ON THE STRATIFICATION OF GOOD HYPERSURFACES

By Mutsuo Oka

1. Statement of results.

Let f(z) be a germ of an analytic function defined in a neighborhood of the origin and let $f(z) = \sum a_{\nu} z^{\nu}$ be the Taylor expansion. We consider the germ of the hypersurface $V = f^{-1}(0)$. We assume that f has a non-degenerate Newton boundary $\Gamma(f)$. The purpose of this paper is to construct a canonical Whitney b-regular stratification \mathcal{S} of V which depends only on the Newton boundaries Under the non-degeneracy condition of the Newton boundary, the $\{\partial I'(f)\}.$ singular locus of V is the union of several coordinate subspaces C^{*I} . However the b-regularity for (V^*, C^{*I}) does not hold in general and we have to know the locus where the regularity fails. For this purpose, we introduce the concept of the *I-primary boundary components* which plays an important role for the stratification of V. Its rough description is as follows. Let $P = {}^{t}(p_1, \dots, p_n)$ be a positive rational dual vector and let $I(P) = \{1 \le i \le n; p_i = 0\}$. The face function $f_p(z)$ is defined by the partial sum $\sum a_{\nu} z^{\nu}$ for ν such that $\nu \in \Delta(P)$. Here $\Delta(P)$ is the face of $\Gamma(f)$ where P takes its minimal value d(P; f). We use the notations of [5]. Assume that $f_P(z) = z^L g(z_{I(P)})$ where $z_{I(P)}$ is the projection of z into the affine coordinate space $C^{I(P)}$. In this case, we say that f_P is essentially of $z_{I(P)}$ -variables and we denote $g(z_{I(P)})$ by $f_p^e(z_{I(P)})$. We consider the variety $V^{*}(P)$ and $\partial V^{*}(P)$ as follows. $V^{*}(P) = \{z \in C^{*n}; f_{P}(z) = 0\}$ and $\partial V^*(P) = \{ z_{I(P)} \in C^{*I(P)}; f_p^e(z_{I(P)}) = 0 \}.$ If f_P is not essentially of $z_{I(P)}$ -variables, $\partial V^{*}(P)$ is $C^{*I(P)}$ by definition. We call $\partial V^{*}(P)$ a *I-primary boundary component* with respect to P if $V^*(P)$ is not empty. Let V_{pr} be the closure of V^* in C^n and let $V^{*I} = V \cap C^{*I}$ and let $V^{*I}_{pr} = V_{pr} \cap C^{*I}$. Then V^{*I}_{pr} is a union of *I*-primary boundary components (Lemma (3.3)). We say that the hypersurface $V = f^{-1}(0)$ is good if for each subset I of $\{1, \dots, n\}$ with |I| > 2, there is at most one f_P among $\{f_P; I(P)=I\}$ such that f_P gives a proper *I*-primary boundary component. Here P may not unique. We assume that V is a good hypersurface hereafter. If V has a proper primary boundary component, we denote this component by ∂V_{pr}^{*I} . If V does not have proper primary boundary component, $\partial V_{pr}^{*I} = \phi$ by definition. Let P be a positive dual vector and let I = I(P). We say that V satisfies the primary non-degeneracy condition or simply the PND-condition if the following conditions are satisfied for any P such that $V^*(P) \neq \phi$. Let $p_{m_{1n}}$

Received May 30, 1988

=minimum $\{p_j; j \notin I\}$.

(**PND1**) Assume that f_P is essentially of z_I -variables and let $f=f_P+\hat{f}$. Write $f_P(z)=z^K f_P^e(z_I)$ where $K=(k_1, \dots, k_n)$.

(a) (i) d(P; f)=0 or (ii) d(P; f)>0 and $d(P; \hat{f}) \ge d(P; f) + p_{\min}$ or (iii) the variety $\left\{z \in \mathbb{C}^{*n}; f_P(z)=0, z_j \frac{\partial \hat{f}_P}{\partial z_j}(z) - k_j \hat{f}_P(z)=0 \text{ for } j \notin I\right\}$ is empty.

(b) $\partial V^*(P)$ is a non-degenerate hypersurface in C^{*I} in an ε -ball B^I_{ε} for some ε .

(PND2) Assume that f_P is not essentially of z_I -variables. For each $z_I \in C^{*I} \cap B^I_{\varepsilon}$, the fiber $q_I^{-1}(z_I)$ is a non-degenerate hypersurface in $C^{I^c} \times \{z_I\}$ where I^c is the complement of I in $\{1, \dots, n\}$.

MAIN THEOREM. We assume that V is a good hypersurface which satisfies the PND-condition. Let $S(I) = \{V^{*I} - \partial V_{pr}^{*I}, \partial V_{pr}^{*I}\}$ and let $S = \bigcup_{I} S(I)$. Then S is a regular stratification of V.

For the stratification of the hypersurfaces which is not good and the stratification of the complete intersection varieties, see [6].

2. Stratifications.

Let V be an analytic variety in an open set D of C^n . We recall the necessary notions of the stratification which is induced by Whitney and Thom. For further details, see [10, 7, 3]. Let S be a family of subsets of V such that V is covered disjointly by elements of S. S is called a Whitney stratification if the following conditions are satisfied.

(i) (*D*-strictness) Each element M of S (which is called a stratum) is a connected smooth analytic variety such that \overline{M} and $\overline{M}-M$ are closed analytic varieties in D. Here \overline{M} is the closure of M in D.

(ii) (Frontier property) Let M and N be strata of S and assume that $M \neq N$ and $M \cap \overline{N} \neq \phi$. Then $M \subset \overline{N} - N$.

We recall the Whitney *b*-condition for a Whitney stratification S. Let (N, M) be a pair of strata of S with $\overline{N} \supset M$ and let p be a point of M. Let p_i and q_i be sequences on N and M respectively. We assume that

(2.1) $p_i \to p, \quad q_i \to p, \quad T_{p_i} N \to \tau \quad \text{and} \quad [p_i - q_i] \to \lambda.$

Here the arrows imply the convergence in the respective spaces and [v] is the complex line generated by v. Thus $\tau \in G(r, n)$ $(r=\dim N)$ and $\lambda \in G(1, n) = P^{n-1}$ where G(r, n) is the Grassmannian manifold of r-planes in C^n . We say that (N, M) satisfies Whitney b-condition at p if $\lambda \in \tau$ for any such sequences. When each pair (N, M) with $M \subset \overline{N}$ satisfies the Whitney b-condition at any point p

442

of M, we call S a *b*-regular Whitney stratification. The following proposition is a direct consequence of the Curve Selection Lemma (§3 of [4] or [1]) and Theorem 17.5 of [10].

PROPOSITION (2.2). Let p_i and q_i be as in (2.1). Then there are analytic curves p(t) and q(t) defined on the interval $(-\varepsilon, \varepsilon)$ $(\varepsilon > 0)$ such that

- (i) p(0)=q(0)=p and $p(t)\in N$ for $t\neq 0$ and $q(t)\in M$.
- (ii) $T_{p(t)}N \rightarrow \tau$ and $[p(t)-q(t)] \rightarrow \lambda$.

It is known that the *b*-condition for analytic varieties follows from the ratio condition (R) by [2, 9]. There is also a weaker regularity condition which is called *Whitney a-condition* but this condition results from *b*-condition ([3]).

3. Non-degenerate hypersurface and primary boundary components.

Let $f(z) = \sum_{\nu} a_{\nu} z^{\nu}$ be an analytic function of *n* variables which is defined in a neighborhood of the origin. The Newton polyhedron $\Gamma_+(f)$ is the convex hull of the union of $\{\nu + \mathbb{R}^n_+\}$ for ν such that $a_{\nu} \neq 0$. The Newton boundary $\Gamma(f)$ is the union of the compact faces of the Newton polyhedron. We assume that the Newton boundary $\Gamma(f)$ is non-degenerate. As we are mainly interested in non-isolated singularities, we also use the notation $\partial \Gamma_+(f)$ which is the union of the boundaries of $\Gamma_+(f)$ which are not necessarily compact. The inclusion $\Gamma(f) \subset \partial \Gamma_+(f)$ is obvious by the definition.

Let Σ^* be a fixed unimodular simplicial subdivision which is compatible with the dual Newton diagrams $\{\Gamma^*(f)\}$ and let $\hat{\pi}: X \to C^n$ be the associated modification map. See [8] and [5] for the definition. Let V_{pr} be the closure of V^* and let \tilde{V} be the proper transform of V_{pr} by $\hat{\pi}$. Let $\pi: \tilde{V} \to V_{pr}$ be the restriction of $\hat{\pi}$ to \tilde{V} . For finite vertices Q_1, \dots, Q_s of Σ^* , we define a subvariety $E(Q_1, \dots, Q_s)$ of \tilde{V} by $E(Q_1) \cap \dots \cap E(Q_s)$ and let $E(Q_1, \dots, Q_s)^* =$ $E(Q_1, \dots, Q_s) - \bigcup_{P \neq Q_i} E(P)$ where E(P) is the divisor of \tilde{V} which corresponds to P. Note that $E(Q_1, \dots, Q_s)^*$ is non-empty only if Q_1, \dots, Q_s are vertices of an (n-1)-simplex of Σ^* . The collection of $E(Q_1, \dots, Q_s)^*$ gives a regular stratification \tilde{S} of \tilde{V} . Let $\sigma = (P_1, \dots, P_n)$. Then we have

$$(3.1) \qquad \qquad \widetilde{V} \cap \boldsymbol{C}_{\sigma}^{n} = \{ \boldsymbol{y}_{\sigma} \in \boldsymbol{C}_{\sigma}^{n} ; f_{\sigma}(\boldsymbol{y}_{\sigma}) = 0 \}$$

where $f_{\sigma}(\boldsymbol{y}_{\sigma}) = f(\hat{\pi}(\boldsymbol{y}_{\sigma})) / \prod_{j=1}^{n} y_{\sigma_{j}}^{d(p_{j};f)}$.

THEOREM (3.2). \tilde{V} is a smooth complex manifold and $\pi: \tilde{V} \to V_{pr}$ is a proper modification of V_{pr} in the neighborhood of the origin.

The assertion is well known if the origin is an isolated singular point of V_{pr} . The general case can be proved similarly. Let I be a subset of $\{1, \dots, n\}$. We define the coordinate subspace C^{I} and C^{*I} by $C^{I} = \{z = (z_{1}, \dots, z_{n}); z_{j} = 0$ if

 $j \notin I$ and $C^{*I} = \{z \in C^n; z_j = 0 \text{ iff } j \notin I\}$ respectively. For simplicity we usually write C^{*n} instead of C^{*I} if $I = \{1, \dots, n\}$. We define the *I*-proper boundary V_{pr}^{*I} of V in C^{*I} by $V_{pr} \cap C^{*I}$. If I is empty, $V_{pr}^{*I} = \{0\}$ by definition. Then we claim:

LEMMA (3.3). The I-proper boundary V_{pr}^{*I} of V is the union of the I-primary boundary components.

Proof. Let $\pi: \tilde{V} \to V_{pr}$ be the resolution of V_{pr} constructed in §3. Let \tilde{V}^{*I} be the union of the strata $E(P_1, \dots, P_s)^*$ of the stratification \tilde{S} of \tilde{V} such that $\pi(E(P_1, \dots, P_s)^*) \subset \mathbb{C}^{*I}$. As π is a proper surjective mapping, it is clear that $\pi(\tilde{V}^{*I}) = V^{*I}$. Let $E(P_1, \dots, P_s)^*$ be such a stratum and let $\sigma = (P_1, \dots, P_n)$ be an (n-1)-simplex of Σ^* . Let $P = P_1 + \dots + P_s$. Then P is a positive dual vector with I(P) = I. We may assume that $I = \{m+1, \dots, n\}$ $(m \ge s)$ for simplicity and $\sigma = (p_{ij})$ has the following form.

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$$

where A and B are unimodular matrixes of $m \times m$ and $(n-m) \times (n-m)$ respectively. Then Lemma (3.3) follows from the following.

SUBLEMMA (3.4). The restriction of π to $E(P_1, \dots, P_s)^*$ is a submersion onto $\partial V^*(P)$.

Proof. Let \boldsymbol{y} be an arbitrary point of $E(P_1, \dots, P_s)^*$. Recall that $E(P_1, \dots, P_s)^*$ is defined by

$$y_{\sigma_1} = \cdots = y_{\sigma_s} = h(\boldsymbol{y}_{\sigma}) = 0$$

where h is characterized by

(3.5)
$$h(\boldsymbol{y}_{\sigma})\prod_{i=1}^{n} \mathcal{Y}_{\sigma_{i}}^{d(f;P_{i})} = f_{P}(\hat{\pi}(\boldsymbol{y}_{\sigma})).$$

Note that $\Delta(P) = \bigwedge_{i=1}^{\bullet} \Delta(P_i)$. Thus $h(\boldsymbol{y}_{\sigma})$ does not contain the variables $y_{\sigma 1}, \dots, y_{\sigma s}$. Let $\boldsymbol{z} = \hat{\pi}(\boldsymbol{y}_{\sigma})$. Then we have $\boldsymbol{z}_I = (\boldsymbol{y}_I)^B$ i.e.,

(3.6)
$$z_j = \prod_{i=m+1}^n y_{\sigma i}^{p_{ji}} \quad (j=m+1, \dots, n).$$

In particular, $\{z_j\}$ $(m+1 \le j \le n)$ depend only on $y_{\sigma(m+1),\dots,} y_{\sigma n}$. Let E^* be the subvariety of C_{σ}^{*n} defined by $h(y_{\sigma})=0$. E^* is nothing but the product of $C^{**} \times E(P_1, \dots, P_s)^*$. Let $V^*(P)$ be the subvariety of the base space C^{*n} which is defined by

$$V^{*}(P) = \{ z \in C^{*n} ; f_{P}(z) = 0 \}.$$

It is clear that $\hat{\pi}: E^* \to V^*(P)$ is an isomorphism by (3.5). Let $q_I: V^*(P) \to \partial V^*(P)$

444

and $p: E^* \rightarrow E(P_1, \dots, P_s)^*$ be the canonical projections. We have the commutative diagram:

Let ϕ be the composition $q \circ \hat{\pi} : E^* \rightarrow \partial V^*(P)$. By the commutativity of the diagram, $\phi = \pi \circ p$. By the assumption PND1 and PND2, ϕ is a submersion. As $\phi = \pi \circ p$, this implies that $\pi : E(P_1, \dots, P_s)^* \rightarrow \partial V^*(P)$ is a submersion. This completes the proofs of Sublemma (3.4) and Lemma (3.3).

Remark (3.7). Assume that $f(z_I)$ is not identically zero. Then V^{*I} is defined by $f(z_I)=0$. In this case, $f_P(z)=f(z_I)$ and for any P with I(P)=I. Thus V^{*I} itself is the unique I-primary boundary component. In this case, V is non-singular on V^{*I} .

4. Key Lemma.

We first consider the following situation. Let $p(t)=(p_1(t), \dots, p_n(t))$ be an analytic curve defined in the interval (-1, 1) with the Taylor expansion $p_i(t)=a_it^{b_i}+(higher terms)$. We assume that

(i) $f(p(t)) \equiv 0$,

(ii) $a_1 \neq 0$ for each $j=1, \dots, n$ and $b_i=0$ if and only if $i \in I$.

Let $B = {}^{t}(b_1, \dots, b_n)$, $a = (a_1, \dots, a_n)$. Let $b_{\min} = minimum \{b_j; j \notin I\}$ and $J_{\min} = \{j; b_j = b_{\min}\}$. Let q(t) be an analytic curve in $V^{*I}(B)$ with q(0) = p(0). We assume that

(iii) $T_{p(t)}V^* \rightarrow \tau$ and $[p(t)-q(t)] \rightarrow \lambda$.

Then we assert

Key Lemma (4.1). λ is contained in τ .

Proof. It is well-known that the tangent space $T_z V^*$ is characterized by $df(\mathbf{z})^{\perp} = \{ \mathbf{v} \in T_z C^n ; df(\mathbf{z})(\mathbf{v}) = 0 \}$. Let us consider the limit of df(p(t)). For a real analytic function k(t), we define an integer ord(k(t)) by the order of k(t) at t=0. Similarly we define the order of a vector-valued analytic function by the minimum of the order of the coordinate functions. Thus ord(df(p(t))) is the minimum of $ord(\partial f/\partial z_i(p(t)))$ for $i=1, \dots, n$. Let m=ord(df(p(t))) and let $\vec{r} = df(p(t))/t^m|_{t=0}$. By the PND1-(b)-condition, $m \leq d(B; f)$. Let $\vec{r} = \sum_{i=1}^n \gamma_i dz_i$. Then we have an obvious equality $\tau = \vec{r}^{\perp}$. Considering the leading term of (i), we obtain $f_B(\mathbf{a}) = 0$.

Case (a). Assume that $f_B(z)$ is not essentially of z_I -variables. Then $V^{*I}(B) = C^{*I}$ by the definition. Then by the PND2-condition, there exists an index $j \ (j \notin I)$ such that $\partial f_B / \partial z_j(a) \neq 0$ if $\sum_{i \in I} |a_i|^2$ is small enough. Thus we have $m \leq d(B; f) - b_{\min}$. Assume that $m = d(B; f) - b_{\min}$. Then we must have

(4.2)
$$\frac{\partial f_B}{\partial z_j}(a) = 0 \text{ for } j \notin J_{\min} \cup I \text{ and } \gamma_j = \frac{\partial f_B}{\partial z_j}(a) \text{ for } j \in J_{\min}.$$

If $m < d(B; f) - b_{\min}$, we have that

(4.3)
$$\gamma_j=0$$
 for $j\in J_{\min}\cup I$.

Note that $\gamma_i=0$ for $i \in I$ in both cases. This implies that $\vec{\gamma} | C^I=0$.

Now we consider the line [p(t)-q(t)]. Let k=ord(p(t)-q(t)). As $q(t)\in \mathbb{C}^{*I}$, it is easy to see that $1 \leq k \leq b_{\min}$. Let $\lambda = (p(t)-q(t))/t^k|_{t=0}$. By the definition of λ , we have that $[\lambda] = \lambda$. If $k < b_{\min}$, λ is a vector in \mathbb{C}^I . In this case, it is clear that $\gamma(\lambda)=0$. Assume that $k=b_{\min}$. Then $\lambda_j=a_j$ if $j\in J_{\min}$ and $\lambda_j=0$ if $j\notin J_{\min}\cup I$. We consider the equality

$$0 \equiv \sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(p(t)) \frac{d p_{j}(t)}{dt}$$
$$\equiv \left[\sum_{j \notin I} \frac{\partial f_{B}}{\partial z_{j}}(a) b_{j} a_{j} \right] t^{d(B;f)-1} + (higher \ terms).$$

Thus we obtain the equality

(4.4)
$$\sum_{j \notin I} \frac{\partial f_B}{\partial z_j}(a) b_j a_j = 0.$$

If $m < d(B; f) - b_{\min}$, $\vec{\gamma}(\vec{\lambda}) = 0$ is immediate from (4.3). Assume that $m = d(B; f) - b_{\min}$. By (4.2) and (4.4), we can see easily that $\vec{\gamma}(\vec{\lambda}) = 0$. Here $\vec{\lambda}$ is identified with the tangent vector $\sum_{j=1}^{n} \lambda_j \frac{\partial}{\partial z_j}$ at p(0).

Case (b). Assume that $f_B(z)$ is essentially of z_I -variables. Let $f_B(z) = z^L f_B^e(z)$ where z^L is a monomial in the variables $\{z_j; j \notin I\}$. Then $V^{*I}(B) = \{f_B^e(z_I) = 0\}$ and $ord(f_B(p(t))) = ord(p(t)^L) = d(B; f)$. We have two equalities:

(4.5)
$$\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(p(t)) \frac{dp_{j}(t)}{dt} \equiv 0 \text{ and } \sum_{i \in I} \frac{\partial f_{B}^{e}}{\partial z_{i}}(q(t)) \frac{dq_{i}(t)}{dt} \equiv 0.$$

Let $\beta = ord(f_B^e(p(t)))$ and $\delta = ord(\hat{f}(p(t)))$. First we assume that PND1-(*a*)-(*ii*) holds. As $f(p(t)) = f_B(p(t)) + \hat{f}(p(t)) \equiv 0$, we have

(4.6)
$$\beta + d(B; f) = \delta \ge d(B; \hat{f})$$

where $\hat{f}_B(z)$ is the secondary face function of f with respect to the weight B. The equality holds if and only if $\hat{f}_B(a) \neq 0$. We consider the equality which follows immediately from (4.5).

(4.7)
$$\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(p(t)) \frac{d}{dt} \Big[p_{j}(t) - q_{j}(t) \Big] + \sum_{i \in I} \Big[\frac{\partial f}{\partial z_{i}}(p(t)) - \frac{\partial f_{B}}{\partial z_{i}}(p(t)) \Big] \frac{dq_{i}(t)}{dt} + \sum_{i \in I} p(t)^{L} \Big[\frac{\partial f_{B}^{e}}{\partial z_{i}}(p(t)) - \frac{\partial f_{B}^{e}}{\partial z_{i}}(q(t)) \Big] \frac{dq_{i}(t)}{dt} \equiv 0.$$

By the assumption, $p_j(t) \equiv q_j(t) \mod (t^k)$ for any j. This implies that $ord\left[\frac{\partial f_B^e}{\partial z_i}(p(t)) - \frac{\partial f_B^e}{\partial z_i}(q(t))\right] \geq k$. Thus the order of the last sum is at least d(B; f) + k. On the other hand, we have

$$ord\Big(\frac{\partial f}{\partial z_{\imath}}(p(t)) - \frac{\partial f_{B}}{\partial z_{\imath}}(p(t))\Big) \ge d(B\,;\, \hat{f}) \ge d(B\,;\, f) + b_{\min} \quad (i \in I)$$

by PND1-(a)-(ii) where $\hat{f}=f-f_B$. As $k \leq b_{\min}$, the order of the second sum in (4.7) is also at least d(B; f)+k. The order of the first sum in (4.7) is (at least) m+k-1. As $m \leq d(B; f)$ by the PND1-(b)-condition and $k \leq b_{\min}$, the coefficient of t^{m+k-1} of (4.7) is equal to $\vec{\gamma}(\vec{\lambda})$. Thus we conclude that $\vec{\gamma}(\vec{\lambda})=0$. Assume (a)-(i): d(B; f)=0. We consider the following equality instead of (4.7).

$$\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}}(p(t)) \frac{d}{dt} \Big[p_{j}(t) - q_{j}(t) \Big] + \\\sum_{i \in I} \Big[\frac{\partial f}{\partial z_{i}}(p(t)) - \frac{\partial f}{\partial z_{i}}(q(t)) \Big] \frac{dq_{i}(t)}{dt} \equiv 0$$

Here we have used the equality $\frac{\partial f}{\partial z_i}(q(t)) = \frac{\partial f_B}{\partial z_i}(q(t))$. By the PND1-(b)-condition, m=0. Thus by a similar argument, we have $\vec{r}(\vec{\lambda})=0$. Note that m=d(B; f) if the PND1-(a)-condition is satisfied.

Assume that PND1-(a)-(iii) holds. We may assume that $d(B; \hat{f}) < d(B; f) + b_{\min}$. We consider (4.7) again. The order of the last sum is at least d(B; f) + k. We can write $f_B^e(p(t)) = \lambda t^{\theta} + (higher \ terms)$ by (4.6) where $\theta = d(B; \hat{f}) - d(B; f)$. Note that $\theta \leq \beta$. As $f(p(t)) \equiv 0$, we have that $\hat{f}_B(a) + \lambda a^{\kappa} = 0$. Thus we have

$$\frac{\partial f}{\partial z_j}(p(t)) = \eta_j t^{d(B;\hat{f}) - b_j} + (higher \ terms) \qquad \text{for} \ j \notin I$$

where $\eta_{j} = \frac{\partial \hat{f}_{B}}{\partial z_{j}}(a) + \lambda k_{j}a^{K}/a_{j} = \left(a_{j}\frac{\partial \hat{f}_{B}}{\partial z_{j}}(a) - k_{j}\hat{f}_{B}(a)\right)/a_{j}$. As $f_{B}(a) = 0$, there exists an index $j_{o} \notin I$ such that $\eta_{j_{o}} \neq 0$ by the PND1-(a)-(iii) condition. Thus the order

of the first term of (4.7) is at most $d(B; \hat{f}) - b_{j_0} + k - 1$. The order of the second term is at least $d(B; \hat{f})$. As $k < b_{\min}$, we have the inequality: $d(B; \hat{f}) - b_{j_0} + k - 1 < d(B; \hat{f})$. By the assumption that $d(B; \hat{f}) < d(B; f) + b_{\min}$, we have

also the inequality: $d(B; \hat{f}) - b_{j_0} + k - 1 < d(B; f) + k$. Therefore we conclude as before that $\vec{\gamma}(\vec{\lambda})=0$. This completes the proof of Lemma (4.1).

5. Proof of Main Theorem.

In this section, we will prove Main Theorem in §1. Let Y and Z be a pair of strata of S such that $\overline{Y} \cap Z \neq \phi$. We assume that $Y \in S(J)$ and $Z \in S(K)$. Then we must have $J \supset K$. If J = K, the b-regularity is obvious as V is good. Thus we may assume that $J \neq K$. If Y is an open dense stratum in C^{*J} , the b-regularity for (Y, Z) is again obvious. Thus we assume that $\overline{Y} \neq C^J$. Let p(t) and q(t) be real analytic curves defined on (-1, 1) such that (i) $p(0)=q(0) \in Z$. (ii) $p(t) \in Y$ for t > 0. (iii) $q(t) \in Z$ for $t \ge 0$. Assume that the tangent space $T_{p(t)}Y$ converges to τ and the line [p(t)-q(t)] converges to λ . Y is a non-degenerate hypersurface defined by $f_P^*(z_J)=0$ for some P with I(P)=J. Assume that $p_j(t)=a_jt^{b_j}+(higher terms)$ for $j \in J$. For brevity's sake, we assume that $J=\{1, \dots, m\}$. Let $B={}^t(b_1, \dots, b_m)$ and $a=(a_1, \dots, a_m)$. As $p(0)=q(0)=a_I$ $\in Z, K=I(P)$. By looking at the leading terms of the equality $h(p(t))\equiv 0$, we can see that a_K belongs to the K-primary component $Y^{*K}(B)$. Let R=P+rQfor a sufficiently small r>0. Then it is an easy linear algebra to see the following.

(i) $(f_P)_B = f_R$. (ii) The secondary face function \hat{f}_R of f with respect to R is equal to the secondary face function of f_P with respect to B.

Thus the PND-condition for f implies the PND-condition for f_P . Now we use Lemma (4.1) to obtain the regularity for the pair (Y, Z). This completes the proof of Main Theorem.

Example (5.1). Let $f(z)=(z_1z_2)^2(z_3^5+z_4^5)+(z_3z_4)^3(z_1^5+z_2^5)$. Then the singular locus of V is the union of the two dimensional coordinate planes C^I for |I|=2. Let $I=\{1, 2\}$. Then by an easy calculation, we have a proper primary boundary components defined by $C: z_1^5+z_2^5=0$. C consists of five lines, say C_1, \dots, C_5 . Thus $S(I)=\{C^{*I}-C, C_1, \dots, C_5\}$. The same is true for $I=\{3, 4\}$. Thus the stratification of V consists of the following strata: V^* , C^{*I} $(I \neq \{1, 2\}, \{3, 4\})$, $C^{*(1,2)}-C$, $C^{*(3,4)}-D$, C_i , D_i $(i=1, \dots, 5)$, $C^{(j)}$ $(j=1, \dots, 4)$, $\{0\}$ where $D=\bigcup_{i=1}^5 D_i$ $=\{z_5^3+z_5^4=0\}$.

References

- [1] H. HAMM, Lokale topologische Eigenschaften komplexer Räume, Math. Ann., 191 (1971), 235-252.
- [2] J.C. Kuo, The ratio test for analytic Whitney stratifications, in Proceedings of Liverpool singularities symposium, Springer Lecture Note, 192 (1971), 141-149.
- [3] J. MATHER, Stratifications and Mappings, in Dynamical Systems, ed. Peixoto (1973), 195-232.

- [4] J. MILNOR, Singular Points of Complex Hypersurface, Annals Math. Studies, 61, Princeton Univ. Press, Princeton, 1968.
- [5] M. OKA, On the Resolution of Hypersurface Singularities, Advanced Study in Pure Mathematics, 8 (1986), 405-436.
- [6] M. OKA, Canonical stratification of complete intersection varieties, preprint, 1988.
- [7] R. THOM, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1969), 240-284.
- [8] A.N. VARCHENKO, Zeta-Function of Monodromy and Newton's Diagram, Inventiones Math., 37 (1976), 253-262.
- [9] J. P. VERDIER, Stratifications de Whitney et théorème de Bertini-Sard, Inventiones Math, 36 (1976), 295-312.
- [10] H. WHITNEY, Tangents to analytic variety, Ann. Math., 81 (1964), 496-546.

Department of Mathematics Tokyo Institute of Technology