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§ 1. Introduction.

In [9], Pinkall developes a Lie's sphere geometry on hypersurfaces in a
space form and successfully applies the theory to a class of hypersurfaces called
"Dupin". A Dupin hypersurface is a hypersurface each of which principal
curvatures has a constant multiplicity with a vanishing derivative in the cor-
responding curvature direction. One of his results is the local Lie equivalence
of cyclides of Dupin with isoparametric hypersurfaces, where a cyclide of Dupin
is a Dupin hypersurface with exactly two principal curvatures. This is essen-
tially used in [4] to find a solution to a simple progressing wave equation.

For any integer g, we can construct a Dupin hypersurface with g principal
curvatures of arbitrary multiplicities. Isoparametric hypersurfaces, however,
have g e { l , 2, 3, 4, 6} principal curvatures with non-arbitrary multiplicities if
g ^ 3 . Thus the equivalence problem between Dupin hypersurfaces and iso-
parametric hypersurfaces for g^3 requires some more conditions on Dupin
hypersurfaces.

In [11], Thorbergsson guarantees coincidence of compact embedded Dupin
hypersurfaces with isoparametric hypersurfaces in cohomology level. This mo-
tivates Cecil and Ryan a conjecture [3] : A compact embedded Dupin hyper-
surface is Lie equivalent to an isoparametric hypersurface. Besides the trivial
case g = l , this is already known true when g=2 [2]. For g=3f the author
gives a positive answer in [4]. In this paper, we find a certain Lie invariant
by which we get a non-trivial necessary condition for the equivalence when
g=A and 6. A sufficient condition for g=4 is obtained as well, and in the
forthcoming paper, we give it for g=β.

After this paper was finished, Pinkall and Thorbergsson construct coun-
terexamples to the conjecture for g=4 [10]. Independently, Ozawa and the
author get counterexamples for g = 4 and 6 in [6], using a new method producing
taut embeddings. Both examples are shown to be not Lie equivalent to isopara-
metric hypersurfaces by using the Lie invariant obtained in the present paper.
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Now our results are:

THEOREM I. Let λ, μ, v> τ be distinct principal curvatures of a hypersurface
M in a space form M(c). Then the function

ψ^ (λ—μ)(τ—v)

tf-iO(r-Aθ

is invariant under Lie transformations.

An immediate consequence of this theorem is:

COROLLALY. For a Dupin hypersurface M in M(c) with four or six
principal curvatures to be Lie equivalent to an isoparametric hypersurface, the
function Ψ must be constant on M for any distinct four principal curvatures λ,
μ, v, τ of M.

As for a sufficient condition, we have:

THEOREM II. Let M be a compact embedded Dupin hyperface with four
principal curvatures λ>μ>v>τ in M(c). If Ψ is constant on M and if for each
λ-leaf Lλ(j-leaf Lτ, resp.), there exists a v-leaf L%μ-leaf Lμ

τ, resp.) such that
L%Γ\IΛΦ0 for all q^L\Lv

qΓ\L^Φ0 for all q^Lτ, resp.), then M is Lie equi-
valent to an isoparametric hypersurface in a sphere.

In § 2-3, we give a summery of Lie's sphere geometry, and prove Theorem
I in §4. In §5-7, we investigate compact embedded Dupin hypersurfaces with
four principal curvatures. We use the constantness of Ψ in § 8-9. The as-
sump tion on leaves is used in the last section to prove Theorem II.

§ 2. Definitions.

Let M(c) be an n-dimensional complete simply-connected space form of con-
stant curvature c. An immersed hypersurface M in M(c) is called Dupin if it
satisfies:

( i ) The multiplicity of each principal curvature is constant on M.
(ii) Each principal curvature is constant along its leaf of the corresponding

curvature distribution. __
By an isoparametic hypersurface, we mean an immersed hypersurface in M(c)
with constant principal curvatures. Obviously, isoparametric hypersurfaces are
Dupin, but a (non-isometric) conformal image of an isoparametric hypersurface
and its parallel hypersurfaces are non-isoparametric Dupin hypersurfaces.

By conformal invariance of Dupin hypersurfaces and the function Ψ, we
discuss on the objects in Sn—M(l) in this paper.

A Lie transformation is a transformation on a space of all oriented hyper-
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shperes in Sn that preserves oriented contact (see §3).
An immersed submanifold X in Sn is said to be taut, if for all x ε 5 " such

that dx:—d(x, )2(square of the spherical distance) is a Morse function on M,
the number of critical points of dx is equal to β(M; Z2), the sum of Z2-Betti
numbers of M.

Lie in variance of tautness is first mentioned by Pinkall [8], and is proved
by Cecil and Chern [1]. Now the important is:

THEOREM (Thorbergsson [11]). A complete embedded Dupin hypersurface
M in M(c) is taut. If M is compact, then g is 1, 2, 3, 4, 6. Moreover, #*(M;
Z2) is obtained by Mϋnzner's method.

This theorem motivates Cecil and Ryan the conjecture, and is essentially
used in this paper.

§3. Basic facts.

In this section, we review Lie geometric description of hypersurfaces in Sn,
and give basic facts on Lie transformations. For details, see [9].

Let Sn be the unit shpere in Rn+1. For k=z(z, x, y)^Vn+s:=Rn+1xRxR,
define the symmetric bilinear form < , > on Vn+3 by

(3.1) <*, *>=ii*ii«-*e-y.

Let Pn+2 be the real projective space corresponding to Vn+Z and denote by [&]
the projective point spanned by &<=Fn+3. Then the quadric

Q={Lkl<ΞPn+2\<k, k}=0}

is identified with the set of all oriented hyperspheres in Sn. Two oriented
hyperspheres [£i] and [fe2] are in oriented contact iff (ku k2y—0, which is
equivalent to that the projective line in Pn+2 spanned by [&i] and [&2] is entirely
contained in Q. A Lie transformation of Sn is interpreted as a line preserving
diffeo φ: Q-+Q. This is known to be the restriction to Q of an projective
transformation a: pn+2-+pn+2 leaving Q fixed [9, Lemma 4]. Therefore, a Lie
transformation is represented by A=(alf a2y •••, fln+3)£θ(n+l, 2), where
{au a2, ••• , αn+3} is the so-called Lie frame, i.e. an ordered set of vectors in
Vn+s satisfying

n+l 0 \

"L Q /

LEMMA 3.1. A is in O(w + 1, 2) iff lA^O(n+l, 2). In particular, both
ordered sets of colume vectors and line vectors of A are Lie frames of Vn+Z.

Proof. Put
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(A, A2

A =
\AS A,

where A^Mn+ι(R), At, M,eM, + u ( i i) , Ai<=M2(R). Define

~-( A l

Then it is easy to see that i e θ ( n + l , 2) iff tΆΆ=I. Since lAA^I iff AlA~
I, we get Ά e O C n + l , 2) iff i4=O(n+l, 2). q.e.d.

Remark 3.2. We obtain Lie frames of F n + 3 as follows: Choose two linearly
independent timelike vectors in F n + 3 so that they span a timelike plane T. Let
S be the (n+l)-dimensional spacelike subspace orthogonal to T with respect to
< , >. Since < , > is definite on S and T, we can choose au a2, •••, c n + 1 G S
and an+2, an+3^T so that

n + i 0

ϋ 0 - 1

i.e. {αi, a2y •••, an+s} is a Lie frame of Vn+Z. In particular, detAΦΰ since
CLu '" > an+s are linearly independent.

Now, for an (n—l)-dimensional manifold M and a pair of mappings ku k2:
M—>Fn+3, (M, ^i, k2) is called α L/^ geometric hypersurface if it satisfies:

a) For all p^M, the vectors &i(/>) and &2(ί) are linearly independent and
we have

<kιy kj>=0, ι \/=l ,2 .

b) There is no J G M , X^TPM such that simultaneously ^ X ( Z ) and ^ 2 ( Z )
are in span (k^p), k2{p)).

c) <dfti, &2>=0.

Remark 3.3. Obviously, if (M, ^j, /?2) is a Lie geometric hypersurface in
Sn, so is (M, i4ϋ?i, 4̂̂ 2) for any Lie transformation 4̂.

Remark 3.4. The properties a), b), c) are preserved by

(3.2) £i=α

where α, β, Y, δ: M—>R are functions such that aδ—βy is everywhere different
from zero on M.

Example 3.5. Let p: M->Sn be an oriented hypersurface and let n: M-+Sn

be defined by n(/>)=the unit normal vector at p^M. Then for
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(3.3) *, = '(/>, 1, 0), kt=\n, 0, 1)

(M, klf k2) is a Lie geometric hypersurface of Sn.

LEMMA 3.6. // (M, &i, k2) is a Lie geometric hypersurface of Sn, then there
are functions a, β, γ, δ: M->R and maps p, n: M->Sπ such that

(3.4) α*i+i8*2= t(p, 1, 0), rki+δk%=Kn, 0, 1).

Proof. Let * ! = * ( * ! , α, 6) and ^2= f(Λ2, c, d). Then we have

>0

by a). Thus there exists the inverse matrix of ί^ j) which we denote by

(r !)•

For p, n: M->Sn in Example 3.5, a parallel hypersurface is defined by

Pa^cos ap-\-sin an, α e [ π , π).

of which the unit normal vector field na is given by

na ——sin αp+cos a n .

Remark 3.7. />: M-»Sn in Lemma 3.6 is not always an immersion. But
singularlities can be removed by passing to a parallel hypersurface of p [9,
Theorem 1].

Remark 3.8. Define A^O(n+l, 2) by

/ /»+i 0 \

^ D; o C9sa s i n α /

\ — sin a: cosα /

Then we have for ku k2 in (3.3),

Akx—\py cosα, —sinα), Ak2

=t(n, sinα, cosα).

Using Lemma 3.6, we obtain

ki=cosaAki-\-sinaAkz^KPa, 1, 0)

k2——sinα^4^i+cosα^2=
ί(/ια, 0, 1).

Thus parallel hypersurfaces are obtained by a Lie transformation of type (3.5).
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DEFINITION. Let (M, ku kt) be a Lie geometric hypersurface, pGM, λ, μe.
Rf (χf μ)Φφ, 0). Then the hypersphere k—λk1{p)+μk2{p) is called a curvature
sphere at p if there is a tangent vector X<^TPM, XφO such that

), k2(p)).

X is called a direction of curvature corresponding to k.

Remark 3.9. The notion of curvature sphere is invariant under Lie trans-
formation. Especially, the direction of a curvature is preserved by Lie trans-
formations. When (M, ku k2) is given by (3.3), k is a curvature sphere iff
λ—λ/μ is a principal curvature of the hypersurface at p. The direction of
curvature is a principal vector with respect to L

LEMMA 3.10. Let (M, ku k2) be a Lie geometric hypersurface of Sn aud let
{Mf ku k2) be its another description by (3.2). Then λkι{p)+μk2{p) is a curvature
sphere at p^M iff σkx{p)+τk2{p) is a curvature sphere at p, where

(;ΪX:K> «*"••
Proof. Put L=span(^i(/>), *a(ί))=span(£i(/0, h(P)\ Then

σdk1+τdk2=σ{adk1 i-βdk2)+τ{γdkί+δdk2) (mod L)

—{aσJ

rγτ)dkιΛ {βσ-\-δτ)dk2. q.e.d.

§4. Principal curvatures of a Lie image.

In this section, we compute principal curvatures of a Lie image of a hy-
persurface M in Sn. To define "a Lie image" precisely, we review the Legendre
map from M to the space of lines in Q which we denote by A2n~\ Then we
study about spherical projections from A271'1 to a sphere, and show that it is
sufficient to take a special spherical projection when we study Lie images of M.

DEFINITION 4.1. For a hypersurface M in Sn, let (M, ku k2) be the cor-

responding Lie geometric hypersurface given in (3.3). Then the Legendre map
X\ M-+Λ271-1 is defined for ί ε M by £(p)= the line in Q spanned by k^p)
and k2{p).

DEFINITION 4.2. For an ordered pair {u, v) of unit timelike vectors satisfy-
ing <w, z;>=0, the spherical projection

— . Λϊn-l ,. On
πu,v SI * Ou>υ

is defined as follows: For l^Λ2n~\ let
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which can be defined since dim {span/} —2 and άimv1=n+2 in Vn+3. Then
represent h by the (unique) vector ϊ1 in F n + 3 satisfying <JU w>= — 1, which is
possible since U^Q and </i, ι;>=0. Then πM)ϋ(/) is defined to be the vector
h—u. Obviously, <πu,υ(l), πU)Ό(l)}=l, and so it lies in the unit sphere Sΐ,Ό of
uLΓ\vL in Vn+3-

Now let wo=(O, 1, 0) and vo=(Q, 0, 1) in our standard coordinate system of
F n + 3 . Note that Sn=S2o,υ o, and write πo=πUQ>VQ. For the pair (u, v) above,
there is a transformation ^ 0 ^ O ( n + l , 2) such that ^40w=w0 and Λov=vQ. Let
J?o be the Lie transformation represented by Ao. Since Άo induces a transforma-
tion on A271'1, it induces a map /^ 0 : S2,υ—•S71, so that the following diagram
is commutative:

A*"-1

In fact, for l^A271'1 with πu,υ(l)=h—u, we have

0=</i, v>=<i40/i, i40v>=<i40/i, ̂ o>

and

-l=<Zi, M>=<ΛZI, ΛM>=<i40Zi, M0>

where /^G/, i.e. </i, />=0=<i40/i, Άol>. So we get

πo(^oZ)=ΛZi—«o=Λ(/i—u)=AQ(πu>Ό(l))

This means that πu,υ(l)=πUtΌ(l') leads to 7Γ0(-4oβ=ffoC2oO, that is, fAo is well-
defined and /^o(ί)=^4oί for p<=Sϊ,v. From this follows immediately:

PROPOSITION 4.3. / ^ 0 : Sl,υ->Sn is an isometry.

DEFINITION 4.4. For a Jiypersurface M in Sn, a Lie image of Mis a spheri-
cally projected image of AX where X is the Legendre map of M and A is
some Lie transformation.

From Proposition 4.3, we get:

COROLLARY 4.5. Lie images of M are obtained, up to isometry, by πo(AX)
for some A^O(n+l, 2).

Now, we compute principal curvatures of πo(AX) where A is the Lie trans-
formation represented by A^O(n + l, 2). For (M, ku k2) given by (3.3), we
may denote

Akx=Khu a, b), Ah=\h2, c, d)
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where hu h2: M->Vn+3 and α, b, c, d: M-+R. Then we have

(4.1) S^aAki+βAk^Kq, 1, 0), %2^γAkι+δAk2^\m9 0, 1)

where qf m: M->Sn and

/a p\/a
\γ δ) \c

in fact, πo(AX) is nothing but q.
Now let λ be a principal curvature of the immersion p at p<^M, and assume

that q: M->Sn is an immersion around p. Then λk1(p)-\-k2(p) is the curvature
sphere and so is λAkx(p)+Ak2{p) (Remark 3.9). Thus by Lemma 3.10, the cor-
responding principal curvature 1 of the immersion q: M-^-S71 at q(p) is given
by λ=σ/τ, where

This implies

(4 2) ί

Therefore, we get:

PROPOSITION 4.6. Between any principal curvature λ of a hypersurface M
in Sn and the corresponding principal curvature λ of a Lie image of M, there is
a relation (4.2) where a, b} c, d are functions on M determined by the Lie trans-
formation.

Thus we have:

THEOREM I. Let λ, μ, p, τ be distinct principal curvatures of a hypersurface
M in M(c). Then the function

ψ_ (λ—μ)(τ—v)

(λ-vXτ-μ)

is invariant under Lie transformations.

Remark 4.7. Note that -^—x a n c * - ^~r are invariant under conformal
(λ-v) (τ-μ) __

transformation and so the result holds for M in M(c).

Remark 4.8. It is easily seen that Ψ is the cross ratio among four projective
points kλ, kμ, kv, kτ on the line in Q determined by k1 and k2 given by (3.3),
where k* is the curvature sphere with respect to *. This is another proof of
Theorem I. In the following, we denote the cross ratio Ψ by [λ, τ; μ, v].
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COROLLARY. For a Dupin hypersurface in a sphere with four or six principal
curvatures to be Lie equivalent to an isoparametric hypersurface, the function Ψ
must be constant on M for any distinct four principal curvatures λ, μ, v, τ of M.

Next, for later use, we compute derivatives of principal curvatures (4.2) of
the spherical projection (4.1). Let X^TPM be a direction of curvature cor-
responding to the curvature sphere λkί(p)+k2(p), or equivalently to λΛkι(p)-\-
Aki(p). From (4.1), we get

dk1(X)=X(a)Ak1+X(β)Ak2+A(adkί(X)-{-βdk2(X))

=(a-βλ)Adk1(X) (mod spanC^C/O, Ak2{p)).

So if Y^TPM is also a direction of curvature corresponding to λkι{p)-\-k2{p)y

noting a) and c) in §3, we have

(4.3) <dq(X),

^(a-βλKdkiiX), dk2(Y)>

=(a-βλ)\dp(X),dp(Y)>.

Since it is easy to see that a—βλ=— , we obtain:

LEMMA 4.9. // X^TPM is a direction of the curvature sphere λkλ(p)+k2{p)

such that \\dp(X)\\=l, then -j-γ~—j-dq(X) is a unit principal vector correspond-

ing to the principal curvature λ— , . , , .

υλ-vd
Now, let U be a neighbourhood of M on which principal curvatures satisfy

λ1>λ2>">λg. Then the tangent bundle TU is decomposed into TU=Tι+ "
+Tg where T% is the curvature distribution corresponding to λt and λz. We
can choose a local frame Xu — Zn_i of TU so that Zm i + . . .+ m t_ 1 + 1, •••, Xm.^Tlf

where mx is the multiplicitiy of λt, and that ei—dp{Xι)f / = 1 , •••, n—1 form an
orthonormal frame with respect to p: M-*Sn. Denoting the connection of Sn

by V, we put

7 2 - 1

Vβ<e,= Σ Λijek+λiδijn.

Then we have [5] :

(4.4) ei(λj)=Λ)j(λj-λt), iΦj.

Remark 4.10. Put ίi^\:-{j\λι=λJ}. Then a Dupin hypersurface p: M->Sn

is isoparametric iff Λ}j=0 for all /, such that /

Since
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£ ad—be
(4.5) A = _ _

i~l, - , n — 1, form an orthnormal frame with respect to q: M-*Sn by (4.3),
putting

we get

(4.6) /t(^)=i

I % \ I , \
For convenience, put A~\ \ = | an+2 an+z\, where tba=(aaβ)ίύβ<n+z,

dn+3 — \Q<an + S/l^azn + S'

LEMMA 4.11. We have

I},=0 if jΦi^lΠ,

and for i

(4.7) ^j

where xτ = {cn+2, et> and yι = (cn+3, et}, using the inner product < , > of Rn+ί.

Proof. Since α = < c n + 2 , p)+an+2 n+2, b=<.cn+3, p)+an+3 n+2, c—{cn+2,
an+2n+z and d—(cn+s, n}+an+3 π + 3, it is easy to see t h a t :

1) ei(aλJ+c)=ei(a)λj+ei(c)=<cn+2, ^0i+Veiw>=O, if

2) e<(6^+rf)=<cn+3, ^ < + V e i n > = 0 , if j'

3) βi(α^+c)=<cn+2, ^ t + V e < n > + α β t ( ^ )

=(λj-λι)«cn+2,eι>+aΛ]j), if

4) e 1(6^+(ί)=M i-Λ)«Cn+s, et>+bΛ)J), if

So we have

*<&)=0 f if
and for /

(4.8) g < ( ^ ) = (

(

Here we note that

et(λj)=dp(Xt)(λJ)=Xi(λj)
and
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considering λ3 as a function on M.
On the other hand, using (4.5), we get

ad-bc V / ~ N ad-bc ~

bλi+d bλi+d

Thus we have

from which with (4.8) follows the lemma. q.e. d.

§ 5. Compact Dupin hypersurfaces with four principal curvatures.

From now on, let p: M-^Sn be a compact connected embedded Dupin hy-
persurf ace with four principal curvatures λ>μ>v>τ. Then we know that
m1=m3 and m2=m4, where mu m2y ra3, m4 are multiplicities of λ, μ, v, τ, res-
pectively [7]. We use the index convention: l ^ α , b, c<Lmx<i> j , k^m1+m2<
r, s, tf^2mί+m2<u, v, w^n — 1. A local orthonormal frame (eαf &ι, er> βu) is
chosen as in §4.

The purpose is now to find a condition under which there exists A<^
Oin + 1, 2) such that Λjβ=O for all α, β such that αφ[β~]. But we come
against difficulty soon if we investigate equations

even at a point, with (xα, yα), defined in Lemma 4.11, as unknowns. At a
critical point of Ψ, however, this can be done.

PROPOSITION 5.1. Let p be α critical point of Ψ. Then we obtain A<=
, 2) such that

(5.1) Λ$β(p)=0, for all a, β such that α

Remark 5.2. At p, the image hypersurf ace has the "common" normal geo-
desic defined in [5].

For the proof, we need:

LEMMA 5.3. At a critical point p^M of Ψ, we have:

Λa Λa Λa Λa Λa Λa
, - N Άιί~Άrr SUi—Άuu Slrr — /luu

( i ) = — {= : Ka)
μ—v μ—τ v—τ

Λι Ax Λi Λi Λi Λι
/• \ J1aa s i r r y±aa Jluu Jίrr Jίuu , r> \

λ-v = λ-τ = v-r

r Λr Λr Λr Λr Ar
aa Slji _ Jlgg — Λ u u Λ a — Λ u u

λ—μ λ—τ μ—τ
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Λu λu Λu Λu Λu Λu
/ . v Slaa — yiii J l a a Λ τ r Jin Λ r r . r> \
(IV) r = 1 = (— . Ku).

λ—μ λ—v μ—v

Proof. Let Φ=logΨ. Then p is a critical point of Ψ iff p is a critical
point of Φ. For instance, we have, using (4.4),

Λ_ r/h\— βa(λ—μ) ea{λ—v) ea{τ—v) ea(r—μ)
λ—μ λ—v τ—v τ—μ

__,χ x / Λjj Λuu Λ?r—Λ%u\

1 μ—τ v—τ ) '

The first equality in (i), then follows automatically, (ii) and (iii) are similarly
proved. q. e. d.

To prove Proposition 5.1, it is sufficient to show that there is a Lie trans-
formation . ^ e 0(?2-}-l, 2) such that the image hypersurface has the "common"
normal circle at p [5], i.e.:

LEMMA 5.4. Let p be a critical point of Ψ. Then we obtain A^O^n + 1, 2)
such that

(5.2) Xfo(p)=X?r(P) for all a, β, γ such that α£[j8]U[r], β^ίΐl

Proof. C h o o s e t h e c o o r d i n a t e of R n + 1 s o t h a t β « ( ^ ) = ί ( 0 , ••• ί ••• 0), a—I, •••,
w — 1 , p(p)={(0, ••• 1, 0), a n d n(p)=\0, •••, 1). C o n s i d e r s i m u l t a n e o u s e q u a t i o n s :

(5.3) ΛUp)=Λ?r(p)=ΛUP)

with unknowns (xa, ya) for a fixed a, where we use notations in Lemma 4.11.
For simplicity, try to solve (5.3) by putting 6=0. Then from (4.7), (5.3) becomes

a(μ-v)ya-ad(Λt%-Λ*)=O

By (i) of Lemma 5.3, at p, a solution is, for instance,

(Xa, ya) = (0, dRa), d=l, — , m1

Just in the same way, solutions to

Λla{p)=Λlr(p)=Λ\u(p),

Λr

aa(P)=ΛUP)=Λr

uu(p),
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are, respectively,

Ut, 3>ι)=(0, dRx)

Now, we have to find a Lie frame bu •••, 6 n + 3 such that

Un+2—: \X> Xn> Xn+l> & Xny C Xn + l)

bn+*=Ky, yn> yn+u —yn, d—yn+i),

where x=(xa> x%, xr> xu) and y=(ya, yχ> yr> yu) are given above, xn=<cn+2, P>,
Xn + l = <Cn+2, n>, yn = <Cn+z,P> a n d 3>n + l = <Cn+8, n>- P u t Xn = Xn + l = yn=0, d=l,
c=0 and yn+ι——Nd, Then obviously, we have <£n+2, δ n +ί>= —1 and <6n+2,
^ n + 3 >rr0. On the other hand, since

we have <frn+3> 6n+3><0 for a sufficiently large N, and then putting d —

J VΣ RI—1—2N \ , we get <&n+8, &n+s>= —1. Therefore according to Remark
/ % \

3.2, we can extend bn+2, bn+s to a Lie frame bu •••, bn+s so that Aχ=\ \ J e

1,2). q .e .d .

Remark 5.5. The desired Lie transformation 4̂ in Proposition is obtained
now by A=A2-AU where A2 is the conformal transformation of Sn given by

/ % \
A2—\ : G θ ( n + 1 , 2); feί, •••, bf

n+i is a Lie frame extended from

WnJ

6ί + .= l (0, 0, 0, 0, 1)

where x'=(-aΛUP), -aΛι

aa(p), -aΛr

aa(p), -aΛla(p))(=ΞRn-1, K and a are
chosen so that <6ή+2, ft»+2>= —1

§6. Using tautness.

We can start now from a compact embedded Dupin hypersurface q: M-*Sn

which has a point p<^M, at which the normal geodesic is "common". The
purpose of this section is to show:

PROPOSITION 6.1. The normal geodesic γ at p cuts M at eight points pi—



DUPIN HYPERSURFACES 241

r

P> Piy '" > ί s ϊ is the common normal geodesic at every point />*(/=1, •••, 8).
Moreover, all leaves at pi's are connected as in Fig. 6.1.

Remark 6.2. The leaf Lp of a Dupin hypersurface M corresponding to the
principal curvature λ at p is an mi-sphere centered at

c=p+
Ha

where
Ha— Σ Λlaea+λn— p

[5]. Obviously, Lp lies on the hypersphere Sp with center at

fp-co$θλp+sϊnθλn,

where θλ~cot~ίλ(—-^<θλ^-prj is its radius. With the normal geodesic γ at
V Δ Δ'

p, Lp has another intersection p'Φp, iff Λla(p)=Q for all α ^ [ α ] , that is if
Lp is totally geodesic in Sp. In this case, γ is the normal geodesic at p', too
[5, Remark 2.3].

Remark 6.3. By Thorbergsson [11], Hi(M; Z2)Φθ only when 2=0, mu m2,
mι+m2, 2mι+m2y mi+2m2, n—1 and ^S(M; Z 2 )=8. Non-zero cycles of Hmχ{M)
and Hm2(M) are represented by L^ and LΓ, respectively. We denote other non-
trivial cycles by
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which are image cycles of the fundamental cycles of ΛΓi's by maps /ιt's defined
in [11]. Note that the intersection number S( , ) satisfies

(6.1) S(c^, 0 = 1 , S(LT, cvμλ)=lf S(Lλ, c*"")=l.

We denote by JSJ*, the ball such that dBλ

p

±=Sλ

p where w(/>) is the inner
(outer, resp.) normal to BP

+(BP~, resp.). Bγ9 Bv* and Bψ are similarly defined.

LEMMA 6.4. For any p<=M and any L\Lr, resp.), Bfp-Γ\LλΦ0{Bp

+Γ\LτΦ
0 , resp.).

Proof. Bff contains the homology cycle cμvτ with which any mi-cycle Lλ

has the intersection number Φθ. q. e.d.

Proof of Proposition 6.1. At p, by (5.1) and by Remark 6.2, we have
ynLp={p, p2], γnL$={p, pή, rnLv

p={p, p6}, γr\Lτ

v={p, ps}. We have f\%

(/P4» resp.) on γ in the direction from p2 to />4(/u to p2, resp.), since along Lλ

v

and Lξ, the positive normal direction is preserved. Moreover by tautness, we
have (Bτp2)

oΓλM=0 and (Bλ

P4)
oΓ\M=0. Therefore fτ

P2 and fλ

P4 are situated in

this order along p2p4 from p2 to pA. On the other hand, by Thorbergsson [11],
Sn is decomposed into two disk bundles over two focal submanifolds Λf±: =
{fp\p^M},f%=fj,,fp=fT

p, both of which have M as their boundaries.

Thus there exists a point p3^M between fP2 and fP4 on ^ 2 ί 4 . Similarly, there

exist p5, | ) 7 G M on the arcs pAp6, Pβp8, respectively.

Remark 6.5. At this stage, we say nothing about the relation among p2,
p3, pά. Neither do we know whether M cuts y orthogonally at pZi pB, p7, or
not. The proof is completed by Lemma 6.6 and 6.7.

In the following (and in § 9 as well), we denote Lf, S?, B** for L%v S%v

B%*, respectively, for *'=1, •••, 8 and *=λ, μ, v, τ.

LEMMA 6.6. Lτ

ir\Lλ

ι+2=pt+u for i—2y 4, 6.

Proof. [z=2]. By tautness, we have Ll^BinMdSl and Li=BίίΛMdSί
[5, Lemma 3.5]. Then denoting here 0 ? = | 0 ? 1 , we have

2θl^d(p2, pz) and

where equalities imply p^L\ and p9^Li, respectively. Hence Lτ

2C\L\φ0
implies Lτ

2Γ\Ll={p3\. Now, suppose LlΓ\L\—0. Then
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ft), θl<d(ρl9ft).

Therefore we can transform Sn conformally preserving γ so that S2 and Si are
centered at mutually antipodal points (Without confusion, we denote the image

by the same letter). Let x<=p4fi be sufficiently near ft so that dx is a Morse
function on M. Let B(x, r) be the ball centered at x with radius r.

In B(—x, d(—x, p2)), d-x has critical points of indicies 0 and m2f the latter
is nothing but p2. Obviously as a critical point of d-x, pi is of index mγ.
Since

by Lemma 6.4, the index of p8 as a critical point of d-x'^mιΛ-m2. In the same
way, the index of p8 as a critical point of dx^m1+m2. Thus the index of p8

with respect to d.x is m1+m2, corresponding to the cycle cvτ. On the other
hand, since Bμ

2

+ contains cμλ which is not homotopic to cVΓ, and since d(fμ

2, p2)
^•θϊ+θl+θl by Lemma 6.4, d-x should have another critical point of index
m1+m2 in B:=B(-x, d(-x, p8)+2θi). Now, in B(x, d(x, pύ+2θΐ), dx has
three critical points corresponding to a point, Li and Ll. (Note that we may
assume d(x, fi)<θ\.) Thus from p6(^Bc, dx has four critical points in Bc.
Finally, d-x should have nine critical points on M, which contradicts tautness.

[7=6]. Similar to [/=2].
[7=4]. Easier than above two cases. q. e. d.

LEMMA 6.7. L^2=L^7, L%=L\, L%=L%,

v T v—
8 L'4 —
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Proof. [L$=Z,£1. Consider the cycle c ? t β f at pz and cVdBy at pΊ.
Then S(ciλ, c?)=l and S(cfΓ, Lί)=l imply Bΐ+πfiΓ={/>7} and ρ^c\λ. Since
c?;Γ\S3* = L3, we get pΊ^Lμ

2f that is Lμ

2—L% The other cases follow similarly.
q. e. d.

LEMMA 6.8. Lei z* te ί/z# complex number corresponding to
i—1, •••, 8.

[>2, 28; ^4, β̂3 = ~ — / ~ — ~ * s Me cross ratio. Ψ(pt)> i—Ί> '" , 8 are
Z2—ZQ/ Z8—Z6

2-24 /Zs-Z,

similarly obtained.

Proof. As is well-known,

Therefore

= [^2, z8; z4, Zβ]. q.e.d.

§ 7. Lie transformation of S1.

In this section, we find a Lie transformation ^43e0(2, 2)cO(n+l, 2), which
maps fΠM from the position in Fig. 6.1 to the position in Fig. 7.2. We follow
the argument in [5]. That is, we restrict our argument to Γ=S1, on which,
any pair of points connected by some leaf is considered as an oriented hypers-
phere of S1. We give positive orientation to a leaf L* if β?=cot"1*<>0, * =
λ, μ, v, τ. (Recall that Θ* is chosen so that -π/2<θ*£π/2).

First of all, since L{Γ\Ll—{φ}f we can transform S1 conformally so that
the images of Li and Li are centered at mutually antipodal points. Then by
a conformal transformation fixing these centers, we may assume that λ(pι)=
cotθ—λ(pδ) for some O<0<7r/2. Note that in §9, we denote the combination
of these conformal transformations by C.

Now, put 9=cot"1(-r(i2)), ^=cot"1(-τ(ί1)), φf^cot~\-τ{p4)) and φ' =
cot-\-τ(pβ)), where 0<φ, ψ, φ', ψ'<π/2(see Fig. 7.1). Then since (θ-\-φ+ψ)+
(θ+φ/Jrφf) is less than π, we may assume

(7.1) θ+φ+ψ<j,
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Fig. 7.1.

—1"'

without loss of generality. Let

k1={pu £2} = Y -K-, 0, 1, tantf),

sinω , 1, - tanσ),
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where σ=θ+φ+φ, ω—φ—ψ, and

^ = ' ( 0 , 0 , 0 , 1).

Note that ku k2, kz(=Q but kA£Q. Moreover, let

h,=ι(xf y, z} w).

Note that hu h2y A 3eQ. For K=(kl9 k2, k3, k,) and H=(hίf h2y A8, A4), find
0(2, 2) such that AZK=H. Since

- ^ - T l + cosω
2 sin ω \ cos σ

cos^ coso /, cos θ cos ω
-gUi-

0

0

2sinω\ cosσ

COSίT

smω

- ^ ^ ( t a n σ + t a n ^ )
sinΰ)

Az—HK-ι=(au a2, α8, α4) is given by

αi=-^—(A1-Λ2),

_ cosσ / cosω
sinα) \ cosσ

) 4
0 0

- t a n θ 1

By writing down the condition Λ3e0(2, 2), i.e.

<αt, α ;>=0 for 2=^7,

as equations with unknowns (u, v, β, x, y, z, w), we have

(7.2) M = 1
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(7.3) v= C 0 S ω C 0 S P
COStf

(7.4) cos(fl+/3)= c o s ^ + σ )

Γ COSft>

(7.5) A ; = 0

(7.6) z + w ; t a n ^ = t a n ^

(7.7) -^4-w t a n ^ ^ -
Ωcos ω cos β

(7.8) y2-z2-w2=-l.

In fact,
(1) l=<fl!, fl!> implies (7.2) and β ^ l , 0, 0, 0), l/2(Λ1 + A2)=t(0, 0, 1, tanβ).
(2) 0=<αi, α4> implies (7.5).
(3) <au α3>=0 follows from (1) and (2).
,Λ\ Λ / \ cosω , cosσ , . . . ,. . , . cosω , ,n o.
(4) 0=<α l 7 α2> = : 1—: <alf Λ8> implies <αi, /ι3>= and (7.3).

sin ω sin ω cos σ1

(5) 0=<α3, α4> implies (7.6).
(6) <α3, α 3 > = - l - t a n 2 ^ - t a n 2 ^ - 2 t a n ^ ( - z - w ; t a n ^ ) = - l follows from (5).
(7) 0=<β2, α 4 > = - ^ L « / z 3 , Λ4>-tan<;) implies <A8, A 4>=tanσ: (7.7).

sinto

(8) 0=<α2, α3>=—^ (1+<A3, α 3 » implies <α3, A3>= — 1 so that i;(—
sinω

= — 1 , i.e. (7.4).

cos2σ/cos2ω 2 cosω
( 1 t a V 2 < A>

/π\ / \ cos2σ/cos2ω 2(9) <α2, β2> = - τ - i — ( -2 1—tanV—2
sm2ω\cos2<7τ i ( 2 1 t a n V 2
sm2ω\cos2<7 cos*;

-2<α 3, A3>+2tanσ<A3, A4»

follows from (4), (7) and (8).
(10) - l = < α 4 , fl4> implies (7.8).
Case 1. If θ+σ=2θ+φ+φ^π/2 is satisfied, then since

we get

and so

cosω
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Thus we can find β satisfying (7.4). Then, v is obtained by (7.3). On the
other hand, we get

w = sinfl+fl {S i n^C 0 S^+-^ΓC 0 S4

from (7.6) and (7.7), so it follows

cos Θ r sin a

Now,

cos(θ+β)=
cosω

implies β^σ because of θ+σ^π/2, and hence we have

sin c

sin β ̂  sin o ^ ,
COSCt)

i.e. K ̂ I . This guarantees j>2^0 in (7.8), and finally, the whole solution is
given by

- cosωcosβ
w=l, v= — where θ^cos" 1

PΛO re '

(7.9) (

cosσ ' I cosω I '

Λ /-Γ-;—2—7 u sin^ f . Λ sinσ l
1=0, 3 / = V 2 2 + r - l , where z— . ,Λ—rr-^sinθ — k

sin(0+p) I Γ coscϋ J
w— . //> , m {sin0 cosθH cosθ\.

sm(σH-p) I cosω J
Case 2. When θ+σ=2θ+φ+ψ>π/2, we have

since 2{θ+φ)<π and 2(θ+ψ)<π by (7.1). This implies

cosω>cos(π—^—σ)=—cos(^+(τ)>0,

and we get j8 satisfying (7.4), 0<β<π. On the other hand, from

cos(fl+β)=
cosω

noting that θ+σ<π, we have ^ ^ σ . Thus we obtain, using (7.1),

cosσ
~ COSCϋ

Now, since (7.4) is equal to

cos θ cos σ—sin θ sin <τ
cos θ cos β—sin θ sin j8= -

cosω
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cosω

equivalently w^l. Thus, in this case again, solutions are given by (7.9).

§ 8. Under the assumption that ¥ is constant on M.

Here, for the first time, we assume that Ψ is constant on M.

PROPOSITION 8.1. // ¥ ts constant on M, then there is a Lie transformation
, 2) which maps γΓ\M in Fig. 7.2 to the position in Fig. 8.1.

Proof. Consider the image hypersurface shown in Fig. 7.2. Note that
v(Pi)=v(P*) and τ{pλ)=τ{p2) imply μ(pι)-μ(p2). Now, let η=cot'1λ(pz)t ψ^
cot-\—τ(p2)) and φ'=cot-ι(—τ(P*)), where Q<η, φ, φ'<π/2. Without loss of
generality, assume that φ^φ'. Then we have

(8.1)

To imitate the previous calculation, rotating the coordinate axes by π/2, we put

= l ( — ^ y , 0, 1, -cot/?),
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4= (0,0, 0,1),

h2=uk2, U<=ΞR-{0},

h3=vΊ—-—, 0, 1, tan A VΪΞR-{0},
\ cos a /

ht=\x, y, z, w).

Now, find Λ e θ ( 2 , 2 ) such that A4K=H, where #=(&!, fe2, ŷ 3,
(hu h2f h3, /ι4). As before, since we have

sinfl

sin

COST? / sύnζsinfl \ 1

Λ 1 + COST) ) 2~ °

2cosζ \ cosΎ) ) 2

2cosζ\ COST; / 2

COST; A s inζs in0\ 1

\ COS Ύ) / 2

COST;

cosζ

4 is given by

COST? f s m ζ

= F"icosζ

1 ,,

f
i
I COST;

i — α 3 + A 3 —

0 0

0 — ^ | _ ( t a n ) y + t a n ^ ) cottf 1

4) and H=

The condition ̂ 44e

(8.2)

(8.3)

(8.4)

(8.5)

0(2, 2)

u

si

are, this time:

=1

/Λ \ SlΠ(y — 7?)
v\( fi SΎ)— —

smζ

cos a? sin ζ

COST?
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(8.6) -z+w cot 0=cot0

(8.7) z+w tan a = S m ? r

cos α sm ζ

(8.8) y - ^ 2 - u ; 2 = - l .

As before, from (8.1) and

there exists α satisfying (8.3). From (8.6) and (8.7), we get

1 / Λ , sin # sin 77 \
w — -^ cose/cos αH . „ 1

cos(# —α) V smζ /

and

- sin 0 / sin 77 . \
M> —1 = Tλ r ( — r - = sm<2 1.

cos(^—α) V smζ /
When θ^-η, it follows α^>7 from (8.3) so that

^ sin 77
< ;

sinζ

implies w^l, and hence y2^0.
When 0<τ7, though a>η, we have from (8.3),

sin θ cos 77—cos θ sin 77 . n n .
—-z, — = s m θ cos a—cos θ sm a

smζ

<sin θ cos 77—cos θ sin α

^ . Λ c o s 77 Λ .
^ s m σ - 1 - 7 — c o s 0 sm a

smζ

so that

sin 77

smζ

Therefore in both cases, solutions are given by

cos a sin ζ

w — -

l sinζ 1' cos 77

ΓTΊ—2—Ϊ- u cos 0 / sm 77 . \
= V r + w - 1 , where z— 7^ r-(—r—^—sinα),

cos(σ—a) \ smζ /

77̂  -I COS ϋ COS αH : — = — - 1.

cos(0—a)\ sinζ /

Finally, by using Ψ is constant, we get τ(p2)=τ(pA)=τ(p6)=τ(p8). Put /? =

(*) By an easy calculation, we have for k5= {p5, pΊ}, Akh- ί —-^-^-, 0,1, tan αj , and

the equality holds.
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cot-\-τ(pύ).

PROPOSITION 8.2. // Ψ is constant on M, then we have θ+p=π/4 and θ=a.

Proof. By Lemma 6.8, we have

2—ze/ z8—z6 —2 —2

z—z7/ zδ—z7 —2 —2

From (a+ρ)+(θ + p)=π/2, it follows

~) —-ρ\{it-2(α + io)} g-2i(,a + p)

So if we put z=e*Hθ+ι>\ Ψ(PI)=Ψ(PA) is written as

Thus we get

θ+p—a+p=-r. q.e.d.

COROLLARY 8.3. // Ψ is constant on M, then by taking Λ E O ( 2 , 2) of type
(3.5), we can transform Fig. 8.1 so that θ—a=ρ—π/8. Therefore, in fact,

§ 9. Proof of Theorem II.

From the results in §5-8, when Ψ is constant on M, we see that at each
point p of M9 there exists Lie transformation Λp=Aδ Λ^'Λz C'Λ2'Λ1 of which
image satisfies the relation in Fig. 9.1 where we denote the image point of p
by pi and the normal geodesic at pγ by γ. Note that this result is obtained
not only by a local calculation but also by using a global property "tautness"
of M.

Now we show:

PROPOSITION 9.1. Let N be a Lie image of an isoparametric hyper surf ace
No with four principal curvatures. Assume that at some point pi&N, the in-
tersection of N with the normal geodesic γ at pi makes a regular octagon pip2 •••
ps as in Fig. 9.1, where γ is common at each pi. Then N is itself isoparametric.

Proof. By a parallel transformation, if necessary, we may assume that
ΛΞΞcot(τr/8)ΞΞ— τ and μΞΞcot(3τr/8)ΞΞ— v on No. Let N be the image of 7V0 by
some ;4eO(n+l, 2). Let qx be the inverse image point of p%. Then A maps
the regular octagon at qx to the regular octagon at pλ. This means, up to
isometry, that if we put
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Ptί
\

V
V \

V V

Γ /

Fig. 9.1.

. (2-1)
r, sin—j—

ff, 1, θ)

π, 0, l )

for j = l , 2, •••, 8, and 0=(0, •••, 0), then
π-l

a(qι)Ak1(qi)+β(qι)Ak2(qι)=kι(pι)

7(q,)Ak1(q,)+δ(qι)Ak2(gt)=kz(p,),
(9.1)

where

/a β\/a b
\γ δ/ \c d

and a, b, c, d: N0->R are given by

Ak1(qι)=t(*, ••• , *, a(qι), b(qt))

Aki(qι)=t(*,-,*,c(qι),d(qι)).

Let Vn+*=R"-1XRI where Λί=span( (0, 1, 0, 0, 0), '(0, 0, 1, 0, 0), '(0, 0, 0, 1, 0),
'(0, 0, 0, 0, 1)). Then since spanCW?,), kz(qt))=Rt and span(Akί(qι), Akt(qt))=

1SIS8 lStέδ

Ri, we get

A-(Al °\A-\B A,)'

From Lemma 3.1, it follows 5 = 0 and Λ e O ( w - l ) . Now, if we check (9.1)
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carefully, we get τ42=±idendity. q. e. d.

Now, our image hypersurface of M by Λp has the regular octagon at the
image point of p as was shown in § 8. Thus for M to be a Lie image of an
isoparametric hypersurface, this image by Ap itself must be isoparametric.
Unfortunately, we can not show this without additional assumption on M.

THEOREM II. Let M be a compact embedded Dupin hypersurface with four
principal curvatures λ>μ>v>τ in M(c). If [λ, τ; μ, v] is constant on M, and
if for each λ-leaf Lλ{τ-leaf Lτ, resp.), there exists a v-leaf Lv

λ(μ-leaf Lμ, resp.)
such that Lμ

qΓ\Lv

λΦ0 for all q^Lλ(Lu

qΓ\LμΦ0 for all q<=Lτ, resp.), then M is
Lie equivalent to an isoparametric hypersurface in a sphere.

Now, we prove this theorem. For simplicity, we denote by M the image
hypersurface of M by Av, on which the relation in Fig. 9.1 is satisfied.

LEMMA 9.2. For L}, Lv

λ=Lv

4. Similarly, for Ll(L%, Li resp.), L\-L\{L\,
L\, resp.), and for L\(L\, L\, L\, resp.), Lμ = Lμ

δ(Lμ

2, L\, L%, resp.).

Proof. Suppose that L\φL\. Let qx^L\r\Lv

x and q2^L\Γ\L\. Then we
can write

for some u^TVχL\ and v^TP2L
μ

2> where, denoting by n% the unit normal vector
to M at pt, we know (see Remark 6.2, and (2.2) of [5]),

\\Hμr ^ •
Obviously φφOφψ, and by Lv

λφL\, ψφπφφ. Note that the focal point of
is given by

— nx, 2=1, 2.

Now, let fv be the focal point of L\. Then since qt lies on fμfv, qλ and
q2 lies on the geodesic two sphere ^determined by fμ

u f% and fv. Since we
have

2, n2)

1, nu u)

2, n2, v)=span(pi, nu v),

we conclude that u and v should be parallel along y. But then apparently, L
would intersect Lμ

2, a contradiction. Thus we have Lv

λ=Lv

4. q. e. d.
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PROPOSITION 9.3. Among tangent spaces of leaves at pi's, TL{, TLl, TL\,
TL\ are parallel with respect to the connection of Sn. Other parallel families
are {TL\, TLl, TL%, TL\), {TLl, TL\, TL\, TLl} and {TLl, TLi, TL\, TLl}.

Proof, Put TL\=X, TLΊ=Y, TL\=Z, TL{=W. In the following, " = "
means "be parallel to" with respect to the connection of Sn. Note that L\^q->
L%C\L\^.L\ is an onto diffeo because of dim L?=dim Z,ϊ=mi. Since f{ and f\
lies on the normal geodesic γq at q, and since f\——f\, Lμ

qC\L\ also lies on γq.
Thus L\ is contained in the (rai+l)-dimensional geodesic sphere determined by
fi and L{, and obviously intersects γq orthogonally for any q^L\. Therefore
we conclude that TLu

4=TLi Similarly, we get TL\=Y, TLl=Z, TL^W.
Then from TtM:=Tp.M=TPlM, it follows that TLl=W, TL\—X and so TL%
=W, TL\=.X. Thus we get TLl=Y, TLϊ=Z and so TLi=Y, TLλ

Ί=Z.
q. e. d.

Remark 9.4. Without the assumption on leaves, there are infinitely many
cases in the relation among tangent spaces of leaves.

By Proposition 9.3, we see that for any point q^L{y the normal geodesic
ϊq cuts M orthogonally at eight points qι—qf q2, •••, q%, numbered in order along
Tq, where qu q2^Li, qz, q^L\, q4, q^L\ and q6, q^L\. In the same way, for
any point ^eLf, *=λ, μ, v, τ, and / = 1 , 2, •••, 8, it holds that, the intersection
of the normal geodesic γq with M makes a regular octagon. Note that at such
points of intersection, all Λia—Q, for any a, β such that aφi[_β~\ (see Remark
6.2). Thus we have:

Proof of Theorem II. Let x be any point of M. Then we can find ̂ G
L{, x^Lμ

Xχ and X 3 G L ; 2 such that x^Lτ

x%. At xu the relation of the normal
geodesic and M is the same as in Fig. 9.1 where we replace px by xλ and other
points of intersection by suitable symboles. Next at x2, and then at x3, we
can show the same thing. Finally at x, we conclude that Λξa(x)=Q for all a
and β such that α^[/3]. Thus the Lie image of the Dupin hypersurface M by
Av—Ab- A4-Λ3- CΆ2'Λ1 is isoparametric. q. e. d.
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