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ON SURFACES OF FINITE TYPE IN EUCLIDEAN 3-SPACE

BY FRANKI DILLEN^, JOHAN PASI} AND LEOPOLD VERSTRAELEN

Abstract

We prove an extension of T. Takahashi's result on minimal submanifolds
in Euclidean spaces and in spheres, and as a corollary obtain support for B. Y.
Chen's conjecture which claims that the round spheres are the only compact
surfaces of finite type in Euclidean 3-space.

Let Mn be a (connected) n-dimensional submanifold in Em, the w-dimensional
Euclidean space. Let x, H and Δ respectively be the position vector field, the
mean curvature field and the Laplace operator of the induced metric on Mn.
Then, as is well known (see e.g. [2]),

(1.1) Δx = -nH,

which shows, in particular, that Mn is a minimal submanifold in Em if and
only if its coordinate functions are harmonic (i. e. they are eigenfunctions of Δ
with eigenvalue 0). Moreover, in this context, T. Takahashi [6] proved that
the submanifolds Mn for which

(1.2) Δx=λx,

i. e. for which all coordinate functions are eigenfunctions of Δ with the same
eigenvalue λ^R, are precisely either the minimal submanifolds of Em (λ=Q) or
the minimal submanifolds Mn of hyper spheres Sm~l in Em (the case when Λ^O,
actually Λ>0). In terms of B. Y. Chen's theory of submanifolds in Em of finite
type, condition (1.2) asserts that Mn is of 1-type in Em. In general, a submani-
fold Mn in Em is said to be of finite type if its spectral decomposition of x is
finite, i.e. if

(1.3) x
t=p

where p and q are natural numbers, such that xQ^Rm is a fixed vector and

(1.4) Δxt=λtxt,
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where λt denotes an eigenvalue of Δ [1] [2] when there are exactly k non-
constant eigenvectors xt appearing in (1.3), which all belong to different
eigenvalues λt, then Mn is said to be of &-type in Em. Many important sub-
manifolds in Euclidean spaces turn out to be of finite type in this sense. To
find out whether or not a compact submanifold Mn in Em is of finite type, the
following result is very useful.

THEOREM A. (B. Y. Chen [2])
(i) Mn is of finite type in Em if and only if there exists a non-trivial poly-

nomial Q (of one variable) such that Q(Δ)H=Q.
(ii) // Mn is of finite type, then there exists a unique monic polynomial P

(of one variable], of least degree and such that P(Δ)//=0.
(iii) // Mn is of finite type, then Mn is of k-type if and only if degree P=k.
The same results hold if H is replaced by x — x0, XQ being the center of mass

of Mn in Em.

In [3], B. Y. Chen studies the following problem.

QUESTION. Other than minimal surfaces and ordinary spheres, which surfaces
in E3 are of finite type ?

Restricting attention to surfaces in E3, the above result on Δx=λx,
can be stated as follows (which also somewhat clarifies the previous Question).

THEOREM B. (T. Takahashi [6])
A surface in E3 is of 1-type if and only if it is a sphere or a minimal sur-

face.

With respect to the Question, the following result is quite interesting.

THEOREM C. (B. Y. Chen [3])
A tube in E3 is of finite type if and only if it is a circular cylinder (which

actually is of 2-type).

As a corollary we mention the following,

COROLLARY D. (B. Y. Chen [3])
Every closed tube in E3 is of infinite type,

Which offers a partial solution to the following

CONJECTURE OF B. Y. CHEN.
Ordinary spheres are the only compact finite type surfaces in E3.

Of course, since there are no compact minimal surfaces E3, Theorem B
settles the matter for 1-type surfaces.

In [5], 0. Garay studies the hypersurfaces Mn in En+ί for which
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(1.5) Δx=Ax,

where A is a diagonal matrix

(1.6) A=\ , ί€Ξ{l, 2, .-, 72 + 1},

(see also [4] for the case of surfaces of revolution M2 in J£3). This means that
he imposes the condition that the coordinate functions of Mn are eigenfunctions
of their Laplacian Δ with possibly distinct eigenvalues λt; hence, 0. Garay's
condition ((1.5), (1.6)) can be seen as a generalization of T. Takahashi's condi-
tion (1.2), in which case all λτ are equal. 0. Garay proved that if a hyper-
surface Mn of En+1 satisfies his condition, it is either minimal in En+l or it is
a sphere or it is a spherical cylinder. In this respect, we want to observe how-
ever that his condition is not coordinate-invariant e. g. in Ez a circular cylinder
satisfies this condition if and only if its axis of symmetry is one of the coordi-
nate axes.

In this paper, we will study the surfaces in E3 which satisfy

(*) Δx=Ax+B,

where A^R**Z and B<^R*. This setting generalizes T. Takahashi's condition,
following 0. Garay's idea, in a way which is independent of the choice of
coordinates. Our main result is the following.

THEOREM. A surface M2 in E3 satisfies (*) if and only if it is an open part
of a minimal surface, a sphere or a circular cylinder.

In particular, this yields the following

COROLLARY. A compact surface in E* satisfies (*) if and only if it is a
sphere.

We want to mention that this Corollary supports the above Conjecture of
B. Y. Chen. Indeed, the compact surfaces M2 in E* satisfying (*) are particular
surfaces of finite type (^3); actually, the following arguments, which will make
this clear, also hold more generally for any compact submanifold Mn in Em

which satisfies a condition of the form (*). Namely, integrating (*) over M2,
and using the divergence theorem, implies that

(1.7)

Using this, then (*) further implies that

(1.8)
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and, hence, that

(1.9)

where P is any polynomial in one variable. In particular, choosing for P the
characteristic polynomial of A, by the Cayley-Hamilton theorem P(A)=Q, and
thus (1.9) shows that

(1.10) P(Δ)(x-*0)=0.

Finally, Theorem A then asserts that M2 is a surface of type ^3 in Ez.

We first show that the surfaces mentioned in the theorem indeed satisfy
condition (*).

Examples.
(1) Minimal surface
In this case we have that the mean curvature is zero, so by (1.1) a minimal

surface satisfies (*) with ^4—0.
(2) Sphere
The sphere Sl(r) with center 0 and radius r satisfies (*) with

4 0 0
r 2
0 4 0

r 2
0 0 4

r2

/

Indeed, the sphere has mean curvature —ί/r and (l/r)x is a unit normal on
SJ(r). So by (1.1)

2

(3) Circular cylinder
We consider the cylinder on the circle of radius r with center 0 lying in

the [ e l f 62}-plane. This surface has mean curvature — l/2r. A unit normal is
given by (l/r)π(x\ where π is the projection on the {eίt e2}-plane. Hence by

(1.1)

So this cylinder satisfies (*) with

A=

= — π ( x ) .

o o
r io 4 o

r2

I 0 0 0 )
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Proof of the Theorem. We consider two cases.

First case: M2 is a cylinder.

In this case, the position vector x of M2 can be given by

where s, t are parameters, £ is a constant vector and γ(s) is a curve, with arc-
length parametrization, in a plane orthogonal to ξ.

From the definition of the Laplacian, one checks that

where γ" is the acceleration vector of γ.
Without loss of generality we may suppose that ξ=(Q, 0, 1) and that 7(s)=

(7Ί(s), r2(s), 0). If we write

A=

an a12

021 022 023

031 032 033

and B= bz I

then equation (*) becomes

(2.1)

Since γ'[, γ'ί do not depend on ί, we find that α13=α23=α33=0.
If α31^0 or β32^0, the curve T is a line, so M2 will be part of a plane and

hence minimal. So we suppose further that β31=α32=0 and that p isn't a line.
This implies that &3=0. System (2.1) reduces to

or, in vector notation

(2.2)

where
fll2

fl21

^and 5 =

We now use the Frenet frame {T, N] of the curve γ. The curve has arc-length



SURFACES OF FINITE TYPE 15

parametrization, so T=γ', the velocity vector of γ.
Equation (2.2) becomes

T'=Aγ+B.

Using the Frenet formula Tf—κN where K is the curvature function of 7, we get

κN=Aγ+B.

Derivation of this equation gives

κ'N+κN'=AT.

From the second Frenet formula N' = —κT we obtain

(2.3) κ'N-κ*T=AT .

We derive again to obtain

κ"N+κrN'-2κκ'T-κ*T'=ATf

or

(2.4) (κ"-κ*)N-3κκ'T=κAN.

From (2.3) and (2.4) we can compute the entries of the matrix Ά with respect
to the frame {T, N}

AT.T = -κ2,

AT.N=κ' ,

AN.T=-3κ' ,

The determinant (AT.TKAN.N)-(AT.N)(AN.T) and the trace (AT.T)+(AN.N)
of the matrix A are constant, so there exist constants c and d such that

(2.5) -κκ"+κ4+3(κ'γ=c,

(2.6) ~2κ*=d.

Eliminating K" from these two equations we find that

(K>γ=λ

Deriving this last equation gives
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If we suppose that /e'^O, then we have

Substitution in (2.6) gives

which contradicts the assumption that K' wasn't identically zero. Hence the
only solution to the system (2.2) is that K is a constant and that γ is a circle.
So the only cylinder which satisfies (*) is a circular cylinder.

Second case: M2 is not a cylinder.

(1) Rank of A is 3.
In this case we may suppose that £—0. Indeed, let CeΛ 3 x l be a solution

of A.C+B=Q. Define new coordinates x' by x=x' + C. Then equation (*)
becomes

Δx'=Ax' .

Suppose now that M2 is given locally as the graph of a function /, this is

*=(*!, Xt, f(Xi, *8))

From (1.1) we see that Δx=Ax is normal to the surface, so

(3.1)

since (1, 0, df/dxj and (0, 1, df/dxz) are tangent vectors.
Let

then system (3.1) becomes

3f _ 011^1 + 012^2 + 013/

dXi ~ 031^1 + 032^2 + 033/'

Since the function / satisfies
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a2/

the two above equations imply that

(021— 012X031*1

+ (032—

+ (013 — 03l)(021*l + 022*2 + 023/) — 0 .

We may suppose that xlf x2 and / are linearly independent, and so we get

(0 2 l—01 2)031+(032—023)011 + (013 — 031)021 = 0,

(021 — 012)032 + (032 — 023)012 + (013— 03l)022 = 0,

(021— 012)033 + (032—02 3 )013 + (013— 031)023 = 0.

If we denote the cofactor of the entry al} in the matrix A by Λτj, this system
reduces to

[is — /131 ,

i.e. the matrix Acoί of cofactors of A is symmetric. Since

•Aco£,
άetA

we find that A'1 is symmetric. Hence A is also a symmetric matrix.
After a coordinate transformation we may suppose that A is a diagonal

matrix
*! 0 0

0 λ2 0

0 0
with λi.λz.λsΦO.

Suppose now that (xί(u) v\ x2(u, v), xs(u, v)) is a parametrization of the
surface. Then, since Ax=(λιXl9 λ2x2) λ^x^) is normal to the surface, we have
that

; r r r W * 1 ^2 Λ:3VoxX!, λ2X2, λ s X s ) - , - , -ϋ,
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or

J5_

dv 1 *

So

\O.ij) AιXι~T~Λ2X2\*3 ^3~~^f

where c is a constant, and we see that M2 is part of a quadratic surface. For
this quadratic surface one computes the mean curvature

ιι#ιι=±-

From (*) and (1.1), we have that the absolute value of the mean curvature equals
(l/2)||.Ajc||, which implies that

(3.3) u?
From (3.2) we have that

If we substitute this in (3.3), we obtain a polynomial in xl and xz which has to
be identically zero, so in particular the coefficients of x{ and jc|, which are

i— As)2 respectively λl(λ2—λz}
z have to be zero. So we find that λl=λ2—λz.

Hence M2 is a sphere. The constant term of the polynomial, which is
cλ3(cλB—λ1—λ2), also has to be zero. From this we find that c=2. So if we
write r for the radius of the sphere we have

^=^=^=4.

(2) Rank of A is 2.
By choosing a basis {elr e2, e3} with elf e2^lm A and e3^(lmAY, we may

suppose that A and B have the form

#11 #12 #13 0

#21 #22 #23 and jB= 0

0 0 0

If J5=0, then Δx =—2H belongs to Im A which is a plane through the origin.
This means that the normal on this plane is a constant tangent direction to M2,
but this isn't possible since M2 isn't a cylinder. So we may suppose that bzφ§.

Consider the set
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Since

du P du P

P dv

this is an open set, and by the assumption that M2 is not a cylinder, U cannot
be empty. By the inverse function theorem, on U the surface is locally given
as the graph of a function / in the following way

X — \Xl) X2) J\^l) X Z ) ) *

From (1.1) we see that Ax=Ax+B is normal to the surface, so

or

^ f 1

g^Γ^y

— =--

Since / satisfies

we have

or

(3.4)
#11 #13

#21 #23

#12 #13

#22 #23

(3.6) fll2=fl21.

Since A has rank 2, expressions (3.4) and (3.5) imply that

(3.5)
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Equation (3.6) shows that the matrix ( u 12) is symmetric. By a coordinate
\fl21 d22

transformation we may suppose that A has the form

with λί λiΦQ.
Suppose now that (x^u, v), xz(u, v), xz(u, v)) is a parametrization of the

surface. Then, since Ax+B^^Xί, λ2x2, bs) is normal to the surface, we have
that

or

So

where c is a constant, and we see that M2 should be part of a quadratic surface.
However, for this quadratic surface one computes the mean curvature

The absolute value of the mean curvature equals (l/2)\\Ax+B\\ by (1.1). This
implies that the polynomial

should be identically zero, which contradicts λ^λ^Φ^.

(3) Rank of A is I.
Since Δx — — 2H, equation (*) implies that —2H lies on ImA+B which is a

line. So a vector orthogonal to a plane which contains the line ImA+B and
the origin, is everywhere tangent to the surface M2. This contradicts our as-
sumption that M2 isn't a cylinder.
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(4) Rank of A is 0.
In this case (*) becomes

If £—0, then we have by (1.1) that //=0, so the surface is minimal. If
equation (1.1) implies that B is a constant vector normal to M2, so M2 is a
plane. However for a plane we have that H=Q, which contradicts Bφΰ. m
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