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§1. Introduction.

In [9], Pinkall developes a Lie’s sphere geometry on hypersurfaces in a
space form and successfully applies the theory to a class of hypersurfaces called
“Dupin”. A Dupin hypersurface is a hypersurface each of which principal
curvatures has a constant multiplicity with a vanishing derivative in the cor-
responding curvature direction. One of his results is the local Lie equivalence
of cyclides of Dupin with isoparametric hypersurfaces, where a cyclide of Dupin
is a Dupin hypersurface with exactly two principal curvatures. This is essen-
tially used in [4] to find a solution to a simple progressing wave equation.

For any integer g, we can construct a Dupin hypersurface with g principal
curvatures of arbitrary multiplicities. Isoparametric hypersurfaces, however,
have ge{l, 2, 3, 4, 6} principal curvatures with non-arbitrary multiplicities if
g=3. Thus the equivalence problem between Dupin hypersurfaces and iso-
parametric hypersurfaces for g=3 requires some more conditions on Dupin
hypersurfaces.

In [11], Thorbergsson guarantees coincidence of compact embedded Dupin
hypersurfaces with isoparametric hypersurfaces in cohomology level. This mo-
tivates Cecil and Ryan a conjecture [3]: A compact embedded Dupin hyper-
surface is Lie equivalent to an isoparametric hypersurface. Besides the trivial
case g=1, this is already known true when g=2 [2]. For g=3, the author
gives a positive answer in [4]. In this paper, we find a certain Lie invariant
by which we get a non-trivial necessary condition for the equivalence when
g=4 and 6. A sufficient condition for g=4 is obtained as well, and in the
forthcoming paper, we give it for g=6.

After this paper was finished, Pinkall and Thorbergsson construct coun-
terexamples to the conjecture for g=4 [10]. Independently, Ozawa and the
author get counterexamples for g=4 and 6 in [6], using a new method producing
taut embeddings. Both examples are shown to be not Lie equivalent to isopara-
metric hypersurfaces by using the Lie invariant obtained in the present paper.
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Now our results are:

THEOREM L. Le_t_ A, i, v, © be distinct principal curvatures of a hypersurface
M in a space form M(c). Then the function

_ (A=p)r—v)
v= (A—v)(t—p)

is invariant under Lie transformations.

An immediate consequence of this theorem is:

COROLLALY. For a Dupin hypersurface M in M(c) with four or six
principal curvatures to be Lie equivalent to an isoparametric hypersurface, the
function ¥ must be constant on M for any distinct four principal curvatures R,
2, v, T of M.

As for a sufficient condition, we have:

THEOREM II. Let M be a compact embedded Dupin hyperface with four
principal curvatures A>p>yv>tT in M(c). If ¥ is constant on M and if for each
Aleaf L*(z-leaf L7, resp.), there exists a v-leaf L%(p-leaf L%, resp.) such that
LenLy#=@ for all g LA LN\LE+ @ for all g L7, resp.), then M is Lie equi-
valent to an isoparametric hypersurface in a sphere.

In §2-3, we give a summery of Lie’s sphere geometry, and prove Theorem
I'in §4. In §5-7, we investigate compact embedded Dupin hypersurfaces with
four principal curvatures. We use the constantness of ¥ in §8-9. The as-
sump tion on leaves is used in the last section to prove Theorem II

§2. Definitions.

Let M(c) be an n-dimensional complete simply-connected space form of con-
stant curvature ¢. An immersed hypersurface M in M(c) is called Dupin if it
satisfies :

(i) The multiplicity of each principal curvature is constant on M.

(ii) Each principal curvature is constant along its leaf of the corresponding

curvature distribution.
By an isoparametic hypersurface, we mean an immersed hypersurface in M(c)
with constant principal curvatures. Obviously, isoparametric hypersurfaces are
Dupin, but a (non-isometric) conformal image of an isoparametric hypersurface
and its parallel hypersurfaces are non-isoparametric Dupin hypersurfaces.

By conformal invariance of Dupin hypersurfaces and the function ¥, we
discuss on the objects in S*=M(1) in this paper.

A Lie transformation is a transformation on a space of all oriented hyper-
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shperes in S™ that preserves oriented contact (see §3).

An immersed submanifold X in S™ is said to be taut, if for all x&S™ such
that d,:=d(x, )%square of the spherical distance) is a Morse function on M,
the number of critical points of d, is equal to B(M; Z,), the sum of Z,-Betti
numbers of M.

Lie invariance of tautness is first mentioned by Pinkall [8], and is proved
by Cecil and Chern [1]. Now the important is:

THEOREM (Thorbergsson [117). A complete embedded Dupin hypersurface
M in M(c) is taut. If M is compact, then g is 1, 2, 3, 4, 6. Moreover, H*(M;
Z,) is obtained by Miinzner’s method.

This theorem motivates Cecil and Ryan the conjecture, and is essentially
used in this paper.

§ 3. Basic facts.

In this section, we review Lie geometric description of hypersurfaces in S*,
and give basic facts on Lie transformations. For details, see [9].

Let S™ be the unit shpere in R™*'. For k=%(z, x, y)EV 4 :=R""'XRXR,
define the symmetric bilinear form <{, > on V,,; by

(3.1 Kk, by=|z|*—x*—y".

Let P™*% be the real projective space corresponding to V,.; and denote by [%]
the projective point spanned by 2=V ,.;. Then the quadric

Q={[k1eP"**|<{k, k>=0}

is identified with the set of all oriented hyperspheres in S”. Two oriented
hyperspheres [%,] and [k,] are in oriented contact iff <{k,, k,>=0, which is
equivalent to that the projective line in P"** spanned by [k,] and [k.] is entirely
contained in Q. A Lie transformation of S is interpreted as a line preserving
diffeo ¢: Q—Q. This is known to be the restriction to Q of an projective
transformation a: P"**—P"+? leaving Q fixed [9, Lemma 4]. Therefore, a Lie
transformation is represented by A=(a,, a,, -, @,+3)E0(n+1, 2), where
{ay, ay, ---, a,+s} is the so-called Lie frame, i.e. an ordered set of vectors in
Va+s satisfying

In+1 0
K@, D) 121, jsn4s= -1 0
0 o -1

LemMmA 3.1. A is in O(n+1,2) iff tA=O(n+1, 2). In particular, both
ordered sets of colume vectors and line vectors of A are Lie frames of V5.

Proof. Put
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A1 Az
A=
A, A,
where A, M, (R), A,, *Ase My, o(R), A, M,(R). Define
N A, v —1A4,
A= .

'\/:[Ag "’A4
Then it is easy to see that A=cO(n+1, 2) iff tAA=I. Since *AA=] iff AtA=
I, we get tA=0(n+1, 2) iff A=0(n+1, 2). g.e.d.

Remark 3.2. We obtain Lie frames of V,,, as follows: Choose two linearly
independent timelike vectors in V,4; so that they span a timelike plane T. Let
S be the (n+1)-dimensional spacelike subspace orthogonal to T with respect to
{,> Since ¢, ) is definite on S and T, we can choose a,, a,, -, ¢, ES
and @,40, @n4:<T so that

Iy 0
«a,, D)z, ety ™= —1 0 /)
0 —1
i.e. {ay, as, -+, @43} is a Lie frame of V,,,. In particular, det A+0 since

a,, -+, Gn4s are linearly independent.

Now, for an (n—1)-dimensional manifold M and a pair of mappings k,, k,:
M-V, (M, ky, k) is called a Lie geometric hypersurface if it satisfies:

a) For all peM, the vectors k,(p) and ky(p) are linearly independent and

we have
$kyy k=0, 4, j=1, 2.

b) There is no peM, XeT,M such that simultaneously dk,(X) and dk,(X)
are in span (k.(p), k(D).

) (dki, ke>=0.

Remark 3.3. Obviously, if (M, k,, k,) is a Lie geometric hypersurface in
S*, so is (M, Ak, Ak,) for any Lie transformation A.

Remark 3.4. The properties a), b), c) are preserved by
(3.2) Ei=ak,+ Bk,  ky=rk,+0k,

where a, 8,7, 6: M—R are functions such that ad—p7 is everywhere different
from zero on M.

Example 3.5. Let p: M—S" be an oriented hypersurface and let n: M—S"
be defined by n(p)=the unit normal vector at pM. Then for
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(3.3) ki=4p, 1,0),  ks=%n,0, 1)
(M, ky, k,) is a Lie geometric hypersurface of S™.

LEMMA 3.6. If (M, k,, k,) is a Lie geometric hypersurface of S™, then there
are functions a, 8,7, 8: M—R and maps p, n: M—S" such that

(3.4) ak,+Bk,=4p, 1,0),  rki+0k,=n, 0, 1).
Proof. Let ki=%hy, a, b) and k,=%(h,, ¢, d). Then we have
(ad—bc)=(a®+b*)c?+d*)—(ac+bd)?
= Al he]l*—<hs, ho)?
>0

by a). Thus there exists the inverse matrix of (g (11)) which we denote by

(? /g) q.e.d.
For p, n: M—S" in Example 3.5, a parallel hypersurface is defined by

Po=COSap-+sinan, a<n, n).
of which the unit normal vector field n, is given by
n,=—sinap-+cosan.

Remark 3.7. p: M—S™ in Lemma 3.6 is not always an immersion. But
singularlities can be removed by passing to a parallel hypersurface of p [9,
Theorem 1].

Remark 3.8. Define A=0(n+1, 2) by

Iny 0
3.5) A= 0 cosa sina [

—sina cosa
Then we have for &y, %k, in (3.3),
Aky=%p, cosa, —sina), Ak,=%n, sina, cosa).
Using Lemma 3.6, we obtain
Ey=cos a Ak, +sin a Ak, =4 pa, 1, 0)

ky=—sinaAk,+cosaAk,=(n,, 0, 1).

Thus parallel hypersurfaces are obtained by a Lie transformation of type (3.5).
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DEFINITION. Let (M, k,, k,) be a Lie geometric hypersurface, peM, 4, p<
R, (4, #)+(0, 0). Then the hypersphere k=2k;(p)+pk.(p) is called a curvature
sphere at p if there is a tangent vector XeT ,M, X+0 such that

Adky(X)+pdky(X)Espan(ki(p), kup)).

X is called a direction of curvature corresponding to k.

Remark 3.9. The notion of curvature sphere is invariant under Lie trans-
formation. Especially, the direction of a curvature is preserved by Lie trans-
formations. When (M, k,, k,) is given by (3.3), k£ is a curvature sphere iff
A=2/p is a principal curvature of the hypersurface at p. The direction of
curvature is a principal vector with respect to A.

I:EN{MA 3.10. Let (M, ky, ky) be a Lie geometric hypersurface of S™ aud let
(M, by, k) be its anotizer descrz'ptz‘on by (3.2). Then Ak,(p)+pk(p) is a curvature
sphere at peM iff oki(p)+tky(p) is a curvature sphere at p, where

a T\/O\ __[A\
(,B 5>(r>_r(‘u)’ reR, r+0.
Proof. Put L=span(k(p), ky(p))=span(£i(p), kx(p)). Then

odk +rdk,=0(adk,+ Bdk,)+(rdk,+0dk,) (mod L)
=(ao+7r7)dk+(Bo+dr)dk,. q.e.d.

§4. Principal curvatures of a Lie image.

In this section, we compute principal curvatures of a Lie image of a hy-
persurface M in S™. To define “a Lie image” precisely, we review the Legendre
map from M to the space of lines in Q which we denote by A%*-!, Then we
study about spherical projections from A%*"-! to a sphere, and show that it is
sufficient to take a special spherical projection when we study Lie images of M.

DEFINITION 4.1. For a hypersurface M in S*, let (M, k,, k;) be the cor-
responding Lie geometric hypersurface given in (3.3). Then the Legendre map
L: M—A*" is defined for pM by L(p)= the line in Q spanned by k,(p)
and ky(p).

DEFINITION 4.2. For an ordered pair (u, v) of unit timelike vectors satisfy-
ing <{u, v)=0, the spherical projection

Ty,ve At —s St
is defined as follows: For /A" let

L=INv* (€Q)
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which can be defined since dlm{spanl} =2 and dimv*=n+2 in V... Then
represent /, by the (unique) vector [, in V.., satisfying <[, up=—1, which is
possible since /,&Q and </,, v»>=0. Then =, ,({) is defined to be the vector
Ii—u. Obviously, <{mu. (), mu«)>=1, and so it lies in the unit sphere S? , of
utNwt in Vg

Now let u,=(0, 1, 0) and v,=(0, 0, 1) in our standard coordinate system of
Vass. Note that S*=SZ ,, and write m,=m,,,,. For the pair (u, v) above,
there is a transformation A,0(n+1, 2) such that Aou u, and Aw=v, Let
Ao be the Lie transformation represented by A,. Since Ao induces a transforma-
tion on A*"~', it induces a map f4,: S%,—S" so that the following diagram
is commutative:

~

Aﬂn—l —————_)Ao Azn-x

[

SE.. _— S”
4o

In fact, for [ A% with m,, ,())=[,—u, we have

0=<1~1, U>:<Aol~n on>:<Aoi1, Vo)
and ) ) )
—1=<y, ud=<Aoly, Acud=<{Aols, uo)
where L el, i.e. <, >=0=<A.l,, Al>. So we get
77-'0(;101):Aoix_uoon(il—u)——_Ao(ﬂu.v(l))-

This means that z,,,(0)=,.(’) leads to mo(A)=n,(Al"), that is, f,, is well-
defined and f,(p)=A.p for p=Sz,,. From this follows immediately :

PROPOSITION 4.3. f4,: S%,,—S™ is an isometry.

DEFINITION 4.4. For a hypersurface M in S”, a Lie image of M is a spheri-
cally projected image of AL where £ is the Legendre map of M and A is
some Lie transformation.

From Proposition 4.3, we get:

COROLLARY 4.5. Lie images of M are obtained, up to isometry, by zo(ﬁ.f)
for some A€0(n+1, 2).

Now, we compute principal curvatures of no(/Nl,E) where A is the Lie trans-
formation represented by A=0(n+1, 2). For (M, ky, k,) given by (3.3), we
may denote

Aklzt(hly a: b); AkZZl(hZI C, d)
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where hy, hy: M—V ,.; and a, b, ¢, d: M—R. Then we have
(4.1) Ei=aAk+BAk,=%q, 1,0), E,=7Ak+8Ak,=m, 0, 1)

where g, m: M—S™ and
a B\_sa b\
7 5)_(c d) ’
in fact, m,(AL) is nothing but g.
Now let A be a principal curvature of the immersion p at p& M, and assume
that ¢: M—S™is an immersion around p. Then Ak, (p)+ ky(p) is the curvature
sphere and so is 24k, (p)+ Aky(p) (Remark 3.9). Thus by Lemma 3.10, the cor-

resp~onding principal curvature 1 of the immersion ¢: M—S" at q(p) is given
by 4A=a /7, where

(D= (D= AN rerreo
This implies

ai+tc
bA+d -~

4.2) i=
Therefore, we get:

PROPOSITION 4.6. Between any principal curvature A of a hypersurface M
in S™ and the corresponding principal curvature A of a Lie image of M, there is
a relation (4.2) where a, b, ¢, d are functions on M determined by the Lie trans-
formation.

Thus we have:

THEOREM L. Let 2, p, v, T be distinct principal curvatures of a hypersurface
M in M(c). Then the function

g A=m—y)
(A=) c—p)
is invariant under Lie transformations.
Remark 4.7. Note that (A=) and (r—v) are invariant under conformal
(A—v) (t—p)

transformation and so the result holds for M in M ©).

Remark 4.8. 1t is easily seen that ¥ is the cross ratio among four projective
points %%, k#, k¥, k* on the line in Q determined by %, and £k, given by (3.3),
where k* is the curvature sphere with respect to %,  This is another proof of
Theorem L. In the following, we denote the cross ratio ¥ by [4, 7; g, v].
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COROLLARY. For a Dupin hypersurface in a sphere with four or six principal
curvatures to be Lie equivalent to an isoparametric hypersurface, the function ¥
must be constant on M for any distinct four principal curvatures 2, g, v, v of M.

Next, for later use, we compute derivatives of principal curvatures (4.2) of
the spherical projection (4.1). Let XT,M be a direction of curvature cor-
responding to the curvature sphere 2k,(p)+ ki(p), or equivalently to 2Ak,(p)+
Aky(p). From (4.1), we get

dky(X)=X(a) Aky+ X(B) Ako+ Aladkey(X)+ Bdky( X))
=(a—pA)Adk(X)  (mod span(Aki(p), Aks(p)).

So if YT ,M is also a direction of curvature corresponding to Ak,(p)+ kq(p),
noting a) and ¢) in §3, we have

(4.3) <dq(X), dq(Y)>=<dk\(X), dk,(Y)>
=(a—B)Xdk(X), dky(Y))

=(a—pBA*dp(X), dp(Y)>.

Since it is easy to see that a—ﬂz=%, we obtain:

LEmMA 4.9. If XeT,M is a direction of the curvature sphere Ak,(p)+ky(p)

such that ||dp(X)||=1, then ‘Zdl—;(b;dq(X) is a unit principal vector correspond-

ali+c
ba+d-

Now, let U be a neighbourhood of M on which principal curvatures satisfy
A >2,>--->2,. Then the tangent bundle TU is decomposed into TU=T;+--
+T, where T, is the curvature distribution corresponding to 4, and i,. We
can choose a local frame X, --- X, of TU so that Xun s.4m,_j+1, =+ » Xn; €T,
where m, is the multiplicitiy of 4,, and that e¢,=dp(X,), =1, ---, n—1 form an
orthonormal frame with respect to p: M—S”. Denoting the connection of S*
by V, we put

ing to the principal curvature 1=

Veiejz :2;; /Ifje;, +2555ﬂl .
Then we have [5]:
(4.4) ei(lj)=/1}j(lj—2z), l’¢]’.

Remark 4.10. Put [/]:={j|4,=4;}. Then a Dupin hypersurface p: M—S"
is isoparametric iff A%,=0 for all 7, ; such that /& [;].

Since
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ad—bc
4.5) f:—mdQ(Xz),

i=1, .-, n—1, form an orthnormal frame with respect to ¢q: M—S" by (4.3),
putting
n-1 o .
Vf,sz ElAf]fk'i'laijm,
we get

4.6) ft(lij):z}j(zj—zz); i#7.

th ¢

1 (451

For convenience, put A=( : ):( R/ a,,+3), where ‘by=(aaplizpsnts,
EDnss Cn+s

tca=(Qar)isisn+1 fOr a=1, -, 143, arse=(Aan+2)isasnss ANd Crrs=(Aan+s)isasnss.

LEMMA 4.11. We have
Ay=0 if j#ie[j],
and for i&[j],

%)) {(b2;+d)xi—(ad;+c)yi+(ad—be) A3}

. 1
T b+ d
where x,={Cn+2, ¢,) and Y,={Cn+s, €.y, using the inner product < , > of R"*.

Proof. Since a={Cp+z, P>+ CQrszniz, 0=CCnss, PO+ Anss n+z, =LCnss, MY+
Qniz nes ANd d=<Cp4s, D+ A yss nes, it iS easy to see that:

1) elad;+co)=eia)d;+ei(c)=Ccnrs Ajei+V,;n>=0, it j=ie(/]
2) elbAj+d)=Lcnss, AjeitVen>=0, if j#i€[]]
3) ei(adj+c)=<cn+s ljei+ve,~n>+aei(lj)
=(A—2)(KCnsa, e>+adly, if i&E[f]
4) ei(bA;+d)=(4;—A)(cnss, e>+bALy), if i&[7].
So we have
e(2)=0, if j#iels]
and for /&[],

(21'—21.)

(ba;+d)E {(b2;+d)x,~(ad,+c)y.+(ad—be) A3} .

4.8) ei(jj):
Here we note that
¢,(4;)=dp(X.)(2;)=X:(2;)
and
e.(d)=Xi(2,)



238 REIKO MIYAOKA

considering 4, as a function on M.
On the other hand, using (4.5), we get

ad—bc ad—bc ad—bc

fi(xj)=md(I(Xz)(Xj)=m— Xi(lj)=—b7i+—dei(1j)-
Thus we have
i bAd o o2 (=R
«A)= g —pg D= A=A Tay
from which with (4.8) follows the lemma. q.e.d.

§5. Compact Dupin hypersurfaces with four principal curvatures.

From now on, let p: M—S™ be a compact connected embedded Dupin hy-
persurface with four principal curvatures A>p>y>7. Then we know that
my=m; and m,=m,, Where m,, m,, m;, m, are multiplicities of 2, g, v, T, res-
pectively [7]. We use the index convention: 1=a, b, c<m;,<i, j, k=<m+m.<
r, s, 1<2m;+m.<u, v, w<n—1. A local orthonormal frame (e, €., €,, €4) iS
chosen as in §4.

The purpose is now to find a condition under which there exists Ae
O(n+1, 2) such that /TgﬁEO for all a, B such that a¢[B]. But we come
against difficulty soon if we investigate equations

Z(zzz:()y Z?r:()y /’qu:O:

even at a point, with (x4, v,), defined in Lemma 4.11, as unknowns. At a
critical point of &, however, this can be done.

PROPOSITION 5.1.  Let p be a critical point of ¥. Then we obtain Ac
O(n+1, 2) such that

(5.1) A3s(0)=0,  for all a, B such that a¢[B].

Remark 5.2. At p, the image hypersurface has the “common” normal geo-
desic defined in [5].

For the proof, we need:

LEMMA 5.3. At a critical point pEM of ¥, we have:

-A?i—/lgr Agi_/-lgu Agr_AZu

(i) S = = e (=2 R
. Al’za—A:r . A}za_’AZu . -ATI:T_-AZI/MI, .

(it) A—y -t = y—r (=: R)
(1“) ATza"‘Agi — AZa_'AZu — Agz_/ﬂtu (:: Rr)

A—p A—t n—r
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. Abo—AY  A,—AL  A{—AE

() =T (= R

Proof. Let @=log¥. Then p is a critical point of ¥ iff p is a critical
point of @. For instance, we have, using (4.4),

ea(A—p)  ed(A—y) | et—y)  e.(r—p)

0=eu(®)= A—p A—v T—y T—p
"'/1“~—Aa AZ,,,(T—*:D—A%(D—Z) _ Aﬁu(T—Z)—A‘h(ﬂ—l)
— 4L T r—y T—pu
Ag’i—AZM A;}r—A%u
—(Z—-T){ P y— }

The first equality in (i), then follows automatically. (ii) and (iii) are similarly
proved. q.e.d.

To prove Proposition 5.1, it is sufficient to show that there is a Lie trans-
formation A,=0(n+1, 2) such that the image hypersurface has the “common”
normal circle at p [5], i.e.:

LEMMA 5.4. Let p be a critical point of ¥'. Then we obtain A,=0(n+1, 2)
such that

(5.2) /Tgﬁ(p)z/'f;’,(p) for all a, B, v such that a[BIUIT], BELT]

Proof. Choose the coordinate of R™*! so that e,(p)=%0, --- 1. 0), a=1, -,
n—1, p(p)=%0, --- 1, 0), and n(p)=*0, ---, 1). Consider simultaneous equations:

(5.3) A8(p)=A5(p)=A%.(p)

with unknowns (x4, v,) for a fixed a, where we use notations in Lemma 4.11.
For simplicity, try to solve (5.3) by putting b=0. Then from (4.7), (5.3) becomes

a(p—v)y.—ad(A—A%)=0
a(p—1)y.—ad(AH—A3.)=0
By (i) of Lemma 5.3, at p, a solution is, for instance,
(%4, ¥2)=(0, dR,), a=1, -, m.

Just in the same way, solutions to

A o(p)= A7) = A7),
At (p)=A4(p)=A%(p),
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are, respectively,
(%1, y)=00, dR)) ~ m<iSmy+ms,
(%7, )=, dR,)  mi+m,<r<2my+m,,
(Xuy ¥2)=(0, dR,)  2my+m<us<n-—1.
Now, we have to find a Lie frame b, -+, b,4+s such that
bu+s="(X, Xn, Xn+1, @—Xn, C—Xn41)
bats="Y, Yn, Yn+1, —Yn, d—Yn41),

where x=(xgq, X, Xr, X.) and y=(yq, V., ¥r, Vo) are given above, x,=<Cn+s, D),
Xne1=CCn+2, M), Y =CCnss, P> ANA Yps1=CCnqs, B). Put x,=%p11=,=0, a=1,
¢=0 and y,+,,=—Nd. Then obviously, we have {b+s, bn+2>=—1 and {bus,
bn+5>=0. On the other hand, since

n-1

Cbussy brssy=d*{ S RIAN'—(N+17}=a*{S R2—1-2N},

we have {bnis, bnsap<0 for a sufficiently large N, and then putting d=

x/lnz—‘,l RI—1-2N| ﬂ, we get {bn+s, bnssy=—1. Therefore according to Remark
a=1

tbl
3.2, we can extend b,+s, bnss to @ Lie frame by, -+, b,y SO that Alz( : )e

n+38

O(n+1, 2). q.e.d.

Remark 5.5. The desired Lie transformation A in Proposition is obtained
now by A=A,-A,, where A, is the conformal transformation of S™ given by

1

th
Az:(t : )eO(n—l—l, 2); by, -+, bpss is a Lie frame extended from
br+s
brse="(x', —akK, 0, a(K+1), 0),
;z+3:t(0: 0’ 0; 0: 1)

where x'=(—ald(p), —adi.(p), —ady.(p), —adt(p))=R"*, K and a are
chosen so that <bjis, bhio>=—1.

§6. Using tautness.

We can start now from a compact embedded Dupin hypersurface gq: M—S™
which has a point p=M, at which the normal geodesic is “common”. The
purpose of this section is to show:

PROPOSITION 6.1. The normal geodesic v at p cuts M at eight points p,=
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D, Doy 5 Ps. T is the common normal geodesic at every point p;i=1, ---, 8).
Moreover, all leaves at p;’s are connected as in Fig. 6.1.

Remark 6.2. The leaf L% of a Dupin hypersurface M corresponding to the
principal curvature 4 at p is an m,-sphere centered at

H,
=Pt

where
H,= 3 A%.e.+in—p
a<fa]
[5]. Obviously, L% lies on the hypersphere S% with center at
f3=cos@*p+sin ’n,

R -1 ____75_ 1<
where 64=cot 2( 2<0 < 5
p, L% has another intersection p’=p, iff A2.(p)=0 for all a¢[a], that is if
L% is totally geodesic in S%4. In this case, 7 is the normal geodesic at p’, too
[5, Remark 2.3].

) is its radius. With the normal geodesic 7 at

Remark 6.3. By Thorbergsson [11], H(M; Z,)#0 only when =0, m,, m.,
my+ms, 2mi+ms, my+2m,, n—1 and B(M; Z,;)=8. Non-zero cycles of Hp, (M)
and Hpn,(M) are represented by L* and L, respectively. We denote other non-
trivial cycles by
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[c#ZJEHmIan(M)’ I:cmEHmﬁmz(M) ’
[CUNJEHzmﬁmz(M), [C‘uw]EHmﬁzmz(M) ,

which are image cycles of the fundamental cycles of N,’s by maps A,’s defined
in [11]. Note that the intersection number S( , ) satisfies

(6.1) S(e#?, =1, S(L7, e***)=1, S(L*, ¢*)=1.

We denote by B, the ball such that dB%*=S% where n(p) is the inner
(outer, resp.) normal to B4+ (B%, resp.). B4, Byt and B3* are similarly defined.

LEMMA 6.4. For any p=M and any L*(L%, resp.), B& NL*+=@(By ML+
@D, resp.).

Proof. B#% contains the homology cycle ¢*** with which any m,-cycle L?
has the intersection number =#0. q.e.d.

Proof of Proposition 6.1. At p, by (5.1) and by Remark 6.2, we have
TOLy={p, pa}, TNLE=1{p, pu}, INLy=1{p, ps}, TNL=1p, ps}. We have [},
(f},, resp.) on 7 in the direction from p, to p.(p, to p,, resp.), since along L}
and L%, the positive normal direction is preserved. Moreover by tautness, we
have (B3,)°N\M=@ and (B%,)’"M=@. Therefore f3, and f%, are situated in
this order along @ from p, to p,. On the other hand, by Thorbergsson [11],
S is decomposed into two disk bundles over two focal submanifolds M., :=
{(FslpeM}, f5=r% f=f5 both of which have M as their boundaries.
Thus there exists a point p,&M between f3, and f% on p:;, Similarly, there

. N TN .
exist ps, p.=M on the arcs p.pe, Psphs, respectively.

Remark 6.5. At this stage, we say nothing about the relation among p,,
ps, pa. Neither do we know whether M cuts 7 orthogonally at ps, ps, p,, Or
not. The proof is completed by Lemma 6.6 and 6.7.

In the following (and in §9 as well), we denote L%, S¥, B¥* for L%, S},
B%*, respectively, for i=1, ---, 8 and *=4, g, v, 7.

LEMMA 6.6. L%T\Lfn-_—plﬂ, for i:2, 4, 6.

Proof. [i=2]. By tautness, we have L;=B;"\MCS; and Li=BiNMCS}
[5, Lemma 3.5]. Then denoting here §%=|68%|, we have

20:<d(p,, ps) and 20{<d(ps, ps)

where equalities imply p,&L; and p,=L?, respectively. Hence LINL{#=@®
implies LiNLi={p.}. Now, suppose LiN\Li=@. Then
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03<d(ps, f3),  0i<d(ps, [1).

Therefore we can transform S™ conformally preserving 7 so that S and S? are
centered at mutually antipodal points (Without confusion, we denote the image

by the same letter). Let x& 174-]‘\:{ be sufficiently near f so that d, is a Morse
function on M. Let B(x, r) be the ball centered at x with radius 7.
In B(—x, d(—x, ps)), d-, has critical points of indicies 0 and m,, the latter
is nothing but p,. Obviously as a critical point of d_,, p, is of index m,.
Since
d(ps, fHS07+61465

by Lemma 6.4, the index of p, as a critical point of d_,=m,+m,. In the same
way, the index of p, as a critical point of d,=m;+m, Thus the index of ps
with respect to d., is m;+m,, corresponding to the cycle ¢**. On the other
hand, since B4* contains ¢#? which is not homotopic to ¢*7, and since d(f%, p.)
<024 67460} by Lemma 6.4, d_, should have another critical point of index
mi4+m, in B:=B(—x, d(—x, ps)+20%. Now, in B(x, d(x, p,)+283), d, has
three critical points corresponding to a point, L{ and L3 (Note that we may
assume d(x, f1)<6%) Thus from p,=B¢ d, has four critical points in B°.
Finally, d_, should have nine critical points on M, which contradicts tautness.

[[=6]. Similar to [7=2].

[i=4]. Easier than above two cases. q.e.d.

LEMMA 6.7. L4=L% L4=L4% Le=L4,

y=L3, Ly=Ly Li=Lj.
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Proof. [L4=L#]. Consider the cycle c4*C B4* at p, and ¢¥*C By~ at p,.
Then S(c4?, ¢5)=1 and S(c#*, LH)=1 imply B4*NBy~={p,} and p,Ec4*. Since
c4*NSEA=L% we get p,= L%, that is L4=L# The other cases follow similarly.

q.e.d.

LEMMA 6.8, Let z; be the complex number corresponding to p,=S'CR*=C,
=1, -+, 8. Then we have

U(p)=Lzs 2s; 24 5],

2,—2y [25—Z5 . . .
where [z,, 2} 24, 26]:-—2——3/—8——‘ is the cross ratio. W(p.),i=2, ---, 8 are
2:—25/ 23—z

similarly obtained.
Proof. As is well-known,

(21, —21; 2, z4J=tan% {arg(zz/zx)}/tan% {arg(z./z:)}

— ﬂ(px)
Apy)

Therefore

T(p)= 1—p/A /1—p/t _ 1—=[2z, —21; 25, 2] /1—[21, —21; 25, 2]
YT 1—y/2) 1=v/t T 1=[ay, —21; 20, 26] | 1—[21, —21; 24 2]

=[2,, 25; 24, 25]. q.e.d.

§7. Lie transformation of S'.

In this section, we find a Lie transformation A;0(2, 2)CO(n+1, 2), which
maps 7y\M from the position in Fig. 6.1 to the position in Fig. 7.2. We follow
the argument in [5]. That is, we restrict our argument to y=S?, on which,
any pair of points connected by some leaf is considered as an oriented hypers-
phere of S'. We give positive orientation to a leaf L* if #*=cot~'x;>0, x=
A, ¢, v, 7. (Recall that 6% is chosen so that —z/2<0¥<x/2).

First of all, since L{NLi={¢p}, we can transform S' conformally so that
the images of L? and LZ are centered at mutually antipodal points. Then by
a conformal transformation fixing these centers, we may assume that A(p,)=
cot §=A(ps) for some 0<O<x/2. Note that in §9, we denote the combination
of these conformal transformations by C.

Now, put ¢=cot ™ (—7(p,)), ¢=cot™(—z(p.), ¢'=cot™*(—7(p,) and ¢'=
cot™}(—7(ps), where 0<o, ¢, ¢, ¢'<z/2(see Fig. 7.1). Then since (8+¢+¢)+
(04+¢'+¢") is less than 7, we may assume

7.1) O+p+p<Z,
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P2 P
ps /7 ™
[/] 3 Ps
¢
(p’ ! / p'l
6 ¢ \ ,,v'
N4 /
p5 ﬂ‘
Fig. 7.1.
D1
Ds
(i}
B
%
Ps
Fig. 7.2
without loss of generality. Let
tr 1
ki={py, pa}= (m, 0, 1, tan 0),

1
ko= “95, pe}"—“t("‘m, 0, 1, tan 0)

t/cosw Sinw
b= = (
3 {pﬂ; pS} oS o ’ COS G

, 1, —ta

no),

245
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where 0=0+¢+¢, o=¢—¢, and
k=40, 0, 0, 1).
Note that k,, ks, k;=Q but k,&Q. Moreover, let
hi=Fk,,
hy=uk,, usR—{0},

01
he=v <W 0,1, —tanB), vER—{0},

ha=%x, 3, z, w).

Note that h,, h,, hs=Q. For K=(k,, ks, ks, k) and H=(h,, hs, hs, hy), find A=
02, 2) such that A;K=H. Since

cos 0 __cosa ¢ cosﬁcosw> 1 0

2 2sinw \ cos g 2
_cosf  cosag (. cosfcosw 1

Kot 2 2sinw \ cos @ 2
0 089 0 0

sinw
0 ﬂ(tana%—tanﬁ) —tanf 1
sSinw

As=HK*=(a,, a,, a;, a,) is given by

a,= COSﬁ (hi—hs),

Cos o ( Cosw
sinw Cos o

a,——a3+h3+tanah4),

Ay=

-——é—(hl—i-hz)—tan oh,,
a,=h,.
By writing down the condition A4,=0(2, 2), i.e.
{ay, a,)=Xa,, a,p)=—<a,, a;y=—<a,, a =1,
{@,, a»>=0  for i+#j,
as equations with unknowns (u, v, 8, x, ¥, z, w), we have

(7.2) u=1
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(7.3) y— SOS® oS B

cos ¢
__cos(640)
(7.4) cos(f +,B)—————————cosw
(7.5) x=0
(7.6) z+wtanfd=tan @
sing

(7.7) —z+wtan ﬁ—m
(7.8) yEi—z2—wi=—1.
In fact,

(1) 1=<a,, a,) implies (7.2) and a,=%(1, 0, 0, 0), 1/2(h,;+h,)=*(0, 0, 1, tan 8).

(2) 0=<a,, a,> implies (7.5).

3) <a,, a;>=0 follows from (1) and (2).
. __ COosw  cosg

@) 0=<a;, a>= sinw + sinw

®) 0=<as,, a,> implies (7.6).

{ai, hyy implies <a;, A=

CoOsw

cos g and (7.3).

6) <as, as>=—1—tan?f—tan?f—2tan (—z—wtan §)=—1 follows from (5).

Cosa

7 0=<a,, a4>=r(<h3, h,>—tan¢) implies <{h;, hyy=tanc: (7.7).

nw

Coso
(8) 0—<az, aa>— Sinw

tan § tan 8)—tan@ tane=—1, i.e. (7.4).

9 <ay, ap= {ai, hy

cos’ g /cos’w cosw
— ( s——1—tan’¢—2
sSin“w \Cos* o COoS o

—2(03, h3>+2 tan a<h3y h4>)
=1

follows from (4), (7) and (8).
(10) —1=<a,, a,> implies (7.8).

Case 1. If 0+0=20+¢+¢=<m/2 is satisfied, then since
0<p~g<gp+d<20+¢+g=0+s< T,
we get
cos w=cos(¢p—¢)>cos(f+0)=0,
and so
0< cos(f+a) <1

Cosw

(14-<hs, a;>) implies <a,, hsp=—1 so that v(—1+
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Thus we can find B satisfying (7.4). Then, v is obtained by (7.3). On the
other hand, we get

_ 1 . sing
w= sin(d+ ) {"S-m 0 cos f+ cosw ° 0}

from (7.6) and (7.7), so it follows

cos @ sing .
Y im0+ B) {cosw —smﬁ}.
Now,
cos(6+ ﬁ)=% >cos(d+a)

implies f<¢ because of §+0=<x/2, and hence we have

sin B<sino < ﬂ,
cosw
i.e. w=1. This guarantees y*=0 in (7.8), and finally, the whole solution is
given by
cosw cos

u=1, y=—— where ﬁ:cos"{

cos(f+o0) }_ 0
cos o ’

CoOs @

_ I S | _ﬂﬁ__ i -—ﬂ—
(7.9) | x=0, y=vZ+w’—1, where z= sin(0+ﬁ){smﬁ cosw}’

. sin o
{sm 0 cos 8+ cosw 08 0} .

w=—sm
Case 2. When 0+0=20+¢+¢>n/2, we have
0<p~g<m—20—p—¢=1—0—0<7
since 2(0+¢)<m and 2(6+¢)<z by (7.1). This implies
cosw>cos(n—6f—a)=—cos(@+a)>0,
and we get § satisfying (7.4), 0<f<z. On the other hand, from

cos(0+o0)

<cos(f+0)<0,
CoS @

cos(0+B)=

noting that #+¢<x, we have B=¢. Thus we obtain, using (7.1),

cos ¢
cosw

cos f<coso <

Now, since (7.4) is equal to

. . cos f cos ¢—sin @ sing
cos § cos B—sin § sin f= ,
cos®
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we get
sino

Sin B ose

equivalently w=1. Thus, in this case again, solutions are given by (7.9).

§8. Under the assumption that ¥ is constant on M.

Here, for the first time, we assume that ¥ is constant on M.

PROPOSITION 8.1. If ¥ 1s constant on M, then there is a Lie transformation
A, €02, 2) which maps yNM in Fig. 7.2 to the position in Fig. 8.1.

Proof. Consider the image hypersurface shown in Fig. 7.2. Note that
v(p)=w(ps) and w(p,)=t(p,) imply p(p.)=p(p,). Now, let p=cot™'A(ps), o=

cot™i(—z(p,) and ¢’'=cot™(—z(ps), where 0<7, ¢, ¢'<z/2. Without loss of
generality, assume that ¢<¢’. Then we have

@®.1) 0+2p+n< %

To imitate the previous calculation, rotating the coordinate axes by x/2, we put

1
ky={ps, Ps}———t(—sm, 0, 1, —cot 0),
t 1
ka=1{p1, po} = (== 0, 1, —cot 0),
b2 2
/]
bs Ps
a
a
P4 P7
/]
Ps bs

Fig. 8.1.
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Il

t< Slnc COSC 1, tanr;), C=0+2¢+ﬂ:

k3={173; ]74} 0057] ) COS?? ’

k4=t(0y O) 0’ 1)!

h1=k1,
h,=uk,, ueR—{0},
hy= ‘( coia ,0, 1, tana), ve R—1{0},

h4:t(x7 J’, 2, w)-

Now, find A,€0(2, 2) such that A,K=H, where K=(ky, ks, ks, ky) and H=
(hy, hs, hs, hy). As before, since we have

sin 0 __cosn () sinCsinﬂ) 1 0

2 2cosg \ cos 7 2
_sinf  cosy (1— sinﬁsinﬁ) 1 0

K1 2 2cosg \ cos 7 2

cos 7 ’
0 cost 0 0
_cosy
0 cost (tan n-+tan 0) cotd 1
A, is given by
in 6
ay= 5 (hi—hy),

_cosp  sinl _
- cosC{ cos 7 G —asthy tannh4},

2

0= (hy-+ ha)keot O,

a4=h4 .

The condition A,€0(2, 2) are, this time:

(8.2) u=1
8.3) sin(ﬁ—a)=-—s-mT(ieﬁ-_C-_—w—
8.4) __cosasin{

' T cosy

(8.5) x=0
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(8.6) —z+wcotf=cotl

' __ siny
8.7) z—}-wtana_——————cosasinc
(8.8) yr—zt—wi=—1.

As before, from (8.1) and
O~n<0+9<0+2¢+n=C,

there exists a satisfying (8.3). From (8.6) and (8.7), we get

_ sin @ sin 7
= cos0—a) (cosﬁcosa+—————ln: )
and
__sind sinp
~ cos(f—a) \ sinl sma).

When 6=7, it follows a<% from (8.3) so that

n77
< <1
Sll'ld sm77 S C
implies w=1, and hence y?=0.

When 6<7, though a>%, we have from (8.3),

sin § cos p—cos f sin 9

- =sin f cosa—cos O sina
sin{

<sin @ cos p—cos fsina

., COS
<sinf 7

sin{

—cos fsina

so that
sin 9

in{

Therefore in both cases, solutions are given by

>sina.

sin(d—7) }’ e cosasin{

— —hA__in-?
u=1, a=0—sin { sin{ cosy

’

. T __cosf siny
x=0, y=+/z*4+w?—1, where z= cos(f—a) \sinC

_ 1 51n031n77
w—m(COSO cosa+————- )

251

—sin a),

(€3]
Finally, by using ¥ is constant, we get t(p,)=t(p.)=7(pe)=17(ps). Put p=

t
(*) By an easy calculation, we have for ks;=/{ps, p:}, Aks= (—
the equality holds.

—1—, 0,1, tan a), and
cos @
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cot(—z(p2))-
PRrRoOPOSITION 8.2. If ¥ is constant on M, then we have 8+ p=n/4 and §=a.

Proof. By Lemma 6.8, we have

2y—24 232y e¥atm 1 priuatp) ]
w(ﬁl): - N
25—2¢/ 25—2 —2 —2
T(p)= zs—zl/zs—zl _ethtate ] gnlre_]
YT ze—2,/ zZs—2z4 —2 -2 )

From (a+p)+(0+p)=m/2, it follows

e2t(0+p):el(n—2(a+p)) =g n(atpy

So if we put z=e®¢+0> ¥ (p)=T(p,) is written as

(z—DE—1)=(z+1)z+1).
Thus we get

0+p=a+p=%. g.e.d.

COROLLARY 8.3. If ¥ is constant on M, then by taking As0(2, 2) of type
(3.5), we can transform Fig. 8.1 so that @=a=p=n/8. Therefore, in fact,
U=1/2.

§9. Proof of Theorem II.

From the results in §5-8, when ¥ is constant on M, we see that at each
point p of M, there exists Lie transformation A,=A;-A,-A;-C-A,- A, of which
image satisfies the relation in Fig. 9.1 where we denote the image point of p
by p, and the normal geodesic at p, by 7. Note that this result is obtained
not only by a local calculation but also by using a global property “tautness”
of M.

Now we show:

PROPOSITION 9.1. Let N be a Lie image of an isoparametric hypersurface
N, with four principal curvatures. Assume that at some point p,<N, the in-
tersection of N with the normal geodesic 7 at p, makes a regular octagon pips -+
ps as in Fig. 9.1, where v is common at each p;,. Then N is itself isoparametric.

Proof. By a parallel transformation, if necessary, we may assume that
A=cot(n/8)=—r and p=cot(3x/8)=—v on N, Let N be the image of N, by
some A=0(n+1, 2). Let ¢, be the inverse image point of p,. Then A maps
the regular octagon at ¢, to the regular octagon at p,. This means, up to
isometry, that if we put
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p2 Px

j 2y P 3 Ds

p‘ N AN ,’l V7 P7

Fig. 9.1.

kl(q,)zkl(pl)zt(o, cos (Z:D m, sin (i;l) T, 1, 0)

kz(Qi):kz(pz):z(Oy (—D’sin(l:—l)n', (—1)"‘(:05%7:, 0, 1)

for =1, 2, ---, 8, and 0=(0, - 0), then

a(q.)Aki(q)+ B(q.) Aky(g)= k(D)
7(q) ARi(g.)+0(g.) Aky(g)=k(D0),

G 9=C 2"
and a, b, ¢, d: N,—R are given by
Aky(g)="(x, -+, , a(q.), b(g.))
Aks(q)="(x, -+, %, ¢(gu), d(qu)).

Let V*=R"-'X R4, where Ri=span(*(0, 1, 0, 0, 0), ¥0, 0, 1, 0, 0), %0, 0, 0, 1, 0),
0, 0,0, 0, 1)). Then since §ga;1;(kl(qz), ks(g.))=R$ and §§a§r81(Ak1(ql>, Aky(q.))=

0.1

where

i, we get
A, 0
4=(5' o)

From Lemma 3.1, it follows B=0 and 4,€0(n—1). Now, if we check (9.1)
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carefully, we get A,==*idendity. q.e.d.

Now, our image hypersurface of M by A, has the regular octagon at the
image point of p as was shown in §8. Thus for M to be a Lie image of an
isoparametric hypersurface, this image by A, itself must be isoparametric.
Unfortunately, we can not show this without additional assumption on M.

THEOREM II. Let M be a compact embedded Dupin hypersurface with four
principal curvatures A>p>v>t in M), If [A, t; U, v] is constant on M, and
if for each A-leaf L*(r-leaf L, resp.), there exists a v-leaf L%(p-leaf L%, resp.)
such that LENL5#@ for all g LA(LyN\LA+@ for all gEL*, resp.), then M is
Lie equivalent to an isoparametric hypersurface in a sphere.

Now, we prove this theorem. For simplicity, we denote by M the image
hypersurface of M by A,, on which the relation in Fig. 9.1 is satisfied.

LEMMA 9.2. For L%, Ly=L% Similarly, for L¥L3, L3, resp.), L¥=L%(L3,
L3, resp.), and for Li(L5, L§, L3, resp.), Lu#=L#4(L%, L4, L4, resp.).

Proof. Suppose that L4+ L% Let g,€L4N\L% and ¢.€LiNL% Then we
can write
@i=ch+Ip1—chlsin pu+cos p(p,—ch),
q2=ch+| p.—chllsin pv+-cos P(p.—ch),

for some uT, L4 and veT,, L4, where, denoting by n, the unit normal vector
to M at p,, we know (see Remark 6.2, and (2.2) of [5]),

H‘i —_h ﬂ(pt)ni_pt
THAE =P a1

Obviously ¢#0+¢, and by Ly# L%, ¢+#n+¢. Note that the focal point of L4
is given by

chi=pi+

=1, 2.

f%:cos%pi+sin% n,, =1, 2.

Now, let f* be the focal point of L% Then since ¢; lies on f4f*, ¢; and
g» lies on the geodesic two sphere jdetermined by f%4, f4 and f”. Since we
have

f4<span(pi, ni)=span(p,, n,)
grEspan(p,, ny, u)
g.Espan(ps, n,, v)=span(p,, n, v),

we conclude that u and v should be parallel along 7. But then apparently, L%
would intersect L%, a contradiction. Thus we have L3=L}. q.e.d.
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PROPOSITION 9.3. Among tangent spaces of leaves at p;’s, TL{, TLy, TL:,
TL? are parallel with respect to the connection of S™ Other parallel families
are {TL;, TL#, TL%, TL:}, {TL: TLy, TL:, TL? and {TL:, TL#, TL#%, TL?}.

Proof. Put TL{=X, TL4=Y, TLy;=Z, TL;=W. In the following, “=
means “be parallel to” with respect to the connection of S™ Note that Li=g—
LenLye Ly is an onto diffeo because of dim L{=dim Ly=m,. Since f{ and f4
lies on the normal geodesic 7, at ¢, and since fi=—f{, L#NL} also lies on 7,.
Thus L% is contained in the (m,+1)-dimensional geodesic sphere determined by
f? and L%, and obviously intersects 7, orthogonally for any g=L}. Therefore
we conclude that TL:=TL? Similarly, we get TL:=Y, TL{=Z, TLt=W.
Then from T.M:=T, M=T, M, it follows that TL{=W, TL{=X and so TL4
=W, TLy=X. Thus we get TL;=Y, TLy=Z and so TL4=Y, TL}=Z.

g.e.d.

»

Remark 9.4. Without the assumption on leaves, there are infinitely many
cases in the relation among tangent spaces of leaves.

By Proposition 9.3, we see that for any point ¢ L{, the normal geodesic
T4 cuts M orthogonally at eight points ¢,=gq, ¢, -**, g5, numbered in order along
Te» Where g1, . L%, qs, gs= L%, qu, . L% and g5, gs= L2 In the same way, for
any point ¢ L%, =4, p, v, 7, and 7=1, 2, ---, 8, it holds that, the intersection
of the normal geodesic 7, with M makes a regular octagon. Note that at such
points of intersection, all 4£,=0, for any @, 8 such that a¢[B] (see Remark
6.2). Thus we have:

Proof of Theorem II. Let x be any point of M. Then we can find x,&
L{, x,e L%, and x,=L%, such that xEL%,. At xi, the relation of the normal
geodesic and M is the same as in Fig. 9.1 where we replace p, by x, and other
points of intersection by suitable symboles. Next at x,, and then at x,, we
can show the same thing. Finally at x, we conclude that A8,(x)=0 for all «
and B such that a¢[f]. Thus the Lie image of the Dupin hypersurface M by
Ap=A;-A, Ay C- Ay- A, s isoparametric. g.e.d.
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