on 'UαdCO, T]. Moreover, (note £(•)=
Λ( , iί( )))

(4.9) F.(β( ))=dQcz-.)(Λ(ί-β))=σ(β)— >0, ε->0.

Thus, by Ekeland's variational principle ([9]), one can find a wε( )<Ξ^αίz[0, T1],
such that

(4.10)

Now, we let w( )ecUα(i[0, T] be fixed. Then, as in [14, 15], for any p<=
(0, 1], there exists a measurable set J5^c[0, T], such that meas Ep=pT and if
one defines

then, MjCOe^αdCO, T] and the trajectory *«(•) of (4.1) corresponding to (*0, Mj( ))
satisfies

(4.11) xί(0=Λ:'(0+/of.(0+^), uniformly in te[0, T] ,
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where £,(•) satisfies the following variation system

(4.12)

r, Vfe[0, T].

Then, as in [15], under (Ml) and by the convexity of Q(t—ε), we know that

is a singleton and moreover

(4.13) \ψ'\x =l.

Then, by (4.10), we obtain

(4.14) — V<r(ε)^<^ε, ξ8(t—ε)>,

and

ξ,(t) —> ξ(t) as ε->0, uniformly in ίe[0, T] ,

with
t

(4.15)

r, Vie [0,7].

Thus, combining (4.14), we have

(4.16) <ώ

On the other hand, by the convexity of Q(t—ε\ one has

(4.17) <ψs, y-xε(t-ε»^dQct-εM-dQCt-S)(xε(t-ε)),

Thus, for all y<^X, we have

(4.18) <φε, y-x(t)y=<ψε, xs(t-ε)-x(t»+<ψε, y-ζε(t-ε)y

From (4.17) and (4.18), we obtain

(4.19) <ψε, £-(3>

Hence, if &(t)—Q(t) is of finite codimension, then, as in [11, 15], we can find
a subsequence of {ψε} (still denoted by itself), such that
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(4.20) ψs — >φΦQ, ε-»0.

Then, from the above, one has

(4.21)

(4.22) <ψ, y

Now, we let

(4.23) #(0=-^*cl tV+jy*cr"0/«(^ Z(r), ύ(r}γφ(r}dr , ίe[0, ί] .

Then, one can easily check that

(4.24) 0^<#Z), #?)>= (r), /(r, *(r), κ(r)-/(r,

This gives (4.4), and (4.5) follows from (4.22) easily. By (4.20), we see the
costate φ( ) is nonzero. Finally, we prove (4.6) in the case U is a Polish space.
To this end, we first note that (x( ), #(•)) is an optimal pair for the problem
with Γ(t) replaced by Γ(t). Then, by the above proof, we see that

(4.25) <#r), f(r> x(r\ u(r)}ydr(φ(t\ f(r,

for all measurable w( ): [0, ϊ]-*ί/ with u(t)^Γ(f) a.e. fe[0, T].
Now, if (4.6) were not true, then, there exists a set JEc[0, T] with positive
Lebesgue measure, such that for some d>0, we have

(4.26) sup_<^(0, f ( t , X(f), u)y^<ψ(t), f(ΐ,
weΓ

Then, we set

(4.27) Λ(f)={tt€=Γ(f) I < (̂0, /(ί, Λ(ί), u»^φ(t\ f ( t ,

It is not hard to show that yl : E->2ί7 is measurable and taking closed-set values.
Thus, by Theorem A.3, we can find a measurable selection v( ) of Λ( ) Then,
by taking

M(0=«(03tβ.nur(ί)+ WWO , ίe [0, T]

in (4.25), we end up with a contradiction. Thus, (4.6) follows. π

To close this section we state the following result, the proof of which is
easy.

PROPOSITION 4.3. Let K be a subset of finite codimension in some Banach
space X. Then, for any subset S of X, the set K—S is of finite codimension.

From the above Proposition, we see that in Theorem 4.2, the condition that
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A(0—Q(ί) being of finite codimension holds provided either A(ί) or β(f) is of
finite codimension.

Appendix. Multivalued Mappings.

In this appendix, we recall some results about multivalued mappings. First,
we recall the following definition.

DEFINITION A.I. Let T and Z be metric spaces, A : T->2Z={ nonempty
subsets of Z}.

(i) A is said to be continuous (with respect to the Hausdorff metric ρH) at
t<=T, if

(ii) Λ is said to be upper semi-continuous at ί(ΞΓ, if for any ε>0, there
exists a d>0, such that

(A.2)

(iii) A is said to be pseudo-continuous at ίeT, if

(A.3)

(iv) If T is a domain in Rn, then, Λ is said to be measurable, if for any
closed subset FdZ, the set

is (Lebesgue) measurable.
If in (i)-(iii), the mentioned properties hold for all ίeT, we simply say Λ

is continuous, upper semi-continuous and pseudo-continuous, respectively.

PROPOSITION A.2. Let Z be a complete metric space and Λ : T-*Z take
closed subset values. Then,

(i) // T is a metric space, then, the following implication chain holds

A is continuous =Φ A is upper semicontinuous

V closed set FC.Z, A"1 is closed in T

A is pseudo-continuous

G(A)=the graph of A is closed in TxX.

(ii) If T is a domain in Rn, then,

A is pseudo-continuous =Φ A is measurable.
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THEOREM A.3. ([12]) Let Tbe a locally compact metric space, U be a Polish

space, X be a complete metric space, Λ : T-*2U be measurable taking closed subset

values, f: TxU->X be measurable in t, locally uniformly continuous in x and
f : T-+X be measurable with

(A.4) 7(0e/(ί, Λ(0), a.e. teT.

Then, there exists a measurable function u : T— >£/, such that

( M(OeΛ(0,
(A.5) \ a.e.

THEOREM A.4. Let T be a domain in Rn, X be a metric space, U be a

Polish space, Γ:TxX-*2u be pseudo-continuous and x:T-^X be measurable.

Then, Γ( , *(•)): T-*2U is measurable.

The proof follows easily from the definition.
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