A. AIBA
KODAI MATH. J.
13 (1990), 30—38

A REMARK ON ELLIPTIC UNITS
By AKIRA AIBA

§0. Introduction

Let » be a prime number such that p=3 mod4 and p>3. Put K=Q(+/—p)
and let H be the absolute class field of K. In [5], Gross defined units u,
(6=Gal (H/K)) in a class field of HT of a CM-field T containing K. He gave
a question about a property of these units. In this paper, following Robert [8],
we give the explicit method to calculate u,. In particular when p=23 we cal-
culate them concretely to show that Gross’ question is correct.

I would like to thank Prof. T. Kanno for encouragement and suggestion.

§1.

First we define the notations and recall the problem of Gross [5]. Let p
be a prime number such that p=3 mod4 and p>3. Let K=Q(»/—p) with the
integer ring O=0O(K). Let H be the absolute class field of K with the integer
ring O(H). Let Ik (resp. Iy) be the idele group of K (resp. H). Let E be an
elliptic curve defined over H with complex multiplication by O. We fix a
Weierstrass model for E, y*=4x°*—g,x=g, where g,, g,0. Let jz be the
absolute invariant of E

_ . 1728g}
1. €. ]E—gg_27g§ .

Let v be a finite place of H where E has good reduction. Let H, be the com-
pletion at v, and let k, be the residue field of H,. Let E, be the reduction of
E at v. The reduction of endomorphisms gives an injection :

0,: K= Endx(E)®Q —> End: (E,)QQ

whose image contains the Frobenius endomorphism =, Let a, be the unique
element of K with 0, (a,)=mx,.

Let Xz be the Grossen character of E. This is a continuous homomorphism
of Iy to the multiplicative group K*, which is the uniquely characterized by
the following conditions :

1) If a=(a) is a principal idele, Xz(a)= Ny, x(a).
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2) If a=(a,) is an idele with a,=1 at all infinite places of H and at those
places where E has bad reduction,

Yp(a)=TIay"»

where the product is taken over the places of H at which E has good re-
duction.

Let & be the class number of K. It is known that the absolute invariant
is H-isomorphism invariant and there are just 2 absolute invariants of elliptic
curves whose endomorphism rings are isomorphic to O. We denote this set of
absolute invariants by J. The character Xz is H-isogeny invariant.

We say a curve E over H with complex multiplication by O is a Q-curve
if it is isogenous over H to all of its Galois conjugates E* (r=Aut (H)).

Recall the Q-curve A=A(p) which was studied in [2][4][5].

Let X, be the unique continuous homomorphism of I5 to K which satisfies

1) If a=(a) is a principal idele, X,(a)=Ny x(a).

2) If a=(a,) is an idele with a,=1 for all v|e, p and p, is prime at v,

then

1p(a)= II aye?
Vleo, P

where ¢ is the composition of the natural isomorphism from (O/+/=p0)*
to (Z/pZ)* and quadratic residue homomorphism from (Z/pZ)* to {*1},
and a, is the element of O such that Ny xp,=(a,) and e(a,)=1. (In this
case this determines a, uniquely.)

There exists an elliptic curve with complex multiplication by O defined
over F=Q(j) (= J) with the absolute value j, the Grossen character X, and the
minimal discriminant (—p®) over F. It is determined uniquely up to F-isomor-
phism and we denote this curve by A=A(p). (In fact A(p) is F-isomorphic to
the following elliptic curve.

mp __ np*
2.3 % 253

y2=x3+

where m*=74¢p

n2=1__1;28 sign n:(%) (c.f. Gross [5])
Let B=B(p)=Resy xA(p)= 11 A(p)° be the Weil restriction of A(p)
oceGal(H /K)

which is an abelian variety of dimension 7. Then T=Endx(B)XQ is CM-field of
degree 2h and
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/ \
H_ 4 h

Here we can define the Grossen character of B, Xz. Xp:Ix—T*: continuous
homomorphism
s.t. 1) If a=(a) is a principal idele, Xz(a)=a
2) If a=(a,) is an idele with a,=1 when v|c or B is bad reduction
at v, then

Yp(a)=Ilaz"*»

where the product is taken over the places of K at which B has good
reduction and a, is the inverse image of the Frobenius endomorphism
as in the elliptic case.
From now on in this section, we write a, b for integral ideals of K which
are prime to p and write @ for an integer of K which is prime to ».
By the definition of Xz, we get an integer Xg(a) of T. If we write O(T)
for the integer ring of T, a principal ideal Xz(a)O(T) is aO(T') and the follow-
ing identities hold :

(1) Ypla)=a
(2) As(ab)=A5(a)X5(D).

The restriction f=¥z(a)|, is an isogeny from A to A’%, where o, is (a, H/K).
Let f, be an element of H s.t. f*(w’%)=fw, where f* is the pull back of f.
Then the principal idele f,O(H) is aO(H) and the following identities hold :

1 fw=a
2 fabzfafﬁ .

def
By the above we get units ua;XB(a)/fa of HT and u=u,ug".
Since u, depends only on the ideal class of a, we denote u,,=u,.. Let Ugr
be the unit group of HT. By the above

u:Gal(HT/T)=Gal (H/K) —> Unr
v w

g Ugln

is 1-cocycle. Gross gave the following two questions.
@ 1 Is the cocycle u a coboundary? i.e. uB Gal(HT/T), Ugr)?
@ 2 Does the summation of u(¢) over Gal (HT/T) belong to Ugz?
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i.e. = u(e)eUgp?
oceGal(HT/T)

§2. The explicit algorithm for u

For a prime p we have h different A(p) (so do {u,}) followed by the choice
of 7, where h is the class number of K=Q(+~/—p). But from the definition they
are conjugate and we may only examine the case when j&R, and we may
suppose the coefficients of the defining equation of A(p) are integers.

From now on jeR

A(p): y*=4x*—gox—gs g2 8:€0  w=dx/y

It is easy to calculate Xz(a) from the definition of Xz and X,. We give the
algorithm for f,, followed by Robert [8].
First we give a few notations.

L={{ wireHA©), 2)} L,={] o*17€H(A7(C), Z)} (0&Gal (H/K))

Gk(I)Zle? i

Gy(L)=lim T

m 2 A
>0

(k>2)

(£ : a lattice)
Then G(L)eH (k=2)

1 1 1
P(z, L)= ;2——{—16;‘_(0){(?_—2)2 22} the Weierstrass @-function

Then
@z, L)= 2+ T Q+1Cur (L) (0<|2I< Min |w])
z kz1 weL-(0)
(L : a lattice)

Por= X PR, L)eH.

0#ica-1L/L

We use the g-expansions and the integral conditions to calculate u explicitely
as follows.

1. the determination of G,(L)
1. approximate value of G.(L)

W (Y =g1-24 5 L

n=11 —q™ nIm(w2/w1)

wi

@ (52)Gua ‘l)—m(l+2402 nq’ )

nz1 1—
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Wi\o gy= L (1 ng"
@ (g2) 60 =gp(1-54 3 l—q")’

where a is an integral ideal of K s.t. a '=(w;, w,) Im (w,/w;)>0
g=exp (2wi(wz/w)).

From the complex multiplication theory, their exists
o(@)=p(a, L)eC s.t. L,,=p(a)a™’

140 g, Ggla™!

(5) Go(L)*=Gy(Lsa)=p(a)*Gs(a™).

2. the integral condition of G,(L)
(6) 24/—pG(L)EO(H).

In general it is difficult to determine the integer ring when the degree is
high, but in this case when j is real we can do it slightly more easily.

(7) 2pG,(L)sO(F): the integer ring of F=Q(J).

2. the determination of %,
1. approximate value of (P, 1)
Wy

_1 ", ng"
®) (2?‘)9’ (@ D=1 2 G gngy 2E1-g

where b is an integral ideal s.t. b=(w;, w,) Im (ws/w,)>0
g=exp (2mi(w,/ws)) g.=exp(2mi(z/w,))

9) (Pa1)"*=Pa,20p=p(5)",
2. the integral condition of %,
(10) 2, ,=0(H)
Especially when Na=2
(11) 4L3 1—g2Pa,1—8:=0
3.1. the determination of G,(a~'L)
(12) Gyla'L)—NaGy(L)=2,, 1

From 1, 2 and (12) we can determine Gy(a™'L)
2. the determination of f,

(13) Gula™'L)=f3Go(L)



ELLIPTIC UNITS 35

From 1 and (13) we can determine f,.
Proof of (1)~(13)
(1) (3), (8) See Lang [7] Chap. 4 and Kubert and Lang [6] Chap. 10
(12) Define

1 . .
a(z, L):zle{__[“‘n(l—%)exp (% +§<%)2): the Weierstrass ¢-function.
Then
2

Pz, L)=—ga;,;log a(z, L)

Define
0(z, L)=A(L)o"*(z, L)exp (—6G.(L)z*)

where A(L)=(2x)"*((60G.(L))*—27(140G4(L))*).

Then
0 _ ) a’(z, L)
23, log 6(z, L)=—12G,(L)z +12—a(z, 0 z
=12(1— 3 G,(L)z*)
k>0
21k
Let a be an integral ideal of K.
Define
0(z, L; 0)=0(z, L)¥°/6(z, a7*L).
Then

z% log(z, L; a)= 12(Na-—1+Q(Gk(a‘lL)—NaGk(L))z’“)
21k

On the other hand, 0(z, L; a)is an elliptic function w.». to L and an even

function. Comparing zeros, poles and the first coefficient of power series

expansion at z=0, we get the next equation:

A(L) A(L)
Ala™*L) rea-trjL-01(P(z, L)—P(A, L))

We compare two expression of z2-coefficient of z(d/0z)log 6(z, L; a) and
we get the result.
(5), 9) From the definition and (12).
(4) From the homogeneity of G, and G,
Gola™)\/ Gala™)\1_ 140 g5 Gela™)
2 — —_ . .
o =(Z ) e

6) In (12) we take a=(a). a0
0352@, 1=2(Gy(a"*L)— NaGy(L))=ala—a&)G,(L) .

0(z, L; a)=

T 60 gs Gia™h)

Since the greatest common ideal of a(a—a&) is (v/—P), 24/—DpGy(L)sO0
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(7) Since H=Q(j, ~/—Dp),
20/ =DGoL)=%0+ 210/ =D+ 22J+ X3j v/ =P+ x4+ x:5°v/ =D x:€EQ
Since j is real, Go(L) is also real and
2¢/=PGy(L)=x1// =P+ x:s]v/ =D+ x57*/—P
From (6)
O(F)2 Ny k2= DG L)=p(x1+x35+x55°)°
O(F)2p(x,+ x5+ x:5%)=2pGo(L)

(10) See Cassels [3]
(11) From

A(p): ¥*=4x°—gsx—gs
(13) From f,L=alL and (5).

§3. Calculation example when »=23.

If the class number of K=@Q(+~/—p) is 1, then u,=1 and Q 1 and Q 2 are
trivially correct. There doesn’t exist K of the class number 2 under the assump-
tion of p. Under the condition that the class number of K is 3, p=23 is mini-
mal. In this case we calculate u, concretely by the method of §2, and show
that Q@ 1 and Q 2 are correct.

Let p=23 and K=Q(~/—23), then we have the absolute class field H=K(a)
for acR such that a®*—a—1=0.

Set
O0=Z+((14++-23)/2)Z ,
a=2Z+((1++=23)/2)Z
and

a=2Z+((1—+=23)/2)Z .

Then Gal (H/K)={0o, 0., 0z} and since Na=Nd=2, in this case we can use
(11). And
j=—a'*5*(2a—1)*(3a+2)°

A23): y2=4x3—223c,x—2°3¢,
where ¢,=5-23%a*(2a—1)(3a+2)

- 7-23%a(4a®+2a—3)3a+1)
o 2a+3 ’

As for the numerical value above, see Berwick [1] or Gross [4]. From the
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algorithm of §2
Go(L)=33a*+30a+9
_cpn,L=—%(13a2+38a+45—3<a2—2a+1)«/—23)

1 3

Lt 11 7T e 1 —m 3 o
fo= 2a+2a 5 466(\/ 23 460(\/ 23 46\/ 23
And from the definition of Xz
mw:(#)‘” (Fix a cubic root of unity.)
Therefore
Ugp=1
(L1, 3 1 s 3 man. 9 —an) (3= =23\
Us=(ga'~ga—7 46a\/ 23+92ax/ 23+92\/ 23)( 7 )
Usg =Uqg -

To see that u,,+u,,+u,5 is unit, we examine
1

uao+uaa +usy

=(—a2+1)+9%(2301—I-12a2«/—23—!—5a\/—23—8\/—-23)(3————_\2_23>1/3

1/3

1 R 3—+/ =23
+ 55 (23a—12a «/—23—5a«/—23+8\/—23)(——2—)

is an integer.

To do so, we may examine that the elementary symmetric polynomials of
the conjugates of 1/>lu, over T. They all are in T* (the maximal real subfield
of T). Since [T*:Q]=3, the integer ring of T* is determined by Tornheim
[9], for example. In this case the integer ring of T* is Z[Xp(a)+Xz(a)~*] and
they all are integers and @ 1, 2 are correct.

Thus we have

PROPOSITION. Let K=Q(~/—23) and let H be the absolute class field of K.
Let A(23) be the Q-curve as in §1. Let B= II  A(23)° be the Weil restric-

oeGal(H/K)
tion of A23). Let T=Endx(B)RQ. Let Uyr be the unit group of HT. Let u
be the 1-cocycle of Gal(HT/T) to Ugr as in §1.
Then u is contained in B (Gal(HT/T), Uyr) and > u(e) is contained

. occGal(HT|T)
mn UHT-
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