ON THE STRATIFICATION OF GOOD HYPERSURFACES

BY MUTSUO OKA

1. Statement of results.

Let $f(z)$ be a germ of an analytic function defined in a neighborhood of the origin and let $f(z) = \sum a_{\nu} z^{\nu}$ be the Taylor expansion. We consider the germ of *V* the hypersurface $V=f^{-1}(0)$. We assume that f has a non-degenerate Newton boundary $\Gamma(f)$. The purpose of this paper is to construct a canonical Whitney b -regular stratification S of V which depends only on the Newton boundaries *{dΓ(f)}.* Under the non-degeneracy condition of the Newton boundary, the singular locus of V is the union of several coordinate subspaces $C^{\ast I}.$ However the b-regularity for (V^*, C^{*}) does not hold in general and we have to know the locus where the regularity fails. For this purpose, we introduce the con cept of the *I-primary boundary components* which plays an important role for the stratification of *V*. Its rough description is as follows. Let $P = \pmb{\psi}_1, \dots, \pmb{\psi}_n$ be a positive rational dual vector and let $I(P) = \{1 \le i \le n; p_i = 0\}$. The face function $f_p(z)$ is defined by the partial sum $\sum' a_{\nu} z^{\nu}$ for ν such that $\nu \in \Delta(P)$. Here $\Delta(P)$ is the face of $\Gamma(f)$ where P takes its minimal value $d(P; f)$. We use the notations of [5]. Assume that $f_P(z) = z^L g(z_{I(P)})$ where $z_{I(P)}$ is the projection of *z* into the affine coordinate space $C^{I(P)}$. In this case, we say that f_P is *essentially of* $z_{I(P)}$ *-variables* and we denote $g(z_{I(P)})$ by $f_p(z_{I(P)})$. We consider the variety $V^*(P)$ and $\partial V^*(P)$ as follows. $V^*(P) = \{z \in C^{*n} : f_P(z) = 0\}$ and $\partial V^*(P) = \{z_{I(P)} \in C^{*I(P)}; f_p^e(z_{I(P)}) = 0\}.$ If f_P is not essensially of $z_{I(P)}$ -variables, $\partial V^*(P)$ is $C^{*I(P)}$ by definition. We call $\partial V^*(P)$ a *I-primary boundary component with respect to P if V*(P)* is not empty. Let V_{pr} be the closure of V^* in C^n and let $V^{*I} = V \cap \mathbb{C}^{*I}$ and let $V^{*I}_{pr} = V_{pr} \cap \mathbb{C}^{*I}$. Then V^{*I}_{pr} is a union of *I*-primary boundary components (Lemma (3.3)). We say that the hypersurface $V = f^{-1}(0)$ is good if for each subset I of $\{1, \dots, n\}$ with $|I| > 2$, there is at most one f_P among ${f_P}$; $I(P)=I$ } such that f_P gives a proper *I*-primary boundary component. Here *P* may not unique. We assume that *V* is a good hypersurface hereafter. If *V* has a proper primary boundary component, we denote this component by ∂V_{pr}^{*l} . If *V* does not have proper primary boundary component, $\partial V_{pr}^{*l} = \phi$ by definition. Let P be a positive dual vector and let $I = I(P)$. We say that V satisfies *the primary non-degeneracy condition* or simply *the PND-condition* if the following conditions are satisfied for any *P* such that $V^*(P) \neq \phi$. Let p_{mn}

Received May 30, 1988

 $=$ *minimum* $\{p_j; j \notin I\}.$

(PND1) Assume that f_P is essentially of z_I -variables and let $f = f_P + f$. Write $f_P(z) = z^K f_P^e(z_I)$ where $K = (k_1, \dots, k_n)$.

(a) (i)
$$
d(P; f)=0
$$
 or (ii) $d(P; f) > 0$ and $d(P; \hat{f}) \geq d(P; f) + p_{\min}$ or (iii) the variety
 $\left\{z \in C^{*n}; f_P(z)=0, z_j \frac{\partial \hat{f}_P}{\partial z_j}(z) - k_j \hat{f}_P(z)=0 \text{ for } j \notin I\right\}$ is empty.

(b) $\partial V^*(P)$ is a non-degenerate hypersurface in C^{*I} in an ε -ball B^I_{ε} for some ε .

(PND2) Assume that f_P is not essentially of z_I -variables. For each $C^{*I} \cap B_s^I$, the fiber $q_I^{-1}(z_I)$ is a non-degenerate hypersurface in $C^{I^c} \times \{z_I\}$ where I^c is the complement of *I* in $\{1, \dots, n\}.$

MAIN THEOREM. *We assume that V is a good hypersurface which satisfies* the PND-condition. Let $\mathcal{S}(I) = \{V^{*I} - \partial V^{*I}_{pr}, \partial V^{*I}_{pr}\}$ and let $\mathcal{S} = \bigcup \mathcal{S}(I)$. Then $\mathcal S$ is *a regular stratification of V.*

For the stratification of the hypersurfaces which is not good and the strati fication of the complete intersection varieties, see [6],

2. **Stratifications.**

Let *V* be an analytic variety in an open set *D* of *Cⁿ .* We recall the necessary notions of the stratification which is induced by Whitney and Thom. For further details, see [10, 7, 3]. Let *S* be a family of subsets of *V* such that *V* is covered disjointly by elements of *S. S* is called *a Whitney stratification* if the following conditions are satisfied.

(i) *(D-strictness)* Each element *M* of *S* (which is called a *stratum)* is a connected smooth analytic variety such that \overline{M} and $\overline{M}-M$ are closed analytic varieties in *D*. Here \overline{M} is the closure of *M* in *D*.

(ii) *{Frontier property)* Let *M* and *N* be strata of *S* and assume that $M \neq N$ and $M \cap \overline{N} \neq \emptyset$. Then $M \subset \overline{N} - N$.

We recall the Whitney *b*-condition for a Whitney stratification *S*. Let *(N, M)* be a pair of strata of *S* with $\overline{N} \supset M$ and let *p* be a point of M. Let p_i and q_i be sequences on N and M respectively. We assume that

(2.1)
$$
p_i \to p, \quad q_i \to p, \quad T_{p_i} N \to \tau \quad \text{and} \quad [p_i - q_i] \to \lambda.
$$

Here the arrows imply the convergence in the respective spaces and *[υ]* is the complex line generated by v . Thus $\tau{\in}G(r,\,n)$ $(r{=}\dim N)$ and $\lambda{\in}G(1,\,n){=}\boldsymbol{P}^{n-1}$ where $G(r, n)$ is the Grassmannian manifold of r-planes in \mathbb{C}^n . We say that (N, M) satisfies *Whitney b-condition* at p if $\lambda \in \tau$ for any such sequences. When each pair (N, M) with $M\subset \overline{N}$ satisfies the Whitney *b*-condition at any point *p*

of M, we call *S a b-regular Whitney stratification.* The following proposition is a direct consequence of the Curve Selection Lemma (§ 3 of $[4]$ or $[1]$) and Theorem 17.5 of [10].

PROPOSITION (2.2). *Let pi and q% be as in* (2.1). *Then there are analytic curves* $p(t)$ *and* $q(t)$ *defined on the interval* $(-\varepsilon, \varepsilon)$ $(\varepsilon > 0)$ *such that*

- (i) $p(0)=q(0)=p$ and $p(t)\in N$ for $t\neq0$ and $q(t)\in M$.
- (ii) $T_{p(t)}N\rightarrow\tau$ and $[p(t)-q(t)]\rightarrow\lambda$.

It is known that the b -condition for analytic varieties follows from the ratio condition (R) by $[2, 9]$. There is also a weaker regularity condition which is called *Whitney a-condition* but this condition results from *b*-condition ([3]).

3. Non-degenerate hypersurface and primary boundary components.

Let $f(z) = \sum a_\nu z^\nu$ be an analytic function of *n* variables which is defined in a neighborhood of the origin. The Newton polyhedron $\Gamma_+(f)$ is the convex hull of the union of $\{v+R_+^n\}$ for ν such that $a_{\nu}\neq 0$. The Newton boundary $\Gamma(f)$ is the union of the compact faces of the Newton polyhedron. We assume that the Newton boundary *Γ(f)* is non-degenerate. As we are mainly interested in non-isolated singularities, we also use the notation $\partial \Gamma_+(f)$ which is the union of the boundaries of *Γ+(f)* which are not necessarily compact. The inclusion $\Gamma(f) \subset \partial \Gamma_+(f)$ is obvious by the definition.

Let Σ^* be a fixed unimodular simplicial subdivision which is compatible with the dual Newton diagrams $\{ \Gamma^*(f) \}$ and let $\hat{\pi} : X \rightarrow C^n$ be the associated modification map. See [8] and [5] for the definition. Let *Vpr* be the closure of V^* and let \tilde{V} be the proper transform of V_{pr} by $\hat{\pi}$. Let $\pi : \tilde{V} \rightarrow V_{pr}$
be the restriction of $\hat{\pi}$ to \tilde{V} . For finite vertices Q_1, \dots, Q_s of Σ^* , we define a subvariety $E(Q_1, \cdots, Q_s)$ of \widetilde{V} by $E(Q_1) \cap \cdots \cap E(Q_s)$ and let $E(Q_1, \cdots, Q_s)^*$ $E(Q_1, \dots, Q_s) - \bigcup_{P \in Q_i} E(P)$ where $E(P)$ is the divisor of \tilde{V} which corresponds to P. Note that $E(Q_1, \cdots, Q_s)^*$ is non-empty only if Q_1, \cdots, Q_s are vertices of an $(n-1)$ -simplex of \sum^{∞} . The collection of $E(Q_1, \cdots, Q_s)^*$ gives a regular stration fication S of *V*. Let $\sigma = (P_1, \cdots, P_n)$. Then we have

$$
(3.1) \t\t\t\t\tilde{V} \cap C_{\sigma}^{n} = {\mathbf{y}_{\sigma} \in C_{\sigma}^{n} ; f_{\sigma}({\mathbf{y}_{\sigma}}) = 0}
$$

where $f_{\sigma}(\boldsymbol{y}_{\sigma})=f(\hat{\pi}(\boldsymbol{y}_{\sigma}))/\prod_{j=1}^{n}y_{\sigma_{j}}^{d(p_{j};f)}$.

THEOREM (3.2). \tilde{V} is a smooth complex manifold and π : $\tilde{V} \rightarrow V_{pr}$ is a proper *modification of Vpr in the neighborhood of the origin.*

The assertion is well known if the origin is an isolated singular point of V_{pr} . The general case can be proved similarly. Let *I* be a subset of $\{1, \dots, n\}$. We define the coordinate subspace C^I and C^{*I} by $C^I {=} {\{z {=} (z_1, \cdots, z_n); z_j {=} 0\}}$ if

and $C^{*I} = \{z{\in}C^n\, ; \, z_j{=}0\, \text{ iff }\, j{\notin}I\}$ respectively. For simplicity we usually write C^{*n} instead of C^{*l} if $I = \{1, \dots, n\}$. We define the *I-proper boundary* V_{pr}^{*I} of *V* in C^{*I} by $V_{pr} \cap C^{*I}$. If *I* is empty, $V_{pr}^{*I} = \{0\}$ by definition. Then we claim:

LEMMA (3.3). The I-proper boundary V_{pr}^{*l} of V is the union of the I-primary *boundary components.*

Proof. Let $\pi: \tilde{V} \rightarrow V_{pr}$ be the resolution of V_{pr} constructed in § 3. Let \tilde{V}^{*I} be the union of the strata $E(P_1, \cdots, P_s)^*$ of the stratification \tilde{S} of \tilde{V} such that $\pi(E(P_1, \cdots, P_s)^*)\subset \mathbb{C}^{*I}$. As π is a proper surjective mapping, it is clear that $\pi(\widetilde{V}^{*I}) = V^{*I}$. Let $E(P_1, \,\cdots,\, P_s)^*$ be such a stratum and let σ =($P_1, \,\cdots, \, P_n$) be an $(n-1)$ -simplex of \sum^* . Let $P = P_1 + \cdots + P_s$. Then P is a positive dual vector with $I(P)=I$. We may assume that $I=\{m+1, \dots, n\}$ $(m\geq s)$ for simplicity and $\sigma = (p_{ij})$ has the following form.

$$
\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}
$$

where A and B are unimodular matrixes of $m \times m$ and $(n-m) \times (n-m)$ respectively. Then Lemma (3.3) follows from the following.

SUBLEMMA (3.4). *The restriction of* π to $E(P_1, \dots, P_s)^*$ is a submersion onto *dV*(P).*

Proof. Let **y** be an arbitrary point of $E(P_1, \dots, P_s)^*$. Recall that $E(P_1, \dots, P_s)^*$ \cdots , P_s)* is defined by

$$
y_{\sigma 1} = \dots = y_{\sigma s} = h(\boldsymbol{y}_{\sigma}) = 0
$$

where *h* is characterized by

(3.5)
$$
h(\boldsymbol{y}_{\sigma}) \prod_{i=1}^{n} y_{\sigma i}^{\alpha(i) P_i} f_P(\hat{\pi}(\boldsymbol{y}_{\sigma})).
$$

Note that $\Delta(P) = \bigcap_{i=1}^n \Delta(P_i)$. Thus $h(\mathbf{y}_\sigma)$ does not contain the variables $y_{\sigma 1}, \dots, y_{\sigma s}$. Let $z = \hat{\pi}(\boldsymbol{y}_\sigma)$. Then we have $z_I = (\boldsymbol{y}_I)^B$ i.e.,

(3.6)
$$
z_j = \prod_{i=m+1}^n y_{\sigma i}^{p_{ji}} \quad (j = m+1, \cdots, n).
$$

In particular, $\{z_j\}$ $(m+1 \leq j \leq n)$ depend only on $y_{\sigma(m+1),...,y_{\sigma n}}$. Let E^* be the subvariety of C^{*n}_{σ} defined by $h(\bm{y}_{\sigma})=0$. E^* is nothing but the product of $C^{**}\times$ $E(P_1, \dots, P_s)^*$. Let $V^*(P)$ be the subvariety of the base space C^{*n} which is defined by

$$
V^*(P) = \{ z \in C^{*n} \; ; \; f_P(z) = 0 \}.
$$

It is clear that $\hat{\pi}: E^* {\rightarrow} V^*(P)$ is an isomorphism by (3.5). Let $q_I : V^*(P) {\rightarrow} \partial V^*(P)$

and $p: E^* \rightarrow E(P_1, \cdots, P_s)^*$ be the canonical projections. We have the commutative diagram:

Let ϕ be the composition $q \circ \hat{\pi}: E^* \to \partial V^*(P)$. By the commutativity of the diagram, $\phi = \pi \circ \rho$. By the assumption PND1 and PND2, ϕ is a submersion. As $\phi = \pi \cdot p$, this implies that $\pi : E(P_1, \dots, P_s)^* \rightarrow \partial V^*(P)$ is a submersion. This completes the proofs of Sublemma (3.4) and Lemma (3.3).

Remark (3.7). Assume that $f(z_I)$ is not identically zero. Then V^{*I} is de fined by $f(z_1)=0$. In this case, $f_P(z)=f(z_1)$ and for any P with $I(P)=I$. Thus V^{*I} itself is the unique *I*-primary boundary component. In this case, V is non singular on V^{*I} .

4. Key Lemma.

We first consider the following situation. Let $p(t) = (p_1(t), \dots, p_n(t))$ be an analytic curve defined in the interval $(-1, 1)$ with the Taylor expansion $p_i(t)$ = $a_i t^{b_i} + (higher \ terms)$. We assume that

 (i) $f(p(t))\equiv 0$,

(ii) $a_j \neq 0$ for each $j=1, \dots, n$ and $b_i=0$ if and only if $i \in I$.

Let $B = {^t}(b_1, \cdots, b_n)$, $a = (a_1, \cdots, a_n)$. Let $b_{\text{min}} = \min_{m \in \{b_j\}} \{b_j; j \notin I\}$ and $J_{\min} = \{j; b_j = b_{\min}\}.$ Let $q(t)$ be an analytic curve in $V^{* I}(B)$ with $q(0) = p(0)$. We assume that

(iii) $T_{p(t)}V^* \rightarrow \tau$ and $[p(t)-q(t)] \rightarrow \lambda$.

Then we assert

KEY LEMMA (4.1). *λ is contained in τ.*

Proof. It is well-known that the tangent space T_zV^* is characterized by $df(z)^{\perp} = \{v \in T_z C^n; df(z)(v) = 0\}.$ Let us consider the limit of $df(p(t))$. For a real analytic function $k(t)$, we define an integer $ord(k(t))$ by the order of $k(t)$ at $t=0$. Similarly we define the order of a vector-valued analytic function by the minimum of the order of the coordinate functions. Thus $ord(df(p(t)))$ is the minimum of *ord*($\partial f/\partial z_i(p(t))$) for $i=1, \dots, n$. Let $m=ord(df(p(t)))$ and let \vec{r} $df(p(t))/t^m|_{t=0}$. By the PND1-(b)-condition, $m \leq d(B; f)$. Let $\vec{r} = \sum_{i=1}^{n} \gamma_i dz_i$. Then we have an obvious equality $\tau = \vec{\tau}^{\perp}$. Considering the leading term of (i), we obtain $f_B(\boldsymbol{a})=0$.

Case (a). Assume that $f_B(z)$ is not essentially of z_I -variables. Then $V^{*I}(B)$ $=C^{*I}$ by the definition. Then by the PND2-condition, there exists an index *j* ($j \notin I$) such that $\partial f_B / \partial z_j(a) \neq 0$ if $\sum_{i=1}^n |a_i|^2$ is small enough. Thus we have $m \leq d(B; f) - b_{\text{min}}$. Assume that $m = d(B; f) - b_{\text{min}}$. Then we must have

(4.2)
$$
\frac{\partial f_B}{\partial z_j}(\boldsymbol{a})=0 \text{ for } j \notin J_{\min} \cup I \text{ and } \gamma_j = \frac{\partial f_B}{\partial z_j}(\boldsymbol{a}) \text{ for } j \in J_{\min}.
$$

If $m < d(B; f) - b_{min}$, we have that

$$
\gamma_j=0 \quad \text{for} \quad j\in J_{\min}\cup I.
$$

Note that $\gamma_i=0$ for $i \in I$ in both cases. This implies that $\vec{\gamma} \mid C^I=0$.

Now we consider the line $[p(t)-q(t)]$. Let $k=ord(p(t)-q(t))$. As $q(t)\in \mathbb{C}^{*I}$, it is easy to see that $1 \leq k \leq b_{\text{min}}$. Let $\lambda = (p(t)-q(t))/t^k \vert_{t=0}$. By the definition of λ , we have that $[\lambda]=\lambda$. If $k**_{m_{\rm in}}, \lambda**$ is a vector in \mathbb{C}^{I} . In this case, it is clear that $\vec{r}(\vec{\lambda}) = 0$. Assume that $k = b_{\text{min}}$. Then $\lambda_j = a_j$ if $j \in J_{\text{min}}$ and $\lambda_j = 0$ if $j \notin J_{\text{min}} \cup I$. We consider the equality

$$
0 \equiv \sum_{j=1}^{n} \frac{\partial f}{\partial z_j} (\phi(t)) \frac{d \phi_j(t)}{dt}
$$

$$
\equiv \left[\sum_{j \notin I} \frac{\partial f_B}{\partial z_j} (\alpha) b_j a_j \right] t^{d(B;f)-1} + (higher \ terms).
$$

Thus we obtain the equality

$$
\sum_{j\neq I} \frac{\partial f_B}{\partial z_j}(\boldsymbol{a}) b_j a_j = 0.
$$

If $m < d(B; f) - b_{\min}$, $\vec{\gamma}(\vec{\lambda}) = 0$ is immediate from (4.3). Assume that $m = d(B; f)$ $-b_{\text{min}}$. By (4.2) and (4.4), we can see easily that $\vec{\tau}(\vec{\lambda})=0$. Here $\vec{\lambda}$ is identified $\frac{n}{2}$, ∂ with the tangent vector $\sum_{j=1}^n \lambda_j \frac{d^j}{\partial z_j}$ at $p(0)$. ;=i *OZj*

Case (b). Assume that $f_B(z)$ is essentially of z_I -variables. Let $f_B(z) = z^L f_B^e(z)$ where z^L is a monomial in the variables $\{z_j; j \notin I\}$. Then $V^{*I}(B) = \{$ and $ord(f_B(p(t))) = ord(p(t)^L) = d(B; f)$. We have two equalities:

(4.5)
$$
\sum_{j=1}^{n} \frac{\partial f}{\partial z_j}(\rho(t)) \frac{d \rho_j(t)}{dt} \equiv 0 \text{ and } \sum_{i \in I} \frac{\partial f_B^e}{\partial z_i}(q(t)) \frac{d q_i(t)}{dt} \equiv 0.
$$

Let $\beta = ord(f_B^e(p(t)))$ and $\delta = ord(\hat{f}(p(t)))$. First we assume that PND1-(*a*)-(*ii*) holds. As $f(p(t)) = f_B(p(t)) + \hat{f}(p(t)) \equiv 0$, we have

$$
(4.6) \qquad \beta + d(B; f) = \delta \ge d(B; \hat{f})
$$

where $\hat{f}_B(z)$ is the secondary face function of f with respect to the weight B. The equality holds if and only if $\hat{f}_B(a) \neq 0$. We consider the equality which follows immediately from (4.5).

(4.7)
\n
$$
\sum_{j=1}^{n} \frac{\partial f}{\partial z_j} (p(t)) \frac{d}{dt} \left[p_j(t) - q_j(t) \right] +
$$
\n
$$
\sum_{i \in I} \left[\frac{\partial f}{\partial z_i} (p(t)) - \frac{\partial f_B}{\partial z_i} (p(t)) \right] \frac{dq_i(t)}{dt} +
$$
\n
$$
\sum_{i \in I} p(t)^L \left[\frac{\partial f_B}{\partial z_i} (p(t)) - \frac{\partial f_B}{\partial z_i} (q(t)) \right] \frac{dq_i(t)}{dt} \equiv 0.
$$

By the assumption, $p_j(t) \equiv q_j(t)$ modulo (t^k) for any j. This implies that $\left[\frac{\partial f^{\epsilon}_{B}}{\partial z_{n}}(p(t)) - \frac{\partial f^{\epsilon}_{B}}{\partial z_{n}}(q(t)) \right] \geq k$. Thus the order of the last sum is at least $d(B; f) + k$. On the other hand, we have

$$
\operatorname{ord}\Bigl(\frac{\partial f}{\partial z_i}(\mathit{p}(t))-\frac{\partial f_B}{\partial z_i}(\mathit{p}(t))\Bigr)\!\geq\!d(B\,;\,\widehat{f})\!\geq\!d(B\,;\,f)\!+\!b_{\min}\quad\!(i\!\in\!I)
$$

by PND1-(*a*)-(*ii*) where $\hat{f} = f - f_B$. As $k \leq b_{\min}$, the order of the second sum in (4.7) is also at least $d(B; f) + k$. The order of the first sum in (4.7) is (at least) $m+k-1$. As $m \leq d(B;f)$ by the PND1-(b)-condition and $k \leq b_{\text{min}}$, the coefficient of t^{m+k-1} of (4.7) is equal to $\vec{\tau}(\vec{\lambda})$. Thus we conclude that $\vec{\tau}(\vec{\lambda})=0$. Assume (a)-(i): $d(B; f)=0$. We consider the following equality instead of (4.7).

$$
\sum_{j=1}^{n} \frac{\partial f}{\partial z_j} (p(t)) \frac{d}{dt} \left[p_j(t) - q_j(t) \right] +
$$
\n
$$
\sum_{i \in I} \left[\frac{\partial f}{\partial z_i} (p(t)) - \frac{\partial f}{\partial z_i} (q(t)) \right] \frac{dq_i(t)}{dt} \equiv 0
$$

Here we have used the equality $\frac{\partial f}{\partial z_1}(q(t))=\frac{\partial f_B}{\partial z_1}(q(t))$. By the PND1-(b)-condi*ozx όz^x* tion, $m=0$. Thus by a similar argument, we have $f(x)=0$. Note that $m=0$. $d(B; f)$ if the PND1-(a)-condition is satisfied.
Assume that PND1-(a)-(iii) holds. We may assume that $d(B; \hat{f}) < d(B; f)$

Assume that $P[\text{ND1}-(u)-(u)]$ holds. We may assume that $a(D; f) \leq a(D; f)$ $+\sigma_{\min}$, we consider (4.7) again. The order of the last sum is at least $u(D, f)$ *+k.* We can write $f'_{B}(p(t)) = \lambda t^{\theta} + (higher \ terms)$ by (4.6) where $\theta = d(B; \hat{f})$ *d(D, f).* Tote that *θ* ≥*β.* As $f(p(t))=0$, we have that $f(B(u)+\lambda u -0)$. Thus we have

$$
\frac{\partial f}{\partial z_j}(p(t)) = \eta_j t^{d(B;\hat{f}) - b_j} + (higher \ terms) \quad \text{for } j \notin I
$$

where $\eta_j = \frac{\partial f}{\partial z_j}(\boldsymbol{a}) + \lambda k_j \boldsymbol{a}^K / a_j = \left(a_j \frac{\partial f}{\partial z_j}(\boldsymbol{a}) - k_j \hat{f}_B(\boldsymbol{a})\right) / a_j$. As $f_B(\boldsymbol{a}) = 0$, there exists an index $j_0 \notin I$ such that $\eta_{j_0} \neq 0$ by the PNDI-(*a*)-(*iii*) condition. Thus the order

of the first term of (4.7) is at most $d(B; f)-b_{J_0}+k-1$. The order of the second term is at least $d(B; \hat{f})$. As $k < b_{\min}$, we have the inequality: $d(B; \hat{f})$ $-b_{j_0}+k-1 < d(B;f)$. By the assumption that $d(B;f) < d(B;f)+b_{\min}$, we have

also the inequality: $d(B; \hat{f}) - b_{J_0} + k - 1 < d(B; f) + k$. Therefore we conclude as before that $\vec{r}(\vec{\lambda})=0$. This completes the proof of Lemma (4.1).

5. **Proof of Main Theorem.**

In this section, we will prove Main Theorem in § 1. Let *Y* and *Z* be a pair of strata of *S* such that $\overline{Y} \cap Z \neq \emptyset$. We assume that $Y \in S(J)$ and $Z \in S(K)$. Then we must have $J\supset K$. If $J=K$, the *b*-regularity is obvious as *V* is good. Thus we may assume that $J \neq K$. If Y is an open dense stratum in C^{*J} , the *b*-regularity for (Y, Z) is again obvious. Thus we assume that $\overline{Y} \neq \mathbf{C}^J$. Let $p(t)$ and $q(t)$ be real analytic curves defined on $(-1, 1)$ such that (i) $p(0)=q(0)$ $\in \mathbb{Z}$. (ii) $p(t) \in Y$ for $t > 0$. (iii) $q(t) \in Z$ for $t \ge 0$. Assume that the tangent space $T_{p(t)}Y$ converges to τ and the line $\left[p(t)-q(t)\right]$ converges to λ . Y is a non-degenerate hypersurface defined by $f^e_P(z_J)=0$ for some P with $I(P)=J$. Assume that $p_j(t) = a_j t^{b_j} + (higher \ terms)$ for $j \in J$. For brevity's sake, we assume that $J = \{1, \dots, m\}$. Let $B = \{b_1, \dots, b_m\}$ and $a = (a_1, \dots, a_m)$. As $p(0) = q(0) = a_I$ $\in \mathbb{Z}$, $K=I(P)$. By looking at the leading terms of the equality $h(p(t))\equiv 0$, we can see that a_K belongs to the *K*-primary component $Y^{*K}(B)$. Let $R = P + rQ$ for a sufficiently small $r > 0$. Then it is an easy linear algebra to see the following.

(i) $(f_P)_B = f_R$. (ii) The secondary face function f_R of f with respect to R is equal to the secondary face function of *f^P* with respect to *B.*

Thus the PND-condition for f implies the PND-condition for f_P . Now we use Lemma (4.1) to obtain the regularity for the pair (Y, Z) . This completes the proof of Main Theorem.

Example (5.1). Let $f(z)=(z_1z_2)^2(z_3^5+z_4^5)+(z_3z_4)^2(z_1^5+z_2^5)$. Then the singular locus of V is the union of the two dimensional coordinate planes C^I for $|I|$ = 2. Let $I = \{1, 2\}$. Then by an easy calculation, we have a proper primary boundary components defined by $C: z_1^5+z_2^5=0$. C consists of five lines, say C_1, \dots, C_5 . Thus $S(I) = \{C^{*I} - C, C_1, \dots, C_5\}$. The same is true for $I = \{3, 4\}$. Thus the stratification of *V* consists of the following strata: V^* , C^{*I} $(I \neq \{1, 2\}, \{3, 4\})$, $C^{*(1,2)}-C$, $C^{*(3,4)}-D$, C_i , D_i ($i=1, \cdots, 5$), $C^{(j)}$ ($j=1, \cdots, 4$), $\{0\}$ where $D= \bigcup D$ $=\{z_3^5+z_4^5=0\}.$

REFERENCES

- [1] H. HAMM, Lokale topologische Eigenschaften komplexer Räume, Math. Ann., 191 (1971), 235-252.
- [2] J.C. Kuo, The ratio test for analytic Whitney stratifications, in Proceedings of Liverpool singularities symposium, Springer Lecture Note, 192 (1971), 141-149.
- [3] J. MATHER, Stratifications and Mappings, in Dynamical Systems, ed. Peixoto (1973), 195-232.
- **[4] J. MILNOR, Singular Points of Complex Hypersurface, Annals Math. Studies, 61, Princeton Univ. Press, Princeton, 1968.**
- **[5] M. OKA, On the Resolution of Hypersurface Singularities, Advanced Study in Pure Mathematics, 8 (1986), 405-436.**
- **[6] M. OKA, Canonical stratification of complete intersection varieties, preprint, 1988.**
- **[7] R. THOM, Ensembles et morphismes stratifies, Bull. Amer. Math. Soc., 75 (1969), 240-284.**
- **[8] A.N. VARCHENKO, Zeta-Funςtion of Monodromy and Newton's Diagram, Inven tiones Math., 37 (1976), 253-262.**
- **[9] J. P. VERDIER, Stratifications de Whitney et theoreme de Bertini-Sard, Inventiones Math, 36 (1976), 295-312.**
- **[10] H. WHITNEY, Tangents to analytic variety, Ann. Math., 81 (1964), 496-546.**

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY