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ON SLOWLY INCREASING UNBOUNDED
HARMONIC FUNCTIONS

By ENRIQUE VILLAMOR

Abstract

In this paper we prove several growth results for slowly increasing un-
bounded harmonic functions in the unit disc. They generalize some of the
theorems in [4] for our new definition of maximum growth in a finite number
of directions.

§1. Introduction.

Let u(z) be a harmonic function in a plane domain £, consider the level
curves of u(z), lc)={z€R: u(z)=c} for —oo<c<oo, and let @@):Sl(c)wul

for —co<<c<<oo, where *du is the differential of the harmonic conjugate func-
tion of u(z), with the agreement that @(c)=0 if /(c)=0. We have the following
definition.

DEFINITION A. Let u(z) be a harmonic function in a domain £, if there

. v dc . v dc
exists a=u(2) such that, S ———< oo for every b>a, and hmbms ———=o00, then
a (C) a 6(6)

we say that the function u(z2) is a slowly increasing unbounded harmonic function.

Observe that by our convention for any bounded harmonic function the above
integral will take the value infinity for a finite value of 5. If the function
b
grows to infinity fast as we approach the boundary of £ the integral X ——g(cc)
a
increases more slowly, thus in a sense the functions defined above are the most
slowly increasing unbounded harmonic functions.
Consider the family of curves ['(a, b)={l(c): a<c<b} for —ooLa=<b< o,
We denote its module by the symbol g(a, b), then it is known that if I'(a, b)#0
and (a, b)Cu(2) then
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ma, =[5 (LD

This equality has proved itself of being of great importance, in particular it
gives a beautiful and short proof of the Ahlfors distortion theorem.

For any open set GC® if we denote by ps(a, b) the module og ['¢(a, b)=

b

{le)NG : a<c<b}, paa, b):Sa—@—i%, where @g(c)=gl(c)nal*dul.

In Jenkins and Oikawa [4] we can find an account of inequalities for these
modules, some of which shall be used in this paper giving the appropriate
reference.

Our interest will be focused in the growth of the quantities pl[a, u(z)],
te;la, u(z)] as z approaches the boundary of 2, because in some cases if we
can estimate the growth of g and pe, we obtain estimates for the growth of
the function wu(z).

Hayman in [2] showed that if f(z) is an areally mean p-valent function in
the unit disc and M(r, f)=max{|f(z)| : |z|=r}, then

a:lrig}(l-—r)“’M(r, f)

exists and 0=<a<co, also if @#0 then there exists a unique direction ¢‘%0 such
that

. .| f@ret?)|
(1) lrlf? (I—ryr %’
as r—1, and for any >0 there exist constants K; and K, such that

.. . | f(ret?)|
(if) R (=7 5B,
if 10—0,]>K,(1—7).
Jenkins and Oikawa observed that if the function f(z) is zero free, areally

mean p-valent and unbounded, then u(z)=log|f(z)| is a slowly increasing un-
bounded harmonic function satisfying the following inequality

[u(z)—al=2zppla, u(z)]+7,

where 7 is a universal constant.

Using the above inequality and (1.1) they obtained results on the growth of
pla, u(z)] and pela, u(z)] from which they were able to recover Hayman’s
results.

We are going to define the reduced module,

DEFINITION B. If (—oo, b)Cu(fR) and O(a) is constant for a small enough,
then
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a
6(a)
is called the reduced module of the family I'(—oo, b), f(b) is independent of our
choice of a.

Jenkins and Oikawa studied slowly increasing unbounded harmonic function
u(z) of maximum growth, i.e. u(z) has maximum growth in the direction ¢*%
if there exist sequences {b,}5-1, {¥s}5=1 such that:

(1) a<b,=u(rqe'’),

for n=1,2, -

(ii) lim 7,=1.

(iif) I [ (@, b)— L 1o [—l—ﬂ>—oo
im sup | (a, bn)— - log | 7=~ :

We generalize Jenkins and Oikawa definition to the case in which we have
a finite number of directions of maximum growth and different growths in each
direction.

For this new definition we generalize some of the results by Jenkins and
Oikawa [4] and by Hamilton [1]. Our principal method is the method of the
extremal metric making use of the identity (1.1), the basic tool which enables
us to obtain these results is the generalized arithmetic-harmonic inequality which
says that for A;, ---, 4,=0 and a,, -+, a,=0 we have

2;+ +12n < '21‘11+ +17Lan
Zl/an"l_"' +2n/an= ll+"' +27L

In section 2 we shall state the definitions and results of this paper and in
section 3 we shall prove all our results. Finally in section 4 we shall show that
Jenkins and Oikawa’s condition for maximum growth in one direction can not
be replaced by a weaker condition that we will state there, we shall construct
a function satisfying this condition but it will not have maximum growth in
just one direction.
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constant support and invaluable teaching.
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§2. Statements.

DEFINITION 1. Let u(z) be a harmonic function in 2={z:7r,<|z|<1} with
[a, «)Cu(f) for some value a. We say that u(z) attains maximum (a;, -+, @a)-
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growth in the directions ¢*#1, .-+, e*#2(Zk_, @,=1), if there exist sequences {ba}5-1,
{r¥}2,, =1, -+, k with the properties,

(i) a<b,Zulre*?s]
for n=1, 2, --- j=1, ---, &,
(ii) lim 7{1=1
for each j=1, .-+, &,
i) li [ (@, b )—Zk‘,a—?l [ 1 ]]>__Oo
(iii 1mn§£p ua, b, Z og ——l—rEZ] .
In the following definition we are going to translate our situation to the

case in which the domain of the function u(z) is a horizontal strip.

DEFINITION 2. We say that a harmonic function u(z) defined on an open
horizontal strip S of width = attains (ai, -, @;)-growth (Zkoia,=1), if the strip
is cut along horizontal slits with a finite left end and an infinite right end, such
that if we prolong the left ends to infinity the strip S is subdivided into 2 sub-
strips S,={{: [;<Im{<l+ra;} of width za,, j=1, -, k, (—o0, c0)Cu(S)), j=
1, -, k. If we define S;0)={L: [;+06<Im{<l+rma;—8} for j=1, -, k, then

(1) usa, b)<eo
for —co<a<b<oo.

(ii) ps(a, b) —> oo
as b—oo.
(iii) (IEIJIE sup_ u(é;+in)=-oo

where (&;+in;)—cS5,0), =1, -, k.

Let us remark here that Jenkins and Oikawa’s definition of maximum
simultaneous growth in the directions e*¢1, .-, e*?% [4, p. 60] is just Definition 1
for the case a;= - =a,=1/k.

The next two theorems extend results of Jenkins and Oikawa in [4].

THEOREM 1. Let u(z) be harmonic in Q={z:r,<|z|<1}. If u(z)is as in
Definition 1 and if we let S,=S{@,, 6,)={zR2: |largz—¢;| <d;}, j=1, -, k be

mutually disjoint sectors with a=u(S;), j=1, ---, k, then
(i) lim [ [e, u(z)]— L1l [——1—]]—
248195] ‘qu , UZ = g lz__e1,¢j| _'rJ

1=1, -, k, —co<y;< o, uniformly in Stolz domain.
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. _a, 1 1 que
(iD) pla, u@]=— 1°g[|z—e@¢j|]+"[[l°g 1—1z|] ]
j=1, -, kB uniformly as z—e'¢1 in a Stolz domain.

_ 1 1/2
(iif) ula, u(z)]—o[[log T—"W] ]

uniformly as |z|—1 in every sector whose closure does not meet the rays arg z=
¢]7 ].:1’ tty k.

THEOREM 2. Let u(z) be a harmonic function in Q={z:r,<|z|<1}. If u(z)
is as in Definition 1, then for any fixed ¢>1,

(i) there exist Stolz domains A, with vertices at ¢*?s and sectors S,=S(¢,, 6),
j=1, -, k, the sectors being mutually disjoint, such that

u(re*®i)>u(se?)
where r*<s<r'’®, and se’’ =(S,\A;) for j=1, ---, k, and r large enough.
(ii)
lim ps,[u(re's), ms,(r1=0,  j=1,-, k
o1
where ms(r)=max{u(z): |z|=r, z&S,}.
The next three results improve results in Hamilton [1].
THEOREM 3. Let u(z) be a harmonic function on an open strip S of width =

as in Definition 2. If {,=&;+in;— in a proper substrip of S, and b=u[&b)
+in b)], j=1, - k then we have that

e - L g0

with —coZa<oo, Moreover, if h(z)=1/2logz and u[h(z)]—A/2log|z| has a
harmonic extension at the origin, then

. 1

and —oo=a@Zu,/2rAd where w,=lim,.,[u[h(z)]—4/2log|z|], with equality &=
Uuo/2mA only for the function u(Q)=u,+2&.

COROLLARY 1. Let f(2) be an areally mean p-valent function in the unit disc
A with a Taylor series expansion at z=0 of the form f(2)=z"+ ---, such that
lim,.. ;| f(2)|=oc0, j=1, ---, k in some Stolz domains with vertices ¢*?1, --- , *%*,
Let us map the unit disc onto the slit strip S of width = by means of the con-
formal mapping
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z ;
(I1—ze*#1221 ... (1 —ze k)22 J .

Assume that the function log|f[2(0)]|=u(l), where z({) is the inverse of the
above function, has (ay, -+, a;)-growth as in Definition 2.

Then under these hypotheses, if z;—e'®s in a Stolz domain and |f(z;)|=R
=1, b

.1
C=E+m=glog[

k
lirr})? sup RII [1—|z;| *?*3=a+0,
—00 =1
where
k
H 1—[ l z¢]_e1,¢q| -2pajag
1=1g#J

with equality only for
ZZ’
ITio  (1—ze 94)2P%s °

f@=
Before we state our next result, we give the following definition.

DEFINITION 4. We say that a domain £ is a k-star domain if 02 consists
of % rays such that if we prolong them they pass through the origin, they are
not necessarily of equal length, and these prolonged rays are separated by angles
2ra,, j=1, ---, k with 3¥¢_, a,=1.

THEOREM 4. Suppose that f(z)=z+ --- is a circumferentially mean l-valent
function defined on a k-star domain Q. If z, is a point in the j-th sector of 2
for which |f(z;)|=R and

lim | f(z,)| =R —> oo
Zj=>00

for any j=1, ---, k, then

iy s0p-ppr 17 =1
with equality only for f(z)=z.
§3. Proofs of the results.
Proof of Theorem 1. Consider @j(c):-@sj(c)=g I*dul, j=1, -, k, by
2 d
the generalized arithmetic-harmonic inequality we have that Sa @(i) =
by d
ZHaJS (c) thus X} ajps(a, ba)—p(a, ba)20.
.7

1
Since u(z) satisfies Definition 1, we have that p(a, b.)— }3,_1 a) log [l—rEZJ]
=0(1). Thus
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k a2 1

k k
Ela.?#é'j(a’ bn)“ﬂ(a, bn)é Eia§ﬂ3j<a’ bn)_ 1_75{]

=1

therefore

Jéa%us,-(a, ba)—pe(a, by)=0(1). 3.1)

Proof of (i). Applying Theorem 2 in [4] to each S,=S(¢,, 9,), =1, ---, &,
we have that

tim [ss,fa, u(z)]—%log [———1—]]=r, 3.2)

1
ey z—e'%s

in a Stolz domain, —co<y;<o. Lemma 7 in [4], the arithmetic-harmonic in-
equality and Definition 1 give that for » large enough

I

Letting r—1 and taking z=re'¢s, j=1, ---, k in (3.2) we have that —co<—M<
Sk ia%r;4+C, which implies that 7,>—co, j=1, ---, k and thus (i) is proved.

Proof of (iii). Using the notation and the definitions [4], (3.1) says that
I61°—llpl*=0(1), where g=3}-1a;0s,, By inequality (8) in [4], [pll<[l0s,u..us,l
<|lgl, then

05008, 18ca.c03— 01 Bcacr= 1 053005, — Ol &ca,cr=0(1)

where 2(a, ©)={z€Q: a<u(z)<o}. By Lemma 8 in [4] we obtain that

o = 7

uniformly as |z|-—1 on any sector whose closure is disjoint from (S;\U --- US,),
this proves (iii).

Proof of (ii). As we saw in the proof of (iii) ||glléca,«>—]@ll5¢a,y=0(1),
then given ¢>0 we can take b, large enough such that

I 6— 0Nl Bcog.0>=1l Bl Bc50, 05— ”9”500-“)<[1I§I}2§ {ajtel®.

It is not difficult to see that we have the following identities,

. 1 .
(1 ”stll!z(bo.w:a—Hﬁ]lg(bo,b)nsj, j=1, -, k,
J

. 1 -
(i1 loléwe.0r=(0, ps)aws.03= ?x—(P, £)2.03n8; -
7

Using (i) and (ii) we find that,
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a;[ p(bo, b)—ar,p5(bo, b)]:aj[”p”!2)(170.b)'—aj”ij”Q(bo,b)]
=(0, Macwy.oons,— 10—l dcwg.0ns;-

Hence,

1

| p1(bo, b)—a;tt,(bo, b)|=7 I(p, p—ﬁ)mbo.b)ns,_”P—ﬁ”!z)(bo,b)nsjl .

J
Using the Cauchy-Schwarz inequality in the first term in the right hand side we
have that

| 1(bo, bD)—at;2(bo, )| és[”P”Q(bo,b)‘l‘E:l-

We are going to consider two possible cases, first if u(z)>b, we have that

lpla, w(z)]—a;pla, w(2)]| < pa, b)—axa, b)|+|plb, u(z)]—a;ulb, u(z)]l
‘-_1#(0, bo)+aj#j(a, bo)+5[||P||!2Ebo,u<z)J+5] . 3.3

Since [|p|5=pLb,, u(z)],

1 1 1/2
It wcrs=Calbn, w2115 Tlog [ = |+4]

thus
lela, w(a)]—a;pla, u(2)11<s[108 [1_—1|z—l]]m

for |z| close to 1.
If a<u(z)<b, inequality (3.3) is obviously satisfied, and the same conclus-
sion holds. Therefore the above inequality and (i) say that,

vla, u(z)]=—%—log [I_z——le’T’fT]"*_o[[lOg T_Tll'ﬁ}m}

for j=1, ---, B uniformly as z—e'¢s in a Stolz domain, this ends the proof of
(ii), and the Theorem.

Proof of Theorem 2. First we observe that (ii) follows from (i) using (i)
in Theorem 1, thus we only need to prove (i).

Fix je{1, -+, k} and a sector S,=S(¢,, 0;), and transform the variable z to
¢ by {=log (1/ze™*%5), let z({) be its inverse function. The image of S, under
the map {(z) is the rectangle R,={{:0<Rel<log1/r,, |Im{|<3;}, with ¢*¢s
corresponding to {=0. We consider the function u({)=u[2({)], then lim supe.,
u(&)=co. For u(f) part (i) of Theorem 1 says that

lin} sup [ﬂnj[a, u@1— %log [[—él—]]#j 3.4
—ooLy;< o0, uniformly as {—0 in a Stolz domain in R,.

We have to prove that, there exist a Stolz domain A, in R, with vertex at

€=0, a value £¥0<&*<logl/r,), and 0% 0<6%<d,; such that for 0<E<E¥,
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§/6<E<EE, |71<0% and GHingd, u@>uE-+in).
o w® d¢
Call {=¢&47n it is enough to prove that Su<2)—@:j(c—)>0'
Consider Aj={(: {=§+in, |7| <2e7¢}, take {=E+in#A), and |7|<df'=
min [25,/3, 1/2log 1/r,], set &'=(|7|/2¢**), then

Su(e) de _Su(e') de Su(é) de
u @Rj(c) " ud Orc) * Jue @Rj(c) ’

We are going to estimate the two integrals in the right hand side. We start
with the second integral,

Su(é) dc
u(é’) @Rj(c)

by (3.4) it is not difficult to show that

:#Rj[al u(E)]—#Rj[a; u(S')] »

uc§) dc __1— m
Jecer Gafc) w8y TOD 3.5
as {—0, {&A).
u¢)  d¢

i m. For this we use the following

We need to estimate now S

estimate in [4, p. 55].

Su(&) de

wers Opy(c) é[%“(l)}[k’g ‘g‘ +0(1)] 3.6)

as {—0, {&A).
Using (3.5) and (3.6) we have that

w®  de 1. Ipl Il e
Su(i) @R (C) = l E +O(1) [log é +O(1):| .
Since C=§+z’77§éA' and &/C<EZTE, the right hand side is bounded below by
log IWL_llogcJFO(l) [log !El +O(1)]”2

as {—0, thus we can choose a wide Stolz domain A, and small &%, §% such that
u(§) d
for 0<§< 6%, §/e<6<26, |71<0F and L=E+ined, |55
udy Oryc)
fore u(&)>u(f), since the integrand is positive, and this finishes the proof of
the theorem.

>0, and there-

Proof of Theorem 3. Applying Theorem 2 in [4] to each substrip S,, j=
1, ---, & we have that

lim [ 15,(a, &) =1,
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J=1, -+, b, with —co<7;<c0, {,(b) in a proper substrip of S, and u[C,(b)]=b,
1, -+, k. Multiplying each of these limits by a? and adding them we get that

~
Il

tim 33 a3pes (@, b)— 22 Re(C0)) | =

with —oo<y<o. By the generalized arithmetic-harmonic means inequality we
obtain that there exists

hmsup[p(a b)— 2 ]Re{C](b)}]

with —oco<7<oo., We want to show that this lim inf is in fact a limit. To
show the existence of the limit we shall need the following definitions on each
substrip S,, j=1, -, k

Fix a point & in the real axis and let {i=&+ip3<S,, s=1, -, k. For
each ¢>u(Z?) let D,(c) be the component of {{&S,: u({)<c} containing £ It is
simply connected and each component of [S;,N\[dD,(c)]] is a piecewise analytic
arc contained in I(¢). If Dyc) is bounded to the right, then the unbounded
component B,(c) of [S,\¢/ Dyc)] is uniquely determined. For each ;=1, .-, k
fix a value a§” and for each ¢>a}? take 7,(c)=S,Ncl Dc)Ncl Byc), this is a
piecewise open analytic arc joining the upper and lower edges of S, Set &j(c)
=inf{Re{:{=7,c)} and &4(c)=sup{Rel:{=7,(c)}, by Lemma 2 in [4], lim,..&}(c)
=oo, Let

o A 1., .
tim inf | (0, 0)— -&)(b) | =a”
j=1, -+, k, and denote by f,a, b) the module of the family {r;,(c): a<c<b},
ai’<a<b. After these preliminaries we proceed to prove the existence of the
limit
. kEoa,
lim [y(a, b)—> —Re{Cf(b)}]-
Do =1 T
Let a,=max,.;<:{ay’}, we are going to prove that there exists the limit
tim [ (s, b)— 32 Re(T,0)} .
For this we prove that
k
tim [ a0, )= 3, 22&45) |=lim | atan, 1) 3 T-¢50)]
and then, since &(b)< Re{{;(b)} <L4(b), j=1, ---, k the result follows.
Let a°<b<b,’ then ﬂ(ao, b,)—'ﬂ(ag, b)=#(b: b’)r CIearly {rj(c): .7:]-’ B) k»
b<c<b'}ycI'(b, b'), thus we have that

k
b, b)=2, ajpis b, b"),
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and so

k
ao, b)—p(as, 0)S 3 THIEHB)—E(0)].
We can rewrite the above inequality as follows

a0, b)— 3 S80S man, b)— 2 2HE0), 3.7)

=

taking the lim sup in the left hand side of the above inequality as b—co, and
then taking the lim inf as b—o in the right hand side, we obtain

. Eoa S Eoa,; .,
lim sup | (@, b)— 2 52840 | limint | pao, b)— 3, Z2EB)|. G8)
If &4(b)<&j(b’) for each j=1, ---, k by a result in [3, p. 186]
k k
b, VD ZLIEb)—E4(b) 1423 at.
=1 T 7=1

Using the above inequality in (3.7) and following the same steps than before
we get

lim sup [y(ao, B—3 2 e p)—23) ag]gnm inf [y(ao, by— 3 &5';(1;)] .
bsoo T =1 bsoo =1 T

J=1 =1
Let @,=liminf,_.[p(a,, b)—ki(a;/m)Ej(D)], —oo=d;<. We consider two
different cases.
Case I. If @,=—oo, then clearly the limit is equal to —co.
Case II. If @,>—oc, by Lemma 4 in [4] we have the two identities
. Eoa .. koo
lim sup [y(ao, h—3 —fsg(b)]znm inf [y(ao, b)— 3 —’&;(b)], 3.9)
bosoo =171 booo =1 T
and

lim inf[y(ao, by— g;l%'_eg(b)]:ngl inf [p(ao, by— ]z::l%’s;-(b)] . (3.10)

Combining (3.8), (3.9) and (3.10) we obtain that lim,...[p(a,, b)—>% . (a;/x)
Re{l;(b)}]=a, with —co<Za,<oco. Therefore

tim| e, b)— ]zilgisj(b>]=a,

where a=a,+p(a, a,), this proves the first part of Theorem 3.

By hypothesis (#-h)(z)=4/2log|z|+v(z) in a neighborhood of the origin,
with ©(z) harmonic. Therefore e¢/®=2z%/2¢8» where Re{f(z)}=(u-h)(z) and
Re{g(z)}=v(z), g(z) is analytic in a neighborhood of the origin. For a small

9(a)=Sl(a)l*du l=Sh_1[lwnl*d(uoh)1:n2. Thus (b)=a/6(a)+p(a, by=a/xi+

¢(a, b). Therefore the existence of
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a=lim[ 70— 5 2240

follows from the first part of the Theorem.

We proceed to estimate @ For small q, /(a) is a simple arc joining the
upper and lower edges of the strip. Applying for each j=1, ---, £ the result
in [3, p. 186] we obtain the inequality

e, D=3 L8]~ 5 alf e~
Adding a/z2 to both sides of the above inequality we have that
Zoua, -3 0S5 e 5 @ EHO—§(,

the left hand side goes to & for fixed a as b—>oo, therefore by the definition of
&j(a) we have that

———I-O(l)— 2 ajf[§7(c)—E&5(c)] B.11)

as a—oo, since f(x) is a strictly increasing function, a<u,/wA.

Equality in (3.11) is possible if and only if &4(c)=&j)(c), j=1, -, k and ¢
large, then u({) must be a linear transformation of the form (a-+b¢), since
[(ueh)z)—A/2log|z|] is harmonic at the origin, u({)=u,+4&. This finishes the
proof of the Theorem.

Proof of Corollary 1. Let

: ]
- (l—ze *9r)2er |’

then lim,. .4, [§(2)+a,log [1—|z|]+log B,]=0 for each j=1, ---, kb, where B,=
Il e*Pa—erdi| %,

We proceed to estimate the reduced module f(log R) from below. The
function [u(z)—plog|z|] is harmonic at the origin, thus for R small enough we
have that @(log R)=2p=, and since the function f(z) is an areally mean p-valent
function, we have that

U=Ea+in(@)= 5 log | =g

logR 1 (2 dR
i(log R)=———++—\ —=——5—
fi(log R) 27 Sﬁkp(k)
log R 1 R 1
> —_———_—
Z5px T opr 08 R T gpg 08 K-
Substracting 3%, (a;/x)é(log R) from both sides of this inequality we have that
1

7 108 R— 3 224 (log R) log R)— 3, 5,10g ).
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The limit of the right hand side as R—w is less than or equal to zero by
Theorem 3 (u,=0), thus

Eoa,
tim 57— log R— 3} %¢,(log R)|
o [logR | E aj _ a,
=tim | G+ 3 S log (1= 2,1+ 3 5 log ,+0()|<0,

or equivalently,
k k
log R+ ]Z=1l21>a§ log(1—|z,)=— ]§12P¢1] log B;+o(1)

as R—oo. Exponentiating this inequality, and taking the lim sup in both sides
as R—co we obtain that

k
lim sup RII (1— |z;])P%i=a=+0
-~ 00 ]=
where

k k
a<TI ﬁ}“’“;:ﬂ 1I ]e1¢q_el¢j]—2pajaq'
=1 I=18#)

By the equality statement in Theorem 3, we have equality only if u({)=2p¢,
Y4
which means that log|f[z({)]11=2p&, thus f(2)= z

L (l—ze #iya; This ends
the proof of Corollary 1.

Proof of Theorem 4. We can not apply Theorem 3 in this case, since we
do not know where the points z, are located, thus we shall use another technique
in the proof of this result. To do that we have to restrict ourselves to func-
tions f(z) which are circumferentially mean l-valent.

We map 2 onto a strip of width 2z with horizontal slits with their left
ends finite and their right ends infinite by the map {=log z, if we prolong these
slits to infinity we have subdivided the strip S into substrips S, of width 2ra,,
j=1, -, k.

Let the harmonic function u({)=log|f[2({)]1], be defined on S, where 2(J) is
the inverse function of the principal branch of {=logz. We apply to each S,
j=1, -+, k Lemma 4 in [4] for n=1, to obtain

&’j(log R)—¢&)(log p)
2ra,

uilog p, log R)= — fL&5(e)—§5(c)]

for log p<c<log R, thus

&
2 a

7=

logR dx
i) o= ; a3 (log p, log R)

logp

’ o L§7(log R)—¢j(log p)]— 2 a3 f [€7(e)—€5c)]
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where @;(x) is the length of the image under the function log f(z) of I[(x)=
l(x)r\§7. Using the generalized arithmetic-harmonic inequality in the left hand
side of the above, and since X%, 0,(x)<2rx for any value of x for a circum-
ferentially mean 1-valent function, we have that

51; [log R—log p]=< ]5_:)1 ;—;[&?(log R)—¢&j(log p)]— ;‘é alf[&i(c)—E&xe)].

Now we proceed to estimate &%(log R) and &j(log p), j=1, ---, k for R large
and p close to zero. For &j(log R), we distinguish two cases:

Case (i). If af'=lim,...[paf?, b)—(1/2ra)€j(b)]=—co, then p af’ b)<
(1/2za;)&i(b) for large b and choosing b=Ilog R we obtain that

1
2ra,

1
#log p, log R)= 55— ~[£/(log R)—(log p)]= [log|z;| —log p].
J

Case (ii). If af?’>—oo then by Lemma 4 in [4] we have that lim...[§%(c)
—£3(c)]=0, thus §&j(log R)=log|z;|+0o(l) as r—co. By definition &j(logp)=
inf{Re{,: {5, u(¢,)=log p}, since f(z)=z+ -~ and z({)=¢", then log| f[z({)]|
= Re{{;}+o(1) as {;—— oo and so u({)=log| f[2({)]| = Re{{;} +o(1)=log p. Hence,
log p+o(1)=Re{l;} as p—0, thus &j(log p)=log p+o(l) as p-»0.

Using the above estimates we obtain that

%[log R—log pl= 12:% [log | z;] +0(1)—log p+o(1)]— szl alf[&4(c)—&xe)].

Multiplying the inequality by 2z and observing that the terms in both sides in
log p cancel we get

k k
log R< ]ZJI [loglz;l “l+0(1):|—27r]§1 ajf[E5(c)—&ie)].
Since the second term in the right hand side is non-negative we have that
k
log R=< El [log|z;|*+o(1)]

as R—oo, exponentiating this inequality we get that
Rk
II%-) 250 %
as R—co, thus taking the limsup as R—w we obtain

e

li =
S T OMPALE
Equality holds only if f[&%(c)—&j(¢)]=0 for j=1, ---, k and ¢ large, since f(2)
is positive and strictly increasing this is possible only if &7(c)=§j(c) for any
j=1, -+, k and ¢ large, which means that f(z) is a linear mapping of the form
(az+0b), and since by hypothesis f(z)=z+ --- this implies that f(z)=z. This
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ends the proof of Theorem 4.

§3. A counterexample.

Let u(z) be a slowly increasing unbounded harmonic function in ={z: r,<
|z| <1} with [a, «o)Cu(2), then u(z) attains maximum growth in one direc-
tion ¢*#o if

1

oo>a=lri13 [p[a, u(re‘%)]—%log [-1—:;]]>—°° ’

or equivalently if u(z) is defined in the strip S={{: |Im{|<=/2}, if
o> a=lim| pla, u@)]—E]>—co.

A natural question to ask is whether a weaker condition on p[a, u(§)] still im-

plies that we have maximum growth in one direction, namely, does lim;..

[ﬂ[a, u(@)]
3

In this section we are going to answer this question negatively by con-
structing a slowly increasing unbounded harmonic function #({) in the strip S

for which limfm[#—[a’—ﬂ]zﬁ with 8 finite and such that limg...[p[a, u(§)]

3
—§&/m]=—oo.
We define the following strip-like domain H in the W-plane, H={W=U+
iV:0_(U)<V<LP(U), —co<U<oo} where,

T, if UL0;
n+~U, otherwise,

]=T<oo imply maximum growth in one direction?

¢+(U)={

and
0, if UZ0;
vU, otherwise.

(I)_(U)={

Map H conformally onto S by the function Z(W)=XW)+:Y (W), where limy..
X(W)=co. The domain H is a L-strip according to the definition in [5, p. 280],
with boundary inclination y=0 at U=w. Let W(Z)=U(Z)+iV(Z) be the inverse
function of Z(W). We want to show that limx..,o[—“iq"’XLX)l
finite, and also that limx_.[p[U, U(X)]—X/a]l=—co.

Using the notation in [5], 8(U)=®.(U)—®@_(U)=r and,

] exists and is

/2, if U<0;

YW= [@+-(U)—¢_(U)]={ _ _
n/2++~U, otherwise.
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oo 012(U)
v, 6(U)
2817 we have the following asymptotic representation for Z(W)
v 14+T7%(t) . V=TW)
w00 T a0
as U—o uniformly with respect to V, and A is a real constant. We can choose
W in H so that ZW)=X, W=U(X)+:iV(X), thus

v 14+97%(1) V(X)=¥UX))
Uo o) ouUX)

as X—o. Taking real parts in both sides of the above inequality we obtain that

v 14-T7%(t)
Uy o)

If we choose U,>0, then S dU=0 converges trivially. Then by [5, p.

Z(W)=R+7rS +o(1)

X=l+7rg di+in +o(l),

X=/H—77:S dt+o(1)

asX—oo, for our choice of @, and @ _,

X:l—!—n‘SU(X)gt- SU(X) dt

v 'E*i-o(l)

Uo
UXx) dt

as X—co. We know that SU 2= pUs, UXO), hence

0

1L Ux) 2 X
*glOgT";—ﬂ[Uo, UXx)l— - +o(1)

as X—oo, Taking limits in both sides as X—co, we have that

tim [ 4V UC01— 2= lim [ - - log 57 2 — £,

The limit in the right hand side is —oo, thus limy..[p[U., U(X)]—X/n]=—00.

It remains to show that limy_. [ﬁgj"’%ﬂ} exists and is finite. We know
that
- UX) ﬁ l U(X)
X_z+n§U0 o log o)

U(X)

=1V~ Udl+ ¢ log T o)

as X—oo, we divide both sides of the equality by =X to get that

11 UX) A plUp U] 1
I X %y, zx X z o
as X—oo. It is not difficult to show that limy..1/Xlog (U(X)/U,)=0, thus tak-

ing the limit as X—oo in both sides we obtain that
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lim

Z-»00

[ﬂ[Uo,)gf(X)] ]z___nl_

as we wanted to show.
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