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ON SLOWLY INCREASING UNBOUNDED

HARMONIC FUNCTIONS

BY ENRIQUE VILLAMOR

Abstract

In this paper we prove several growth results for slowly increasing un-
bounded harmonic functions in the unit disc. They generalize some of the
theorems in [4] for our new definition of maximum growth in a finite number
of directions.

§ 1. Introduction.

Let u(z) be a harmonic function in a plane domain Ω, consider the level

curves of u(z\ l(c)={z<^Ω: u(z)=c} for —oo<c<oo, and let θ(c)=\ \*du\
Jl(c)

for — oo<c<oo, where *du is the differential of the harmonic conjugate func-
tion of u(z\ with the agreement that θ(c)=0 if l(c)=9. We have the following
definition.

DEFINITION A. Let u(z) be a harmonic function in a domain Ω, if there
cb dc fδ dc

exists a^u(Ω) such that, \ ~, . <QQ for every b>a, and limδ_oo\ ^, N — °°> then
Jα Ό(C) Jα &(C)

we say that the function u(z) is a slowly increasing unbounded harmonic function.

Observe that by our convention for any bounded harmonic function the above
integral will take the value infinity for a finite value of b. If the function

rb
grows to infinity fast as we approach the boundary of Ω the integral I

Jα

increases more slowly, thus in a sense the functions defined above are the most
slowly increasing unbounded harmonic functions.

Consider the family of curves Γ(a, b}—{l(c): a<c<b] for — co<;α<;b<oo.
We denote its module by the symbol μ(a, b), then it is known that if Γ(a,
and (α, b)du(Ω) then
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dc
θ(cΓ (1.1)

This equality has proved itself of being of great importance, in particular it
gives a beautiful and short proof of the Ahlfors distortion theorem.

For any open set GdΩ if we denote by μG(a, b) the module og ΓG(a, b)=

{l(c}Γ\G: a<c<b}> μG(a, *)=Γ g-£v WheΓ6 ΘG^=\I c G\*du\

In Jenkins and Oikawa [4] we can find an account of inequalities for these
modules, some of which shall be used in this paper giving the appropriate
reference.

Our interest will be focused in the growth of the quantities μ[a, u(z)~],
μGj[.a, u(z}~] as z approaches the boundary of Ω, because in some cases if we
can estimate the growth of μ and μGj we obtain estimates for the growth of
the function u(z).

Hayman in [2] showed that if f(z) is an areally mean £-valent function in
the unit disc and M(r, /)=max{|/(z)| : \z\=r}, then

α=lim(l-r)2pM(r, /)
r-*i

exists and 0^α<ooί also if α^O then there exists a unique direction eίθ° such
that

Λ<0nM

as r-->l, and for any ε>0 there exist constants Kι and K2 such that

\f(reiθ)\
(ll) ™ "

if \θ-θQ\>K2(l-r).
Jenkins and Oikawa observed that if the function f(z) is zero free, areally

mean />-valent and unbounded, then wO)— log I/O) I is a slowly increasing un-
bounded harmonic function satisfying the following inequality

where τ is a universal constant.
Using the above inequality and (1.1) they obtained results on the growth of

μ[α, u(z)~] and μG\_a, u(z)~\ from which they were able to recover Hayman's
results.

We are going to define the reduced module,

DEFINITION B. If (—00, b)c.u(Ω) and θ(d) is constant for a small enough,
then
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a

is called the reduced module of the family Γ(—oo, 6), μ(b) is independent of our
choice of a.

Jenkins and Oikawa studied slowly increasing unbounded harmonic function
u(z) of maximum growth, i.e. u(z) has maximum growth in the direction ei0°
if there exist sequences {bn}%=ι, {rn}n=ι such that:

( i )

for n=l, 2, -

(ii) l imr n =l.

limsuρU(fl, &„) log] 1 []>-oo.
π-»°° L 7Γ L I — 7 f t JJ

(in)

We generalize Jenkins and Oikawa definition to the case in which we have
a finite number of directions of maximum growth and different growths in each
direction.

For this new definition we generalize some of the results by Jenkins and
Oikawa [4] and by Hamilton [1]. Our principal method is the method of the
extremal metric making use of the identity (1.1), the basic tool which enables
us to obtain these results is the generalized arithmetic-harmonic inequality which
says that for λ l f ••• , λn^Q and a ί f •••, αn2^0 we have

•Λ; i "** \Λn .*• Λif l ι~r "" ~rΛndn

λi/dnλ Vλn/dn λH \~λn

In section 2 we shall state the definitions and results of this paper and in
section 3 we shall prove all our results. Finally in section 4 we shall show that
Jenkins and Oikawa's condition for maximum growth in one direction can not
be replaced by a weaker condition that we will state there, we shall construct
a function satisfying this condition but it will not have maximum growth in
just one direction.

Acknowledgements. This work is part of my doctoral dissertation. It is a
great pleasure to thank my thesis advisor Professor James A. Jenkins for his
constant support and invaluable teaching.

This research was done under the support of the Basque Government through
one of its grants.

§ 2. Statements.

DEFINITION 1. Let u(z) be a harmonic function in Ω={z:rQ<\z\<l} with
[α, oo)cw(£?) for some value a. We say that u(z) attains maximum (alf •••, an}-
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growth in the directions e1^1, ••• , βl^n(ΣΪ=ιtf;=l), if there exist sequences {bn}n=\,
(rψ}n=ι, j=l, '- , k with the properties,

( i )

for «=1, 2, ••• y=l, ••• , k,

(ii) limr^=l
71-* oo

for each j—1, ••• , &,

[
£ ,Λ,2 r- 1 -i -i

μ(<ι, fen)- Σι-^-lθg[1_rϋ-] Jj>"~00

In the following definition we are going to translate our situation to the
case in which the domain of the function u(z) is a horizontal strip.

DEFINITION 2. We say that a harmonic function w(» defined on an open
horizontal strip § of width π attains (aίt ••• , αfe)-growth (ΣJ=ι«j=iX if the strip
is cut along horizontal slits with a finite left end and an infinite right end, such
that if we prolong the left ends to infinity the strip S is subdivided into k sub-
strips Sj={ζ: lj<Imζ<lj+πa}} of width πajf j— 1, ••• , k, (—00, oo)cw(S/), y=
1, - , &. If we define S/δ)={ζ: ^+δ</mζ<^+πα^-3} for ; = 1, - , j f e , then

( i ) μsj(a,

for — co<α<^<oo.

(ii) μsj(a,

as b— >oo.

(iii) limsup u
(£7+17 ρ-*°°

where (5>+ί5^«>eSχβ), y=l, - , *.

Let us remark here that Jenkins and Oikawa's definition of maximum
simultaneous growth in the directions e**1, ••• , e**k [4, p. 60] is just Definition 1
for the case «ι= ••• =ak—l/k.

The next two theorems extend results of Jenkins and Oikawa in [4].

THEOREM 1. Let u(z) be harmonic in Ω={z:rQ<\z\<l}. If u(z) is as in
Definition 1 and if we let Sj=Sj(φίf δj)={z^Ω: \argz— φj\<dj}ί j=l, ••• , k be
mutually disjoint sectors with a^u(Sj), j=l, ••• , k , then

( i )

7—1, ••• , k, — oo<7J.<oo, uniformly in Stolz domain.
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(ii)

y=l, ••• , k uniformly as z—>el$J in a Stolz domain.

1 Ί 1 / 2IT 1 Ί 1 / 2Ί
(iii) μ\_a, M(*)]=o[[log 1_. | J J

uniformly as \z\-*l in every sector whose closure does not meet the rays arg z

THEOREM 2. Let u(z) be a harmonic function in Ω={z : r0< |<ε|<l}. If u(z)
is as in Definition 1, then for any fixed c>l,

(i) there exist Stolz domains Δj with vertices at el^J and sectors Sj—S(φJf δj),
y=l, ••• , k, the sectors being mutually disjoint, such that

where rd<s<r1/d, and seiθ^(Sj\Aj) for j=l> ••• , k, and r large enough.

(ϋ)

Inn μSjLu(rel^)9 m5/r)]=0, /=!, ••• , k

where mSj(r)=max{u(z): \z\=r,

The next three results improve results in Hamilton [1].

THEOREM 3. Let u(z) be a harmonic function on an open strip S of width π
as in Definition 2. // ζj=^+^r^°° *'n a proper substrip of Sj and b—u\_ξj(b)
+iy i(bϊ], ; = 1, ••• k then we have that

. Moreover, if h(z)=l/2\ogz and u[h(z)]—λ/2log\z\ has a
harmonic extension at the origin, then

equality a—
uQ/2πλ only for the function u(ζ)=u0+λξ.

COROLLARY 1. Let f ( z ) be an areally mean p-valent function in the unit disc
Δ with a Taylor series expansion at z—0 of the form f(z)=zp-\- •••, such that
\imz^e'

lΦj\f(z)\ — oo, y=l, ••• , k in some Stolz domains with vertices e1^1, ••• , eτφk.
Let us map the unit disc onto the slit strip S of width π by means of the con-
formal mapping
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C=H-*9= ̂  log [ (1_ze-*tyai... (i-^-t^ α* J

Assume that the function log|/|>(ζ)]|=tt(ζ), w /ierβ z(ζ) is fAβ inverse of the
above function, has (alt ••• , ak)-growth as in Definition 2.

Tλβn wnder ί/i£S£ hypotheses, if zj-^elφJ in a Stolz domain and \f(zj)\=R,
/=!,-,*

where

k

.7=1 ί

with equality only for

/(*)=-

Before we state our next result, we give the following definition.

DEFINITION 4. We say that a domain Ω is a ft-star domain if dΩ consists
of k rays such that if we prolong them they pass through the origin, they are
not necessarily of equal length, and these prolonged rays are separated by angles
2πa}, y=l, •••, k with ΣJ=ιtfj=l

THEOREM 4. Suppose that /(*)=*+ ••• is a circumferentially mean l-valent
function defined on a k-star domain Ω. If z3 is a point in the j-th sector of Ω
for which \f(zj)\=R and

Jim I /(*,)I =Λ—>oo

for any y=l, ••• , k, then

with equality only for f(z)=z.

§3. Proofs of the results.

Proof of Theorem 1. Consider βχc)=θ5Xc)=\ \*du\, ;=1, — , ft, by
J JZCOπ^j t

the generalized arithmetic-harmonic inequality we have that \

r, thus Σ

Since w(z) satisfies Definition 1, we have that μ(a, ftn)— ΣJ-i-^ logL: — -j=τ
7Γ LI / TO

Thus
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Σ ajμSj(a, bn)-μ(a, bn)^ Σ eήμajίo, ft,)- Σ - log —
.7 — 1 .? — 1 J — * 7ζ L J. n

therefore

Σ «φί/a, bn)-μ(α, ft.)=0(l). (3.1)
J=l '

of ( i ) . Applying Theorem 2 in [4] to each Sj=S(φJt δj), /=!, •••, ft,
we have that

r 1 r 1 in

r, (3.2)

in a Stolz domain, — oo<:^<oo. Lemma 7 in [4], the arithmetic-harmonic in-
equality and Definition 1 give that for r large enough

Letting r->l and taking z—rel*J, y=l, ••• , & in (3.2) we have that — oo<—
, which implies that 77> — oo, y— 1, ••• , ^ and thus (i) is proved.

Proof of (iii). Using the notation and the definitions [4], (3.1) says that
Hill8- Wlf=0(l), where |5=ΣJ-ιβWβr By inequality (8) in [4], \\p\\^\\ρ8^^sh\
£\\P\\, then

where Ω(α, oo)={z<=Ω: α<u(z)<oo}. By Lemma 8 in [4] we obtain that

1 11/2Ί
Ί-ΪΪΓ] J

uniformly as \z\-+l on any sector whose closure is disjoint from (SiU ••• US*),
this proves (iii).

Proof of (ii). As we saw in the proof of (iii) ||/δ||Scα,βo)--||/o||έco.βo)=0(l),
then given s>0 we can take b0 large enough such that

It is not difficult to see that we have the following identities,

(ί) ii/o^ii/?c6o,6)= — \\p\\Ωα0.b)nsj> y=ι> • • • > * >

(ii) Il/>llέc60,6) : =(^> psj)Ωαb0,by=1——(p, ρ)Ωu>0,b-)nSj

Using (i) and (ii) we find that,
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Hence,

Using the Cauchy-Schwarz inequality in the first term in the right hand side we
have that

\μ(b0, b)—ajμj(b0, δ)| =—\(p , p — ρ)o^.b^Sj— \\p~-

\μ(b*, V)—a}μflb*, b}\ ̂ ί

We are going to consider two possible cases, first if u(z)>b0 we have that

\μ[a, u(zy]—ajμj[a, u(z)]\<\μ(a, b^-a^a, WIΉ/Όo, M(Z)]— α^[fe0, u(z)]

^μ(a, bώ+cίjμ&a, W+ε[|lιθ!|β[δ0)Mc2)]+ε] . (3.3)

Since ||/>||S=jι[&β,

thus

for |2| close to 1.
If a<u(z)^b0 inequality (3.3) is obviously satisfied, and the same conclus-

sion holds. Therefore the above inequality and (i) say that,

for y=l, ••• , k uniformly as z—>el$i in a Stolz domain, this ends the proof of
(ii), and the Theorem.

Proof of Theorem 2. First we observe that (ii) follows from (i) using (i)
in Theorem 1, thus we only need to prove (i).

Fix je{l, ~ , k} and a sector Sj=S(φJf δj), and transform the variable z to
ζ by ζ=log(l/££~l^'X let z(ζ) be its inverse function. The image of S} under
the map ζ(z) is the rectangle #/={ζ: 0</?βζ<logl/r0, |/mζ|<^ }, with e*^
corresponding to ζ=0. We consider the function ι/(ζ)=w[2:(ζ)], then limsup^0

tt(f)=oo. For w(ζ) part (i) of Theorem 1 says that

lim_sup ĵ .[α, z/(ζ)]- — log

— °°<ϊj<00, uniformly as ζ->0 in a Stolz domain in R3.
We have to prove that, there exist a Stolz domain Δ; in R3 with vertex at

ζ=0, a value ff(0<f*<logl/r0), and δ*, 0<δ*<δ,; such that for
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ξ/c<ζ^cξ, \η\<δ* and (ξ+iη)£Δ,t u(ξ)>u(ξ+zη
rw(£)

Call ζ=ξ+jη it is enough to prove that I H

Consider Δ;={ζ: ζ=£+ήy, I η \<2eπ/2ξ\, take ζ=f+ή?<£Δ;, and
min[2<y3, l/21ogl/r0], set ί'^d)?!/^'2), then

+ι dc

We are going to estimate the two integrals in the right hand side. We start
with the second integral,

ί
u(.ξ~) dc

~/~\ ~~ f t R Γβ ) U\ζ/jί — P R \Q') ^W )j >

by (3.4) it is not difficult to show that

ΓC?) nC, N = —log-^-+0(1) (3.5)
Jw(ί ') &Rj(C) 7Γ ς

as

S wC| ') f l f^
, -̂  — — r-. For this we use the following

"CO CfΛ>(c)

estimate in [4, p. 55].

S w C ζ ) //r Γ 1

A V77r^ly«Cί') &Rj(C) L6

as -*
Using (3.5) and (3.6) we have that

^ — log-' "'

Since ζ=|+^^Δj and ζ/c^ξ^cξ, the right hand side is bounded below by

π ξ π L ς

as ζ~>0, thus we can choose a wide Stolz domain Δ; and small |*, d* such that
ftt(£> //r

for 0<€<ί*, ξ/t^ξ&ξ, η\<δΐ and ζ=(f+ι7)§έΔ,, . n , . >0, and there-

fore w(ί)>w(ζ), since the integrand is positive, and this finishes the proof of
the theorem.

Proof of Theorem 3. Applying Theorem 2 in [4] to each substrip SJt j—
1, ••• , k we have that

i m , ( α , b) —
&-»°°
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7=1, ••• , k, with — oo<^.<oo, ζj(b) in a proper substrip of Sj and
7 = 1, •••,&. Multiplying each of these limits by a] and adding them we get that

with — oo<τ'<oo. By the generalized arithmetic-harmonic means inequality we
obtain that there exists

limsupUα, «-Σ —δ^oo L .7=1 π

with — ooίgf<oo. We want to show that this lim inf is in fact a limit. To
show the existence of the limit we shall need the following definitions on each
substrip S,, j=l, •••, k.

Fix a point £° in the real axis and let ζJ=£°+ή7jeS,, 7=!, •-• , k. For
each c>w(ζj) let Z>χc) be the component of_{ζeS,: w(ζ)<c} containing ζj. It is
simply connected and each component of [S/Λ[3DXc)]] is a piecewise analytic
arc contained in l(c\ If Dj(c) is bounded to the right, then the unbounded
component Bj(c) of [S^cl Dj(c}'] is uniquely determined. For each ;=1, • • - , / ?
fix a value aψ and for each c>α^] take γ^—SjΓΛcl Dj(c}Γ\cl Bj(c), this is a
piecewise open analytic arc joining the upper and lower edges of Sj. Set ξj(c)
=inf{Λeζ:ζerXc)} and ί?(c)=sup{/?eζ:ζerXc)}, by Lemma 2 in [4], lim
= 00. Let

Γim inf u§ (aψ, b) ξ'Λb) \=a^
&-»oo ' ̂  ί X - J '

/=!, ••• , ^, and denote by βj(a, b) the module of the family {γj(c)ι a<c<b},
aψ<a<b. After these preliminaries we proceed to prove the existence of the
limit

6-»oo L j=i 7Γ

Let α0=πιaxιg^ft{α&/ : ι}, we are going to prove that there exists the limit

- —lim
δ-»°o L j=ι 7Γ

For this we prove that

lim μ(a» b)- Σ - - f ? ( f t ) = l i m //(α0, 6)- Σ —

and then, since £'&)<> Re{ζ£b)}^ζ%(b), ;=1, ••• , fe the result follows.
Let aQ<b<b', then jt£(α0, b

f)-μ(aQ, b)=μ(b, b'\ clearly {rX^)r ;=1,
b<c<b'}C.Γ(b, b'}, thus we have that
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and so

μ(a*9 b')-μ(a0, «^Σ — KS(6')-£ί7=1 π

We can rewrite the above inequality as follows

ft)- 2 —ξW> (3.7)
7=1 7t J=l ft

taking the lim sup in the left hand side of the above inequality as 6->oo, and
then taking the lim inf as ft->oo in the right hand side, we obtain

limsupΓ/ι(βo, «-Σ — e?(*)l^limmf ί/ι(α«, «-Σ — #(«1. (3.8)
6-»oo L .7=1 7Γ J &-»oo L 7=1 7Γ J

If S?(W <#(&') for each /=!, - , fe by a result in [3, p. 186]

X&, 60^Σ — E€X6')-€5(«]+2Σ αj
7=1 7Γ j=ι

Using the above inequality in (3.7) and following the same steps than before
we get

lim s u p α β , «-Σ — £}(W-2Σ αjl^limίnf Γ/ι(αβ, W-Σ — l?(wl .
j=l TC j=l J δ-»oo |_ ,7=1 ^Γ J

Let α0=liminf^oβ[χαo, W— Σ*=ι(«y?r)$KW]> — °°^ά0<oo. We consider two
different cases.

Case I. If άύ— — oo, then clearly the limit is equal to — oo.
Case II. If ά0> — oo, by Lemma 4 in £4] we have the two identities

and

lim supine, W-Σ ^K6)l=liminf Uflβ, W-Σ — ίXWl, (3.9)
δ-»oo l_ J=l 7Γ J δ-°° L 7=1 7Γ J

lim inf [xo., ft)-Σ — 5J(wl=liminf Uα,, W-Σ — ίXwl (3.
6_oo L j=l 7Γ J δ^oo L 7=1 7Γ J

.10)

Combining (3.8), (3.9) and (3.10) we obtain that \imb^[μ(a<>, W—
=α0 with -oo^α0<oo. Therefore

lίmf/ι(fl, ftJ-Σ-
δ->°oL 7=1 π

where α—α0+j«(α, α0), this pioves the first part of Theorem 3.
By hypothesis (u hXz)=λ/2log\z\+v(z) in a neighborhood of the origin,

with v(z) harmonic. Therefore 0 / ( z )—zλ l < te g w where Re{f(z)}=(u°h)(z) and
Re(g(z)}~v(z), g(z) is analytic in a neighborhood of the origin. For a small

θ(fl)=f | * < / M | = f | * r f (M«A) |=τrλ Thus p(b)=a/θ(a)+μ(a,b)=a/πλ+
J l d a ) JΛ-1CICO)3

//(a, 6). Therefore the existence of
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fi=limΓ/z(«-Σ!—6_»oo L j=ι π

follows from the first part of the Theorem.
We proceed to estimate a. For small a, l(a) is a simple arc joining the

upper and lower edges of the strip. Applying for each /=!, ••• , k the result
in [3, p. 186] we obtain the inequality

μ(a, «£ Σ^Kί'ίW-δίίfl)]- Σ αtfKί'W-δίW] .

Adding α/πΛ to both sides of the above inequality we have that

£ +*β »- Σ^WW* ϊj- Σ ?-β(β)- Σ «J/[TO-6(c)] ,

the left hand side goes to a for fixed a as 6^ oo, therefore by the definition of
ξj(a) we have that

l/Λ ^

fi^^+^D-ΣαJ/Cίi'W-δ W] (3.11)

as α->oo, since /(*) is a strictly increasing function, ά^uΰ/πλ.
Equality in (3.11) is possible if and only if 5?(c)=5J(c), /=!, •••, & and c

large, then w(ζ) must be a linear transformation of the form (a+bζ\ since
[(tt°Λ)(z)— λ/2 log |z|] is harmonic at the origin, u(ζ)=uQ+λξ. This finishes the
proof of the Theorem.

Proof of Corollary 1. Let

«*)=«*)+«,«= y log [ (i-.s.-.fty.x .f. (i-M-^.y.. ] '

then lim^ei^K^+α. logCl— UI]+logj8J=0 for each /=!, ••• , fe, where ]8^=
Πβ^U^β-β^rβ.

We proceed to estimate the reduced module μ(logR) from below. The
function \_u(z)— p log|z|] is harmonic at the origin, thus for R small enough we
have that θ(logR)=2pπ, and since the function f(z) is an areally mean />-valent
function, we have that

dR

R

Substracting Σ*=ι («;/τ)|χiog R) from both sides of this inequality we have that

1 - log R- Σ -^ίXlog Λ)£/z(lo« Λ)- Σ — ?Xlθg R)2pπ * JSi



234 ENRIQUE VILLAMOR

The limit of the right hand side as R-+OO is less than or equal to zero by
Theorem 3 (ι/0=0), thus

or equivalently,

as J?->oo. Exponentiating this inequality, and taking the lim sup in both sides
as R-ΪOO we obtain that

where

k

Λ-»00 ~ Jssl

?p"J=τi Π \
.7=1 3=18*3

By the equality statement in Theorem 3, we have equality only if u(ζ)=2pξ,
zp

which means that log|/[>(C)]|=2/>£, thus f(z)= — £— : - -IΦ MP* - This ends

llj=ιV-L — Ze Ψ3) 3

the proof of Corollary 1.

Proof of Theorem 4. We can not apply Theorem 3 in this case, since we
do not know where the points z5 are located, thus we shall use another technique
in the proof of this result. To do that we have to restrict ourselves to func-
tions /(*) which are circumferentially mean 1-valent.

We map Ω onto a strip of width 2π with horizontal slits with their left
ends finite and their right ends infinite by the map ζ=logz, i f w e prolong these
slits to infinity we have subdivided the strip S into substrips S, of width 2πa3,
j=l,~',k.

Let the harmonic function w(ζ)=log|/(Xζ)3|, be defined on S, where ^(ζ) is
the inverse function of the principal branch of ζ=log£. We apply to each SJf

y=l, .. , k Lemma 4 in [4] for n=l, to obtain

. log X)S

for log/o<c<log#, thus

^ Σ £-E5(log Λ)-ίKlog /»)]- Σ
3-1 67ΐ J=l
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where θ/*) is the length of the image under the function log/0) of //#)=
l(x)Γ\Sj. Using the generalized arithmetic-harmonic inequality in the left hand
side of the above, and since Σ*=ιβ/*)^2τr for any value of x for a circum-
ferentially mean 1-valent function, we have that

-^[log R-log pl£ 2 grC^dog Λ)-«(log p)]- ΣαJ/K5(^)-δ}(c)] .

Now we proceed to estimate £J(logΛ) and 5J(log/o), /— 1, ••• , fe for R large
and p close to zero. For £J(log/?), we distinguish two cases:

Case (i). If α^^limδ_[^(α^, «-(l/2jrα,)#(«] = -«>, then
(l/2πaj)ξj(b) for large 6 and choosing b— log# we obtain that

if/log M o g Φ ^ K X l o g Λ M ^

Case (ii). If α^:> — oo then by Lemma 4 in [4] we have that lim^ [£"(£)
-£ί(<0]=0, thus #'(logfl)=log|*,|+0(l) as r->co. By definition 5ί(log/o)=
inf{Λ*ζ,:ζ,€ΞS,, M(ζ,)=logp}, since /U)=2+ - and z(ζ)=e^9 then log |/[z(ζ)]|
= Λβ{ζ^}+(?(l)asζ^-ooandsoι/(ζJ)=log|/[z(ζ)]|=/?e{ζ>}+o(l)^ Hence,
log|0+0(l)=/?0{ζ,} as p->0, thus ^(logjo)=logio+ί?(l) as p-+Q.

Using the above estimates we obtain that

^-[log R-log pl^Σ ^- Dog

Multiplying the inequality by 2ττ and observing that the terms in both sides in
log|0 cancel we get

Since the second term in the right hand side is non-negative we have that

logΛ^:S[log|*j|αM-0(l)]
.7=1

as jR->oo, exponentiating this inequality we get that
Γ>

_ _

Πfe I ,-, I α ,
j**l\Zj\ J

as jR-»co, thus taking the lim sup as #-»co we obtain

Γ)

lim sup ̂ =zτ — j — -— ̂  1 .
*— > Πί-il^l^

Equality holds only if /[fj(c)— $ί(c)]=0 for ;=1, -•• , fe and c large, since f(z)
is positive and strictly increasing this is possible only if ξfj(c)=ξ'j(c) for any
/=!, — , έ and c large, which means that f(z) is a linear mapping of the form
(az+b), and since by hypothesis f(z)=z-\ — this implies that f(z)~z. This
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ends the proof of Theorem 4.

§3. A counterexample.

Let u(z) be a slowly increasing unbounded harmonic function in Ω={z: r0<
|z|<l} with [α, oo)cw(β), then u(z) attains maximum growth in one direc-
tion elvo if

oo>α=liπι I /eι[α, u(re***y] log > — oo,

or equivalently if u(z) is defined in the strip S={ζ: |/wζ|<τr/2}, if

oo>α=ι

A natural question to ask is whether a weaker condition on μ[a, w(£)] still im-
plies that we have maximum growth in one direction, namely, does lim^oo

' =y<co imply maximum growth in one direction?

In this section we are going to answer this question negatively by con-
structing a slowly increasing unbounded harmonic function w(ζ) in the strip S

for which lim^J ^fl> M^ 1=ft with j8 finite and such that lim^tXα, w(|)]

— f/π] = — oo.

We define the following strip-like domain H in the W-plane, H—{W—UJ

Γ

iV: Φ.(U)<V<Φ+(U), -oo<ί/<oo} where,

π, if £7^0;
__

π-\-VU , otherwise,
and

0, i f ί / r g O ;
__

Vί/, otherwise.

Map H conformally onto S by the function Z(W)=X(W)+iY(W), where lim^co
X(W}— oo. The domain H is a L-strip according to the definition in [5, p. 280],
with boundary inclination γ=0 at £7=oo. Let W(Z)=U(Z)+iV(Z) be the inverse

function of Z(W). We want to show that \\mx^\μ^U*'^X^ 1 exists and is

finite, and also that limjr-,oo[μ[£/o, U(X)']—X/π']=-~oo.
Using the notation in [5], θ(U)=Φ+(U)—Φ.(U)=π and,

π/2, i f ί/^0;
_

ττ/2+Vί/, otherwise.
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Soo #/2(τy)
dU=Q converges trivially. Then by [5, p.

UQ t/(U)
281] we have the following asymptotic representation for Z(W)

as £7->oo uniformly with respect to V, and λ is a real constant. We can choose
W in H so that Z(W)=X, W=U(X)+iV(X\ thus

as Z->oo. Taking real parts in both sides of the above inequality we obtain that

o, for our choice of Φ+ and Φ_,

ί/o π

ί/CJT) ///Sί/CJT) ///
— =μ[£/0, ί/(X)], hence

ί̂ O 7Γ

as Z->oo. Taking limits in both sides as Z-̂  oo, we have that

_ -
π J jr-ooL 4π c/0

The limit in the right hand side is — oo, thus lim^-^oo [/£[C70, i7(A')]—

It remains to show that lim^^oo " 0> — — exists and is finite. We know

that

ί/.] + j log

as X-*oo, we divide both sides of the equality by πX to get that

4^Z ί/0 πX~ X π

as X-κχ>. It is not difficult to show that limjr-.«,l/AΊog(t/(^0/£/o)=0, thus tak-
ing the limit as X-*°° in both sides we obtain that
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as we wanted to show.
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