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A CHARACTERIZATION OF CERTAIN DOMAINS

WITH GOOD BOUNDARY POINTS IN THE

SENSE OF GREENE-KRANTZ

BY AKIO KODAMA

Introduction.

For a domain D in Cn, we denote by Aut(D) the group of all biholomorphic
automorphisms of D onto itself and write dD (resp. D) for the boundary (resp.
closure) of D.

In a recent work [6], Greene and Krantz introduced the notions of good or
bad boundary points in connection with Rosay-type theorems for weakly pseudo-
convex boundary points. For example, consider the weakly pseudoconvex domain

and a bounded weakly pseudoconvex domain Ω in C2 such that

(1) there is a point z° of dΩίλdΩ0;

(2) Ωr\U°=Ωor\U° for some open neighborhood U° of z° in C\

Then the point z° is a typical example of bad boundary points of Ωo in their
sense. And they conjecture the following [6 Sect. 13]:

The point z° is also a bad boundary point of Ω. that is, the domain Ω
(*)

cannot have any Aut{Ω)-orbιts accumulating at z°.

Clearly this is based on the well-known fact that Aut(£?0) is a compact Lie
group consisting of the holomorphic transformations (zu ^2)—K0v=Ts2(;ci), 0VZΓί<z<κ2))
(s, t^R and a being permutations of {1, 2}) and hence no Aut (!2o)-orbit accu-
mulates at z°<EdΩ0. Now, generalizing the domain ΩOf we investigate in this
paper the weakly pseudoconvex domain

where pu •••, pn are positive integers.
Our main purpose of this paper is to prove the following theorem, from

which it follows in particular that the conjecture (*) above is, in fact, true:
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THEOREM. Let D be a bounded domain in Cn (w>l) with a point z°—
(z°> '" > z°n)<E.dD. After renumbering the coordinates if necessary, we assume that:

(1) There are integers k^O, ί « > l (k+l^>a^n) and an open neighborhood
U° of z° in Cn such that

(1) z°£ΞdE{l, -,l,pk+u ~,Pn), and

(ii) DΓ\U°=E(l, ..., 1, p k + ί , •••, Pn)Γ\Uo

y

here it is of course understood that E(l, •••, 1, pk+u •••, pn)—Bn, the unit ball
in Cn, if k^n.

(2) #{i z°Φθ, l^i^n}—j\ where # denotes the number of elements con-
tained in the set.

(3) The point z° is a good boundary point of D in the sense of Greene and
Krantz [6], that is, there exist a point k°^D and a sequence {φv\ in Λut(D)
such that limφXko)=z°.

V-*oo

Then we have l<j<k and D—E(l, •••, 1, pk+1, •••, pn) as sets. In particular,
if z\'" z°nφQ, then D is precisely the unit ball Bn.

As an immediate consequence of this, we obtain the following:

COROLLARY. For arbitrary integers plt •••, pn^2, any bounded domain D
in Cn with a point z°^dDΓ\dE(p1, •••, pn) near which dD coincides with
dE(pu •••, pn) cannot have any Aut(D)-orbits accumulating at z°.

Here it should be noted that any smoothness or pseudoconvexity of D away
from z° are not assumed in our Theorem. Moreover, in the special case when
D is a bounded domain in Cn with Cn+1-smooth boundary, (pu •••, pn-u Pn)=
(1, •••, 1, m) with ra>l and z°=(l, 0, •••, 0) in the Theorem, Greene and Krantz
[5] has shown that D is biholomorphically equivalent to the model space
E(\, - , 1 , m).

After some preliminaries in section 1, the proof of the Theorem will be
given in section 2. Our proof here is based on the normal family technique as
in [9] and some extension theorems of holomorphic mappings due to Rudin
[13], Forstneric and Rosay [4]. In the final section 3, we shall discuss whether
the model space E(l, •••, 1, pk+u ••• > Pn) can be replaced by any homogeneous
bounded (symmetric) domain in our Theorem.

The author would like to thank Professors Steven G. Krantz, Robert E.
Greene and Kang-Tae Kim for their useful comments on the subject of this
paper. The author would also like to express his thanks to the referee for
valuable comments.

1. Preliminaries.

In this section we shall recall the structure of the domain E(pu •••, pn)
and some results on extensions of holomorphic mappings.
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For later use of concrete description of biholomorphic automorphisms of
E(Pu '" , Pn)j we begin with recalling the structure of Aut(E(pu--t pn)).
Denoting by M(r, s) the set of all rXs complex matrices for positive integers
r and s, we consider the closed Lie subgroup SU(m, 1) of G L ( m + l ; C )
(lrgm^w) consisting of all matrices

c d / c e M ( l , m),

satisfying the relations

tAA-tcc=Em, 'bb-ldl^-l, tb~A=dc and detr=l,

where Em is the unit matrix of degree m. Moreover, we set

Then, for each γ^SU(m, 1) represented as in (1.1) and each £=(£ m + i ,
7 n " m , we define the transformation ψ(γ, ξ) by

r (Az'+b)/(cz'+d),
(1.2) 0 ( «

for ^ ' e C m and (zm+1, •••, 2 n ) G C n " m (think z' as column vector). Using the
equality \cz'+d\*—\Az'-\-b\*=.\—\z'\* for all ^ ' e C m , one can check easily that
each ψ(γ, ξ) gives rise to a biholomorphic automorphism of E(l, •••, 1, />m+i, •••,
/)n). Moreover, we have the following:

T H E O R E M A. The domain E(pίf •••, />n) /ιαs ίΛe following properties

(1.3) i?(/>i, •••, j&n) is a geometrically convex bounded domain in Cn. In parti-
cular, it is taut in the sense of Wu [16] [2], [8].

(1.4) For an arbitrary point x=(xu ••• , xn)^dE(pu •••, p n ) , there exists a
local holomorphic peaking function hx for x of E(plf •••, p n ) . (Consider,

[ n -|-i

2— 2 (Zι)Pί'(xι)Pi defined near x.)
(1.5) Assume that l<pi^ ••• <pn and l^qi^ ••• ̂ qn Then E(pu •••, p n ) is

biholomorphically equivalent to E(qu ••• , qn) if and only if pi—qx (l^i^n)
[11], [15].

(1.6) Assume that p ^ 2 ( m + l ^ i ^ ή ) . Then dE(l, •••, 1, p m + l f •••, p n ) (0£m<n)
is not strictly pseudoconvex precisely at point z — ( z u •••, z n ) with z m + 1 ••• z n

(1.7) Assume that ra^l. Then Aut(E(ly ••• , 1, p n + 1 , •••, pn)) contains the Lie
subgroup
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G{m; pm+1, - , Pn)={φ(r, ξ);r^SU{m, I),

consisting of all transformations defined in (1.2). In particulary for a given
sequence {xv} in E(l, •-•, 1, pm+u •••, pn) converging to a boundary point

x°=(x°1} - , x°n) with (x°m+u •- , *£)=(0, - , 0),

there exists a sequence {φv} in G(m; pm+ιf ••• , pn) such that

&(* y)=(0, - , 0, Λ + i , - , Λ ) , 0£yί+u - , yl<l

for all v [7], [14], [9].

In 1974, Alexander [1] has shown that certain kinds of holomorphic mapp-
ings defined near boundary points of Bn must extend to biholomorphic auto-
morphisms of Bn (n>l) . This was later extended by Rudin to the following:

THEOREM B (Rudin [13]). Assume that n>l, and that
(1) Ωx and Ωz are connected open subsets of Bn

(2) for j ' = l , 2, Γj is an open subset of dBn such that ΓjCdΩ3;
(3) / is a biholomorphic mapping from Ωx onto Ω2, and
(4) there is a point x°^Γu not a limit point of BnΓ\dΩu and a sequence

{x1} in Ωu converging to x°, such that {fix1)} converges to a point y°^Γ2f not
a limit point of BnΓ\dΩ2.

Then there exists Φ^Aut{Bn) such that Φ{z)-f{z) for all Z<=ΩL

In a recent paper [4], Forstneric and Rosay obtained an interesting theorem
on the continuous boundary extension of proper holomorphic mappings. Accord-
ing to [4], we introduce Condition (P) as follows: Let D be a domain in Cn.
Then a point XOGΞ3£ satisfies Condition (P) if 3D is of class C 1 + ε near x° for
some ε>0 and if there exist a continuous negative plurisubharmonic function
p on D and a neighborhood U of x° in Cn such that

for some constant c>0, where d(z, dD)—mί{\z—w\
As noted by themselves, for a domain D in Cn we have the following:

(1.8) All C2-smooth strictly pseudoconvex boundary points of D satisfy
Condition (P);

(1.9) if p is a C2-smooth plurisubharmonic function on a domain ΩaCn,
D—{z^Ω\ ρ(z)<0} and D is compact in Ω, then each point
at which dp(x°)Φθ satisfies Condition (P).

Now we can state their main result as follows:
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THEOREM C (Forstneric and Rosay [4]). Let f: D1->D2 be a proper holo-
morphic mapping of a domain DxClCn onto a bounded domain D2cCn (w^l)
and assume that Condition (P) is satisfied for a point x°^dDx. If there exists
a sequence {^}cDi such that \\mxi =^x°y the limit lim f(xi)—y°<sdD2 exists, and

dD2 is C*-smooth strictly pseudoconvex at y°f then f extends to a Holder continuous
mapping with the exponent 1/2 on a neighborhood of x° in Dx.

2. Proof of the Theorem.

Throughout this section, we use the following notation: For given integers
mi, •••, m n ^ l , /7 ( m i TOn): Cn->Cn will denote the proper holomorphic mapping
defined by

for fa, •••, * n ) e C \ Let / : M-+N be a mapping from a set M into a set N
and S a subset of M. Then the restriction of / to S will be denoted by
f\S:S->N.

2.1. A Lemma. By using the same technique as in the proof of [9;
Theorem I], we shall first prove the following:

LEMMA. The domain D is biholomorphically equivalent either to Bn or to
E(l, •••, 1, pι+lf •••, pn), where l ^

Proof. We set E—E{lf •••, 1, pk+1, •••, pn) for the sake of simplicity.
Without loss of generality, we may assume that {φu} converges uniformly on
compact subsets of D to the constant mapping Cz0: D-^Cn defined by Czo{z)—z°
for all 2GD. Indeed, this can be seen easily by'using the fact that D is a
bounded domain in Cn and there exists a local holomorphic peaking function
for z° =\\mφv(k°)<^dDΓ\dE. Fix a family of relatively compact subdomains Dμ

of D such that

(2.1) D= 0 Dμ-D ••• ZDDμ+ίZ)DμZ) •

and choose an integer μί^l arbitrarily. Then, since φv(z)-*z° uniformly on Dμ,
there exists an integer v{μ) such that

(2.2) φv(Dμ)CZDr\U0^Er\U0 for all v^

where U° is the neighborhood of z° appearing in the Theorem.
Assume first k = n, so that E=Bn. Then z° is a C2-smooth strictly pseudo-

convex boundary point of D and consequently, by a result of Rosay [12] D is
biholomorphically equivalent to Bn. Thus, it is sufficient to prove the Lemma
when O^k^n—1. We have now two cases to consider.
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C a s e I. ( 2 ί + i , - , 2 S ) = ( 0 , - , 0 ) .

First of all, being a point of dE, z°=(z°u •••, z°n)Φ(fd, •••, 0) and so l£j£k in

this case. By virtue of (1.7), there exists a sequence {ψv} in Aut(E) such that

each point ψv(<pv{k0)) can be expressed as

Now define biholomorphic mappings fv: Dμ->E from Dμ into £ by

f\z)=φv(φv(z))t z<EΞDμ for all i ^

Then, after taking a subsequence and changing the notation if necessary, we
obtain the following two cases:

(A) f\k°)->u° for some point w°e£, and
(B) f%k°)-^u°=φ, •••, 0, uUu " > u°n) for some point WOGΞ3£.
In case (A) we would like to show that D is biholomorphically equivalent

to E. To do this, recall first E is a taut domain by (1.3). Then, the normality
of {fv}, combined with the fact fv(k°)->u°<^Ef guarantees that some sub-
sequence of \fv} converges uniformly on compact subsets to a holomorphic
mapping f(μ): Dμ-*E. Since μ was arbitrary and {Dμ} increases to D mono-
tonously, by the usual diagonal argument we can assume that {/υ} itself con-
verges uniformly on Dμ to the holomorphic mapping f(μ) for all μ—l, 2,
Accordingly we can define a holomorphic mapping / : D—>E by f(z)=f(μ)(z),
z^Dμ for μ—1, 2, •••.

Setting Eu=ψv(EΓΛU0)=ψv(DrMJ°) for all v, we consider the holomorphic
mappings gv: EV->D defined by

φψ for all v.

Then it is clear that

(2.3) s V ^ i d a , and /

for all v^v(μ), μ=l,2, ~. Let E' be an arbitrary subdomain of E with
compact closure. Then, by means of the concrete description of φv as in (1.2),
one can see that φ~\Ef)dEΓ\U0—Dr\U0 for all sufficiently large v. Passing
to a subsequence if necessary, we can therefore assume that {gv} converges
uniformly on every compact subset of E to a holomorphic mapping g: E^DcCn.
Once g(E)dD is shown, the equations (2.3) imply that g f=iάD and f^g—ΊάE\
consequently, / gives a biholomorphic mapping from D onto E. Thus we have
only to show that g(E)aD. To this end, take a subdomain E' of E with
compact closure in E such that fΦι)\Jfv{D^)^lEr for all v^v0) where D1 is
the domain appearing in (2.1) and v0 is a large integer. Then, for any point
z^Du there are a sequence {xί)(ZEr and a subsequence {gVi}C{gv} such that
gH(xi)=z for all i and xι-+x° for some point x°^Ef. Hence 2=lim#**(;:*)=

g(x°)^g(E), and accordingly Dx(Zg(E). On the other hand, being the local
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uniform limit of regular holomorphic mappings gv, the mapping g is either
regular on E or the Jacobian determinant of g vanishes identically on E. But,
g{E) contains the non-empty open set Du Hence we conclude that g: E->Cn

is regular on E and so g(E)dD by [3; Lemma 0] or [10; p. 79], completing
the proof in case (A).

In case (B): u°—φf •••, 0, uζ+u ••• , u°n)^dEf we wish to show that D is
biholomorphically equivalent either to Bn or to E(l, •••, 1, pι+i, •••, pn)> where
l<;max{&, y | < / ^ n - l . Notice first that

~,u°n)Φ(f), - , 0 )

in case (B). Thus the proof will be divided into two cases as follows:

(B-l) u°k+i ~u°nΦθ and (B-2) u°k+1 ••• κS=0.

In case (B-l) we claim that D is biholomorphically equivalent to Bn. To
prove our claim, choose an open neighborhood W of u° in Cn so small that the
restriction

tf:=tfci.....i.pik+1 VnΛW:W->Π{W)

is a biholomorphic mapping. This can be always achieved, since all
u°k+u •••, u°nΦθ. Then Π(WΓ\E)=Π(W)Γ\Bn and

(2.4) Π(f\k0))—>Π(u°)(ΞΞdBn as i;-»oo .

In view of homogeneity of Bn, there exists a sequence {Ψv} in Aut(Bn) such
that

Ψv(Π(fv(k°)))=oeίBn for all sufficiently large v,

where o stands for the origin of Cn. On the other hand, the existence of a
local holomorphic peaking function for u°^dE guarantees again that

f\Dμ)CLWr\E for all v^v

where v(μ) are large integers depending on μ=l, 2, •••. Accordingly one can
define holomorphic mappings Fv: Dμ->Bn by setting

Fv(z)=Ψv(Π(f\z))), z^Dμ for all v^V

Since Bn is taut and Fv(k°)—o^Bn for all v^ΰ(μ), μ=l, 2, •••, we may assume
by taking a subsequence if necessary that {Fv} converges uniformly on compact
subsets to a holomorphic mapping F: D-^Bn. Here we would like to show
that F is a biholomorphic mapping from D onto Bn. To this end, let us choose
a relatively compact subdomain B' of Bn arbitrarily. Then, taking (1.2) and
(2.4) into account, one can see that

ΨΛB')C.Π(W)Γ\Bn and ψ-ΛWΓ\E)C.EΓ\U0=DΓ\U°
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for all sufficiently large v, and hence obtain a sequence of holomorphic mappings

Gv: B'->D defined by

Gv=φzιoφ-ι°Π-ι°{Ψzι\Br) for all large v.

Since B' is arbitrary, we may assume that {Gu} converges uniformly on compact

subsets to a holomorphic mapping G: Bn->DaCn. It remains to prove that

G(Bn)(ZD, F°G=idBn and G°F=idD. But this can be done with exactly the

same argument as in the proof of case (A).

In case (B-2): u°k+i ••• u°n=0, we may rename the indices so that for some

m, k + l^m^n—l, one has

uUi •" u°mΦ0, w h i l e u°m+1= ••• =u°n=0 .

Accordingly, the restriction

Π: = / 7 ( 1 ltPk+ί P m . i i>\W: W-*Π(W)

is biholomorphic on some open neighborhood W of u° in Cn and hence

(2.5) Π<Wr\E)=Π<W)r\E(\, - . , l, />m+1, »., Pn)

(2.6) Π(Γ(k°))->Π(u°)= : M, . . . , vj)e=3£(l, - , 1, p m + 1 , - , pn)

with (i St+i, •••, v°n)=(0, •••, 0). Taking (1.7) into account and passing to a sub-

sequence if necessary, we may assume that

for some sequence {ίF }̂ in A u t ( E ( l , •••,!, pm+u - , Pn)) If {wv} accumulates

at some point w°&E(l, ~-, 1, pm+u '- > Pn), we conclude by the same reasoning

as in case (A) that D is biholomorphically equivalent to £ ( 1 , •" , 1, pm+ι, •••, pn\

If a subsequence {wVi}(Z{wv} can be chosen so that wVi->w°=(0, ••• ,0, w°m+l, ••• ,u;J)

e3J5(l, •••, 1, ίm+i, •••, ί n ) for some point w°f the same situation as in case

(B) occurs, but with m>k. Thus, repeating this process, we obtain eventually

that D is holomorphically equivalent either to Bn or to £ ( 1 , •••, 1, pι+u •••, pn),

where l<^max{&, j}<m+l<Ξίl<ίn—1, as desired.

Case II. (z°k+u - , z°n)Φφ, . . . , 0).

Assume first ^?+i •••^^0. Then, by a simple modification of the proof i n c a s e

(B-l), one can see that D is biholomorphically equivalent to Bn. Moreover, if

Zk+i •• 2Tn=0, it can be shown in exactly the same way as in case (B-2) that

D is biholomorphically equivalent either to Bn or to £ ( 1 , •••, 1, pι+1, •••, pn)

with l^max{&, j}<l^n—l, completing the proof of the Lemma.

2.2. Proof of the Theorem. According to the Lemma, we shall divide

the proof into two cases as follows:
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Case I. D is biholomorphically equivalent to Bn.

Since D is homogeneous in this case, we may assume that z\ ••• z°nΦθ. In parti-
cular, z° is a C2-smooth strictly pseudoconvex boundary point of D by (1.6).
Now, fixing a biholomorphic mapping F: D-^Bn once and for all, we choose a
sequence {z*} in D in such a way that

zι->z° and Fiz^-^w0 for some point w°^dBn.

Since 357 1 is of course strictly pseudoconvex, both the points z° and w° satisfy
Condition (P) by (1.8). Thus, applying Theorem C to the biholomorphic mapp-
ing F: D-^Bn (resp. F~ι: Bn->D), we obtain a continuous extension

P: VΓ\D->Bn (resp. H: WΓλBn-+D)

of F (resp. F" 1), where V (resp. W) is a sufficiently small open Euclidean ball
with center at z° (resp. w°) in C \ Without loss of generality, we may assume
that P(VΓ\D)C.WΓ\Bn and VdU°, the neighborhood of z° appearing in the
Theorem. Then, by a routine calculation, one can check the following:

(2.7) P(VΓ\D) is a connected open neighborhood of w° in Bn

(2.8) P: VΓ\D-+F(VΓ\D) is a homeomorphic mapping.

On the other hand, since all z°u •••, z°nΦθ by our choice, the holomorphic mapping

/7 : = / ? ( ! uPΛ+1 Pn>\V:V

is injective for a sufficiently small open neighborhood Ϋ of 2? in Cn. After
shrinking V if necessary, we can assume that VcΫ. Set G—{Π\VΓλD)~ι and
consider the composition

Ψ: =PoG: Π(VΓ\D)->F(VΓ\D).

(Note that Π(yΓ\D)\jF{VΓ\D)(ZBn.) Then, by construction, we have the
following:

(2.9) Π(VΓΛD) (resp. F(VΓ\D)) is a connected open neighborhood of Π(z°)<=
dBn (resp. w°=Ψ(Π(z°))^dBn) in i?71

(2.10) Ψ\Π(VΓ\D):Π(Vr\D)->F(VnD) (resp. Ψ: Π(VnD)->F(VnD)) is a
biholomorphic (resp. homeomorphic) mapping;

(2.11) Ψ(Π(VΓ\D)Γ\dBn)=:P(VΓ\D)r\dBn.

Obviously, the hypotheses of Theorem B now hold with

, Γ2=P(VΓ\dD) and f=Ψ,

and hence there exists an element Φ of Aut(5 n) such that Ψ=Φ on the non-
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empty open subset Π(VΓλD) of Bn. This combined with the principle of
analytic continuation yields that

for all (zlt •••, zn)<^D, from which we have DcE(l, •••, 1, pk+u •••, pn). Note
that φ~ι*F: D->Bn is a biholomorphic mapping from D onto Bn. Thus, if
{2*} is a sequence in Z> that has no limit point in D, then {Φ~1°F(zi)} has no
limit point in Bn. It follows in particular from this that there exists no boundary
point of D in £ ( 1 , •••, 1, pk+u •••, pn) and consequently D=E(1, •••, 1, pk+u •••,
pn). Since £ ( 1 , •••, 1, pk+1, •••, pn) is now biholomorphically equivalent to
Bn=E(l, •••, 1), we conclude by (1.5) that k = n and D=EQ., •••, l)=Bn, com-
pleting the proof in Case I.

C a s e I I . D is biholomorphically equivalent to E : = E ( 1 , •••, 1, pι+i, •••, p n )
with l:gmax{&, j}<l^n—1.

Fixing a biholomorphic mapping F : D-^E from D onto £, we take a point

* '=(*ί , .. , z'n)£ΞU°Γ\dD with *ί ••• ^ ^ 0 .

There exists a sequence {̂ έ} in D such that

21-**' and wx\ =F(zi)^

for some boundary point w'. Since ^' is a C2-smooth strictly pseudoconvex
boundary point of D by (1.6) and wr satisfies Condition (P) by (1.9), the inverse
mapping F'1: E-+D has a continuous extension H:WΓ\E-*D by Theorem C,
where W is an open neighborhood of w' in Cn. Now, keeping the fact

')=lmi #(200=2' in mind, we choose an open neighborhood Ur (resp. W)

of 2r (resp. 200 in Cn in such a way that

(2.12) UfdU0Γ\{(zu »., ^ ) e C * ^ •••

(2.13) T^'CPF and H(W'Γ\E)c:U'.

Take a point

w"=(w'{, •••, 20S)eWr/Γi3E with 10? ••• 2 0 ^ 0

and set zlr^H{w/r)^U'Γ\dD. Then, both the points z" and 10* are C2-smooth
strictly pseudoconvex boundary points and hence they satisfy Condition (P) by
(1.8). Therefore, repeating the same argument as in Case I, we obtain an open
neighborhood U" of z" in Cn satisfying the following:

(2.14) U"CLU0 and U"Γ\D is a connected open subset of D;

(2.15) F has a continuous extension F: U"Γ\D-*E;

(2.16) F(Uf'Γ\D) is an open neighborhood of w" in E;

(2.17) F: U"r\D->F(U"ΓΛD) is a homeomorphic mapping.
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O n t h e o t h e r h a n d , s ince z'[ ••• z£φθ ( resp. w" ••• w'ήΦϋ) by o u r choice, t h e
h o l o m o r p h i c m a p p i n g

Π: =/7α. . . . . i . P i k + 1 . . . . .p n > fresp. 7 7 : = / 7 ( l i . . . , 1 , P ι + 1 . . . . , P n ) )α.....i.Pik+1.....pn> fresp. 77: =/7 ( l i...,1,P ι + 1....,P n ))

is injective on some open neighborhood of 2" (resp. w"). After shrinking £/"
if necessary, we can therefore assume that :

(2.18) ΠIU": U"-+Π(U") is a biholomorphic mapping;

(2.19) Π is biholomorphic on some open neighborhood of F(U/fΓ\D).

Now we set G=(/7|ί/ / /nZ))- 1 and consider the composition

Ψ: =Π°FoG: Π(U"ΓλD)—>Πop(U"Γ\D).

Then, in exactly the same way as in the proof of Case I, it can be shown that
there exists an element Φ^Awt(Bn) such that

(2.20) Φ~ΌΠ°F{zu ..., *„)=(*!, .- , zk} (zk+1)
Pk+\ •- , (*»)PΌ

for all (zlf •••, zn)^D. This combined with the fact that φ-^Π'F: D->Bn is
a proper holomorphic mapping yields at once that D=E(1, •••, 1, pk+1, •••, pn).
Finally, since E(l, •••, 1, pk+1, ••• , pn) is now biholomorphically equivalent to
£(1, •••, 1, pι+u •••, pn) and l^k£l£n-l, we conclude by (1.5) that k=l; and
consequently, l^max{^, j}<ί—k^n — 1. Therefore we have completed the
proof of the Theorem. q. e. d.

3. Concluding remarks.

Remark 1. Let us consider once more the model spaces E(l, •••, 1, pm+u •••,
/>n) ( l^m^w) in this paper or the domains E(k, a) in the previous paper [9].
Then we can see that such model spaces E admit many biholomorphic auto-
morphisms, which fact plays an important role in the proofs of our theorems.
So it would be naturally expected that the same conclusion as in the theorems
is also true if the model spaces E are bounded homogeneous (symmetric)
domains. More precisely speaking, we might hope that the following is possi-
ble : Let E be a bounded homogeneous (symmetric) domain in Cn and D a bounded
domain in Cn with a common boundary point z°^dDίλdE. Assume that:

(1) DΓ\U°=EΓ\U° for some open neighborhood U° of z° in Cn

(2) there exist a point k°^D and a sequence {<pv} in Aut(D) with
\\mψv{k0)—z°.
V-»oo

Then D is biholomorphically equivalent to E (or more strongly D—E as sets).
Unfortunately, this hope has been dashed by the following:

EXAMPLE. Denoting by Δ the unit disc in C, we consider the domains
£=ΔxΔxΔ, D=AxB2 in C3 and the point 2°=(1, 0, 0)^dEΓ\dD. Then we
have
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(1) D and E are bounded homogeneous symmetric domains;

(2) D is not biholomorphically equivalent to E and

(3) DΓ\U°=EΓ\U° for some open neighborhood U° of z° in C\

A crucial difference between the symmetric domain E above and the model

spaces considered previously is the fact that E admits no local holomorphic

peaking function for the point z°.

Remark 2. In the special case of complex two dimension, by modifying

the proof of the theorem, one can show that the analogue of our theorem is

also valid for more general domain

with arbitrary real numbers pu p2>0.
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