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PICARD SETS ADMITTING EXCEPTIONALLY RAMIFIED
MEROMORPHIC FUNCTIONS

By Y0j1 HASHIMOTO AND KIKUJI MATSUMOTO

1. For a totally disconnected compact set E in the extended z-plane €, we
denote by My the totality of meromorphic functions, each of which is defined
in €—F and has E as the set of transcendental singularities. If any function
of My has at most two Picard exceptional values at each singularity {€E, E
is called a Picard set. The existence of perfect Picard sets was shown by
means of Cantor sets in Matsumoto [4]. A meromorphic function f(z) of Mg
is said to be exceptionally ramified at a singularity {&FE, if there exist values
wr, 1<k<q, and positive integers vy, 1<k =g, with

)3 1—l)>2,
k=1 Ve

such that, in some neighborhood of {, the multiplicity of any w,-point of f(2)
is not less than y,. In [3], Kurokawa gave Cantor sets E for which each
function of My cannot be exceptionally ramified at any singularity {&E. Here
we remark that such sets E are Picard sets. The purpose of this note is to show
that, contrary to the case of isolated singularities, there exist Picard sets E for
which there exist meromorphic functions of My being exceptionally ramified at
each singularity {<E.

2. Let 4 be the 5-sheeted covering surface of the extended w-plane with
two branch points of order 4 over 1 and —1. For n=0, we slit each of four
sheets other than the first sheet of 4 along the positive real axis from g,, p.>1,
to o and denote the resulting surface by 4,. For n=1, we further slit the first
sheet of 4, along the positive real axis from pg,., to co and prepare 4" replicas
of the resulting surface, which we denote by 4,,,, 1<k=<4.

Now we connect 4y ;, 1<k<4, with 4, crosswise across the four slits from
M to oo one by one, and obtain a surface F; with 4? slits. Next we connect
ds.r, 1Sk<4?, with F, crosswise across the 4% slits from g, to o one by one
and obtain a surface F, with 4° slits. Continue these constructions inductively.
Namely we connect 4, 1<Ek<4™H, with F, crosswise across the 47+ slits
from g, to oo one by one and obtain a surface F,,, with 4" slits. We denote
the limit surface by F.
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By construction, the surface F is planar, so that there exists a one to one
conformal mapping z=¢(p) of F onto a domain G of the extended z-plane C.
Now we set E=C—G and have the following

THEOREM. If lim (ptn/ftn-1)=c0, then E is a Picard set for which there

exists a meromorphic function of My being exceptionally ramified at each {<E.

3. We denote by n(p) the projection of F to the extended w-plane. Then
the composite function z-¢~'(z) is exceptionally ramified in G and belongs to
M. Hence it is sufficient for us to prove that E is a Picard set.

Contrary suppose that there exists a meromorphic function f(z) of Mg
omitting three values 0, 1 and o in a neighborhood of some singularity {,=E.
We consider 4,,,. defined in 2 as a subdomain of F and denote by I, its
boundary corresponding to the slit from pg,-; to o and by I'niiae-s, Lns1,48-2,
Iniiae-1 and Iy those corresponding to the four slits from g, to oo. Then
Ay, k=40—j (0<7<3), has [, as a boundary in common with 4, , and we
can take a doubly connected domain A, in dn_1, Iy, I, with w(An,.)
C{o; |w|>1} which is mapped onto the annulus 1< |&|<pn-,® with |&]=gn-y
as the image of I',,,. For each n=1, the doubly connected domains {Anx,:},
1<k < K(n)=4", separate {A,_1,:}, 1Sk<K(n—1), from the ideal boundary of

F and ﬁ_llog Un-1"—(1/2) log K(n)=2 En_Jllog Um-1—n log 2—co (n—o00) from our
assumption }Lim (¢tn/ pn-1)=co0, and so we see from the Pfluger-Mori criterion that

F is an open Riemann surface of O,p, that is, E is an Ng-set (see [5]). There-
fore any function of 1\/{3 cannot be bounded at any singularity {&FE. Now we
consider the function f(p)=/f(4(p)) on F.

LEMMA 1 (Carleson [2] and Matsumoto [4]). Let w=g(&) be a single-valued
regular function in an annulus 1<|&|<p® omitting two values 0 and 1. Then,
the diameter of the image of |&|=p by g(&) with respect to the chordal distance
is dominated by A/p for sufficiently large p. Here, A is a positive constant not
depending on p and g(§).

We take [, &, such that 7., &, =@, #,) surrounds £°, where we may as-
sume that f(z) omits 0, 1 and o in the part of G surrounded with 75, , that
is, F(p) omits, 0, 1 and < in the end F, of F which has I'y, v, as its relative
boundary. From now on, we deal only with 4, , contained in the end F, and
see from this lemma that the diameter of the image f(I', :) with respect to the
chordal distance is dominated by A/y,-, for sufficiently large n. Hence we can
take a spherical disc D, . of chordal radius d,=A/p,-, containing the image

f(rn, k)-

4. We may assume that 6,<1/20 for n=n,. Then, since any component
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of D=D,,:\UDps1,40-3\IDps1,45-2\IDns1,46-1\JDr11,4x can contain at most one of
0, 1 and  and f(p) omits them in 4=4, ,, we have the following cases:
(A) The set D is connected. We cover D with a disc D of radius at most
50, and have f(4)cD. In this case, we say that 4, . is degenerate (f).
(B) The set D is not connected and is covered with the following discs, which
are disjoint by pair and each of which covers at least one component of D.
Here we may assume that there are no branch points of the Riemannian image
of 4 over the boundary circles of these discs. The function f(p) takes each
value outside their union at least once and the same times, say s=1 times. In
this case, we say that 4, , is nondegenerate (7).
(B1) Discs Do, D, and D., of radius at most 63, and with centers at 0, 1 and
oo respectively.
(B2) Discs Do, D, and D.. and one more disc D, of radius at most 28, and
with center at a.
(B3) Discs Dy, D, and D. and two more discs D, and D, of radius &, and
with centers at a and b respectively.

We shall go into details about Riemannian image of 4 under f(p). First
we shall prove the following

LEMMA 2. The harmonic moduli of doubly connected domains in Ad=4,,,
which separate two of five boundary curves of 4 from the remaining three have
an upper bound K not depending on n and k, 1< k<47,

Proof. Map 4 by u={(w+1)/(w—1)}'/°>. The image of 4 is the extended
u-plane with a slit from 1 to {(gn-1+1)/(¢ga-1—1)}'/* and four slits from ¢*>*7*/°
to e*™ o {(ua+1)/(n—1)}%, 1<m=<4. The image of any doubly connected
domain of our lemma separates two of these five slits from the remaining three,
consequently, two of the five points {e?™7'/°}4_, from the remaining three.
Therefore it is sufficient for us to find an upper bound out for doubly connected
domains which separate 1 and ¢***/s from e***/5, ¢°7*/® and e®"%/® or 1, ¢®**/® and
25748 from e***/% and ¢®*"/°. It is well-known that the doubly connected domain
C—{e'?;0<0<2x/5)U{e’? ; 4r/5<0<8x/5} gives the maximum harmonic
modulus among the doubly connected domains separating 1 and ¢***/® from e***/®
and ¢®**/5, Thus we can take the harmonic modulus of this domain as K.

(Bl) We set 2=C—D,UD,UD.. The inverse image f-(2) consists of at most
two components, because the connectivity of any component cannot be less than
3. Suppose that 7-() consists of two subdomains 4, and 4, of 4. Then 4,
and 4, are triply connected. Let S, and S, be the Riemannian image of 4, and
4, and s, and s, be the numbers of sheets of S, and S,. Expressing by p the
Euler characteristics, we have

P(2)(51+ 52)— (W Fva)= p(d )+ p(d3)=—2,

where v, and v, denote the ramification indices of S; and S,. Since p(£)=-1,
si+s,+v,+v,=2, so that s,=s,=1 and v,—=v,=0. A component of the open set
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4—4,U4d, is triply connected and its image is contained in some of D,, D, and
D., say D,. The inverse image of any doubly connected domain in S, separat-
ing D, from D, and D., separates two of five boundary curves of 4 from the
remaining three. By Lemma 2, this is impossible for sufficiently large n. Thus
we see that f-(2) consists of a subdomain 4 of 4, where the connectivity of
4dis 3, 4 or 5. Let S be the Riemannian image of 4 and v be the ramification
index of S. Then p(.Q)s—v=p(J), that is, s+v=—p(zf).

If 4 is triply connected, we have s+v=1, so that s=1 and v=0. There is
a boundary curve I" of 4 which surrounds at least two of five boundary curves
of 4. Suppose that 7(I")=8D,. Then the inverse image of any doubly connected
domain in S separating D, from D, and D.. separates two of five boundary
curves of 4 from the remaining three. By Lemma 2, this is impossible for
sufficiently large n. We can show similarly that the case where 4 is quadruply
connected does not occur.

In the case that 4 is quintuply connected, we have s+v=3, so that s=3
and v=0 or s=2 and v=1. We denote by g, ¢, and 6. the numbers of bound-
ary curves of 4 mapped onto dD,, dD, and 9D.. respectively, where we may
assume 0,=0,=0-=1. Then we have following three cases.

6 @ 0w s
O iy @ @ 30
® gy oy @ 2!
® oy @ ° O

Here we write under o, ¢, and ¢. the winding numbers of the images of
boundary curves of 4 with respect to the centers of D,, D, and D., respectively.

g1 -
For instance 2 shows that there are two boundary curves of 4 mapped onto

9D, and one of them has the image winding once around 1, while the other has
the image winding twice.

(B2) The inverse image 7 () consists of a subdomain of 4. We take all
relatively noncompact components of 7-'(D,) with respect to 4 off from f-(f2)
and have a subdomain 4 of 4, whose connectivity is 4 or 5. Let S denote the
Riemannian image of 4 under f(p) and v be the ramification index of S. De-
noting by s. the number of sheets of S over D, and by v, the ramification in-
dex of the part of S over D,, we have

{0(Q@—Da)s—w—v )t +{p(Da)sa—ve} =p(d),

that is, 23—sa+v=—p(ﬁ). In the case that 4 is quadruply connected, we have
s=1, s,=0 and v=0, but we see similarly as in (Bl) that this case does not
occur for sufficiently large n. Let 4 be quintuply connected. Then 2s—s,+v
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=3 and we have s=2, s,=1 and v=0. Denoting by ¢, the number of boundary
curves of 4 mapped onto 8D,, we have the following case.

gy gy O Jq S v

2 1 1 1
@ 9wy @ @ o 20

(B3) We take all relatively noncompact components of f-'(D,) and 7-'(D,) with
respect to 4 off from f-(£2) and have a subdomain 4 of 4. The domain 4 is
quintuply connected. Hence we have

{0(Q—DoUDy)s—w—ve—vp)} +{p(Da)sa—va} +{pDp)sy—vp} =—3,
that is, 3s—sq—s,+v=3, so that s=1, s,=s,=0 and v=0.
[y gy O (1 gy S v
1 1 1 1 1
®© @ o o o @ 0

5. Suppose thflt all 4, contained in the end F, are degenerate (7). Then
for 4,,, in FB f(d., ) is covered with a disc D, , of radius 59,. For each
An0+1,k in F,, Dno,kOUDn0+l,k‘7&¢, so that f(Ano,koU(UIAno+1,k)) is covered with

k

the disk D, of radius 50041005+, <(1/4){14(1/2)} and with the same center a,
as ﬁno,ko, where \U’4,,+1,» means the union taken over all the 4,..:’s in F,
k

and we assume 0,,<1/20 and 0,41/0,<1/4 for n=mn, Suppose now that
f4., kO:J( Ql(\kJ’AnoJ,p, »)) is covered with the disc D, of radiusﬂgﬁno—}—lol;nglénow
<(1/4)p2=0(1/2”) and with center at a,. Then f(Ano,kou(:\;}l(kk}’d,wp,k))) is
covered with the disc Dy, of radius 55,,0+1o;§’5n0+p<(1/4>’§(1/2p) and with
center at da, because ﬁmr\ﬁnomﬂ,kq&gb for each 4, 4m+1,+ in Fy. Thus we
conclude that F(F,) is covered with the disc of radius (1/4)p§)(1/2p)=1/2 and

with center at a,. This means that f(z) is bounded in the part of G surrounded
with 7,,.#, and is impossible as mentioned in 3. Now we see that there are
infinitely many 4,,, in F, being nondegenerate (7).

6. We take such a domain 4, , and consider the subdomain 4, . of 4, ..

A§ we saw in 4, ﬁn,k is quintuply connected and its five boundaries f,,,k and
{I" 441,45} 30 are homotopic to those I, » and {541,425} 3-0 Of 4,,, respectively.
Further, at least two of tpem have the image curves winding once around 0,
1 or oo, so that one of {Iy41,45-;}3=, Say Ins41,4x has the image curve winding
once around 0, 1 or oo, say 0. The adjacent 4,,, ., is degenerate (). In fact,
suppose that it is nondegenerate (f). Then the boundary curve [.. s Of du &
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and that I witar OF du41 4s are both homotopic to /', 41,4% and bound a subdomain
of Ay 1\UIns1, 48\ I i1, ar, SO that F(p) takes the value O there contradicting our
assumption that f(p) omits 0, 1 and co. Here we give two lemmas.

LEMMA 3. If 4, . is degenerate (F), there are four curves {f,,+,,4k_,~}}’=o in
4, such that, for each j,0<j<3, [nirar_, is homotopic to I'yiy r-, and the
dzameter of its image f(F,,+l ar-j) With respect to the chordal distance is dominated
by As 20n+1=0(0,2), where Aisa positive constant.

Proof. A disc D, . of radius at most 55, covers the image f(4, .). We
map 4,,, by the mapping u={(w+1)/(w—1)}/*. The image of 4, . is the ex-
tended u-plane with a radial slit R, ; from 1 to {(gtn-1+1)/pta-i—1)}%, the im-
age of I'y, &, and four slits {R,i14z-;130 from e2W+D7s tg g2U+bme/s{(yy 4 1)/
(#n—1}V, 0<7<3, the images of {/ ps1,46-513=0. We take circles {Cni1,4z-7}3=0
of radius gn-1/fta=0r4+/0, and with centers at ¢2v*97*/% (0<;<3. We show that
the inverse images {fn+,,4k_j}§=o of these circles {Cni1,4x-5}3=0 satisfy the con-
ditions of our lemma. We set h(u)=f((u*+1)/(u*—1)) and apply the Cauchy

integral formula to A(u) in the domain {u; |u| <R}—R., ku(u Rui1,4%-,), Where
we take R>0 sufﬁc1ently large. Then we have

dh ( 0= 27 {SRn,k+ g)SRn+1,4k—]+Slul=R} (14}51;)0)2 du

We take #,=Cpi1,4x-,, Here we may assume that the center of the disc
Dniran-, is 0. The disc Dyyy,4x-, Was given in 4, and, as we showed there,
Dosvab-yDF(Lnsrisn-3), Dusran-;CDny, and its radius is equal to 8,.,.. We
remark that D, , is covered with the disc of radius 105, and with center at 0.
Since f(d,,+)CDu. s, |h(u)| <208, and

h(u) 2nR
}Sm o dulszoa R0 (R,
Since (0n+1/0,)—0 (n—o0), we may assume that the distance between Ci,i1,42-;
and R, : or Ryi1,46-4, 0=<0<3 and +#1{j, are not less than sin(x/5). We have

h(w) 2| R, sl
”Rn, E (U—u,) du l =200 sin?(x/5)
and

h(u) 2|Rns1,ar-dl
‘SRn-H,Ak-t (u—u,)? du‘ =200 sin*(z/5)

where |R, .| and |R,.1,4z-¢| denotes the lengths of the radial slits R, , and
Rni1,46-¢, that is,

Resi=(l=tly 12 S 3,
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and

» 1\1/8 3
‘Rn+1,4k—£i=(zntl) _légzanﬂy
where A is the positive constant in Lemma 1. We remark that f(rn+1,4k_j)c
Dyi1,ar-, and hence |A(u)]| £100,+; for uE R 41,465 Since (07+1/02)— | Rat1,az-51
=0,41/(26,) for sufficiently large n,

2|Rn+1.4lz—jl 34_85"’2.
{(5n+1/5n)_ !Rn+1.4k—jl }2 A

| —hﬁ&du‘gmanﬂ

Roy1,ak-3 (U— Up)?

Thus we have

= or(aemeem ™ S aemuamy et 1S 5

so that the diameter of the image h(Cn+1,4k_,-)=f([~‘n+,,4k_j) is dominated by

dh A, O
E(“)I |dul < 50,0 252 = 0,000

Ed_@'_‘ 2 2
) W43 o,

S0n+1.4k-—]

LEMMA 4. The harmonic modulus of any doubly connected domain in 4=
Ay e I, 06\ I D1, s Which separates Iy, and { I nss,an-53321 from {Lnss,165-5)3=0
is dominated by —2log Mé,.,, where M is a positive constant.

Proof. We map 4 by the mapping u={(w+1)/(w—1)}'/®, where we take a
branch of the mapping function suitably so that the image Rii1.4r Of Inir 4z
comes on the positive real axis, and have a two-sheeted covering surface over
the extended wu-plane with branch points over 1 and r={(p,+1)/(g.—1}"5
Further we map this surface by v=(u—1)/(x—r) and have alsotwo-sheeted covering
surface over the extended v-plane branching over 0 and . We consider that
the covering surface is given by connecting two extended v-plane crosswise
across the negative real axis. The boundary curves I, ; and {I n41.4k-513-1 are
mapped into the first sheet and the boundary curves {71z, 154-;}3=0 are mapped
into the second sheet. The image of a doubly connected domain in 4 of our
lemma is a doubly connected domain in the surface separating these image
curves of the first sheet from those of the second sheet. The image curves in
the first sheet and the second sheet both contain two points with projections
vo=(e?"**—1)/(e***/*—7) and ¥, and hence our image domain separates these two
points of the first sheet from those of the second sheet. It is known that the
two-sheeted covering surface deleted the circular arcs of the first and the second
sheets over {v=|v,|e*’; —argv,<6<argv,} gives the maximum harmonic
modulus among such doubly connected domains. Its harmonic modulus is equal
to two times the harmonic modulus of the Mori extremal domain, the extended
plane deleted the negative real axis and the circular arc {e%%; —argv, <6<
arg v,}. Setting 4=2sin (arg v,), we see that this harmonic modulus is domi-
nated by log (16/2) (see Ahlfors [1]). Since A=ZM'/p,=(M'/A)d,+. for some
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positive constant M’, we see that —2log Mo,,,, M=M'/(16A), gives an upper
bound for harmonic moduli of our doubly connected domains.

The domain 4,...: is degenerate ( f) and hence by Lemma 3, there are
four curves {I".ie.108- i13=0 such that, for each j, 0</7<3, [ris 66—, is homo-
topic to ['n.m 16—, and the image f(l“,m 16x-;) is covered with a disc D,,H Lok
of radius A5,,+15,,+2 We denote by dnsae the subdomain of A, y\UIMns1 s\
Adnirar bounded by Ininae and {F e i66-;}3-0 and by S and S the Riemanian
image of A,, » and An s\ I 1,08\ dnsr, 1n respectively.

We denote by [w,;, w.] the chordal distance between w, and w,. If the case
(2) of (B1) occurs for 4, :, S has a branch point over c&D,\UD,\UD.. We may
assume that [c, 0]1=+/2/4, because, if [¢, 0]<+/2/4, then [c, 1]>«/7/4 and we
can proceed with our proof taking a boundary curve an,q in {Fn+1 sk-j}5=0 in-
stead of I%...: such that its image curve winds once around 1. If the case
(4) of (B2) occurs for 4, , and [a, 0]1<+/2/2—60,, then S has a doubly con-
nected domain over [a, 0]<[w, 0]<+/2/2—60, whose inverse image separates
separates two of five boundary curves of 4, , from the remaining three. Hence,
by Lemma 2, we have [a, OJ;e'K/Z\/l—i—(e‘K/Z)ZgK where we set K=
min{e"%/24/14+(e"%/2), +/2/4}. If the case (5) of (B3) occurs for 4, :, then
[a,0]=K or [b,0]=K. We assume that [a, 0]=K>[b, 0]. Then S has a
doubly connected domain over [b, 0]+23,<[w, 0]<K whose inverse image
separates two of the boundary curves of 4, , from the remaining three. Hence
(b, 01=K>.

Suppose that 905n+z_15k—]c{w ; Lw, 0]<d} for some positive number d<Ke.

We consider the part of S over the annulus {w; d<[w, 0]<K?}. Then, as we
just saw above, its component containing f(fn+1,4k) covers the annulus univa-
lently, so that the inverse image of this component is a doubly connected domain
in  duxIM41,08\Id0ss,ae which  separates I'n: and {[%aiy4-5}5-1 from
{Iss2.16¢-5}3—0 and has the harmonic modulus log (K*+/I—d%/(dV1—K*). By
Lemma 4, we have log (K*v/I—d%/(dV1—K*)<—21log Md,.:. Thus d=Ld,..",
L=(R*M?)/2V1—K*), and at least one of {Dis 106-5}3=0, S8y Dpie,iex inter-
sects the circle [w, 0]=Ld,4.*=m. We assume that 0,+:/0,<<min {1/(4;1), 1/4}
for n=n,. Then since 26n+15n+z<5n+12/4; ﬁn+2.16kc{w; [w, 0]=m/2}. Suppose
that the adjacent domain 4. 1. is nondegenerate (f). Since the boundary
curve I",,H wor Of dnss 1er is homotopic to Inis 6% and hence to I'nis 16s, Fn+2 Lok
and I",,s 1. bound a doubly connected subdomain of Aui1,ex\J D nss. 166U dnss, 16k
and their 1mages are contained in the union of a circle f(Fn+2 16z) With center
at 0 and D, ., s, S0 that F(p) takes each value of the inside of the circle de-
leted D,.5 16 This contradicts our assumption that f(p) omits 0, 1 and co.
Thus 4,42, 162 IS degenerate (). The curves I'nie cer- -a, 0=</7<3, of Lemma 3
are covered with discs Days gus- _, 0=<7<3, of radius Ad,+20,+3<m/64. Since
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the set ﬁ“z,wku(KaJOﬁ,,H,M,,_,) is connected and D,.,p 10:C{w; [w, 01=m/2},
P
we have \joﬁn+3,s4k_jc{w; [w, 0]=m/2%}.
s

Now we consider the end F,’ of F with [, ,c: as its relative boundary
and suppose that, for some p=0, () all 4,1545,,’s in F,’ are degenerate (f) and

3
U ( Uoﬁ,,+3+p,4q_,-)c{w; [w, 0]=zm/27**}, where \U’ means the union taken over
q J= q

all the du404p.¢’s in Fy/. We repeat the above argument taking 4,.54,,, and its
adjacent d,154p,40-, (0<7<3) instead of 4,1, and 4,2 16:, and conclude that

~ 3 N
An+3+p.4q—] is degenerate (f) and }_{) Dn+3+p,16q—-4]—lc{w; [w, O]gm/Zp“’}. Con-

sequently we have (x) for p+1. Thus we see that all 4, , contained in the
end F,’ are degenerate (f), but it is impossible as we saw in 5. Our theorem
is now established.

7. Remark. The exceptionally ramified meromorphic function w-¢-'(z) con-
sidered in 3 has three totally ramified values w,=1, w,=—1, ws;=co, for which
yv;=v,=b5 and y;=2. Hence

3 1y 21

20-50)=1
We compose {(w+1)/(w—1)}'/® with m-¢~'(z). Then the composite function has
five totally ramified values w,=e?***/%, 0< k<4, for which v, =2, 0<k<4. Hence

4 1 5
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