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ON THE STRATIFICATION OF GOOD HYPERSURFACES

BY MUTSUO OKA

1. Statement of results.

Let f(z) be a germ of an analytic function defined in a neighborhood of the
origin and let f{z)—^avz

v be the Taylor expansion. We consider the germ of
V

the hypersurface V=f~\0). We assume that / has a non-degenerate Newton
boundary Γ(f). The purpose of this paper is to construct a canonical Whitney
^-regular stratification S of V which depends only on the Newton boundaries
{dΓ(f)}. Under the non-degeneracy condition of the Newton boundary, the
singular locus of V is the union of several coordinate subspaces C* J. However
the ^-regularity for (F*, C*7) does not hold in general and we have to know
the locus where the regularity fails. For this purpose, we introduce the con-
cept of the I-primary boundary components which plays an important role for the
stratification of V. Its rough description is as follows. Let P—\ply •••, pn) be
a positive rational dual vector and let I{P)—{l^i<n) pi—ΰ}. The face func-
tion fp(z) is defined by the partial sum Σ'avz* for v such that v^A(P). Here
Δ(P) is the face of Γ(f) where P takes its minimal value d(P; / ) . We use the
notations of [5]. Assume that fp{z)—zLg{zIiP^) where zICP^ is the projection
of z into the aίRne coordinate space CnP\ In this case, we say that fP is
essentially of zICPΓvariables and we denote g{zIU>^) by /pU/cp)). We consider
the variety V*(P) and 3F*(P) as follows. F*(P)={2GC* n ; / ? W=0} and
3F*CP)=U/ci>)€=C*/c/>); /J(z/(P))=0}. If fP is not essensially of *,^-variables,
dV*(P) is C* /CJP) by definition. We call dF%P) a I-primary boundary component
with respect to P if V*(P) is not empty. Let Vpr be the closure of F* in Cn

and let V*I^VΓ\C^1 and let F ^ = F p r n C * 7 . Then Vfr is a union of /-primary
boundary components (Lemma (3.3)). We say that the hypersurface y=/" 1 (0)
is good if for each subset / of {1, ••• , n] with | / | >2, there is at most one fP

among {fP; I(P)~I\ such that fP gives a proper /-primary boundary component.
Here P may not unique. We assume that V is a good hypersurface hereafter.
If V has a proper primary boundary component, we denote this component by
dV%ϊ. If V does not have proper primary boundary component, dV^—φ by
definition. Let P be a positive dual vector and let I—I(P). We say that V
satisfies the primary non-degeneracy condition or simply the PND-condition if
the following conditions are satisfied for any P such that V*(P)Φφ. Let pmm
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=minimum {p}; / §έ /}.

(PND1) Assume that fP is essentially of ^/-variables and let / = / P + / .
Write fP{z)^zκfe

P{zI) where K=(ku - , kn).

(a) (i) d(P; / ) = 0 or (ii) d(P; / )>0 and d(P; f)^d{P; f)+pmιn or (iii) the variety

{z^C*n;fp{2)=0t2j^-(z)-kjfp{z)=0 for 7^/} is empty.

(b) dV*(P) is a non-degenerate hypersurface in C*7 in an ε-ball B{ for some ε.

(PND2) Assume that fP is not essentially of ^-variables. For each
*, the fiber qj\zj) is a non-degenerate hypersurface in C/cX{2rj} where

Ic is the complement of / in {1, ••• , n}.

MAIN THEOREM. We assume that V is a good hypersurface which satisfies

the PND-condition. Let <$(/)=={F*7-3F*7, 3F*7} and let S={JS(I). Then S is

a regular stratification of V.

For the stratification of the hypersurfaces which is not good and the strati-
fication of the complete intersection varieties, see [6],

2. Stratifications.

Let V be an analytic variety in an open set D of Cn. We recall the
necessary notions of the stratification which is induced by Whitney and Thorn.
For further details, see [10, 7, 3]. Let S be a family of subsets of V such
that V is covered disjointly by elements of S. S is called a Whitney stratifica-
tion if the following conditions are satisfied.

(i) (D-strictness) Each element M of S (which is called a stratum) is a
connected smooth analytic variety such that M and M—M are closed analytic
varieties in D. Here M is the closure of M in D.

(ii) {Frontier property) Let M and N be strata of S and assume that
MΦN and MΓλNφφ. Then MaN-N.

We recall the Whitney /^-condition for a Whitney stratification S. Let
(N, M) be a pair of strata of S with NZDM and let p be a point of M. Let pt

and qx be sequences on iV and M respectively. We assume that

(2.1) Pt-+P, q^->P, TPiN-*τ and Ipt-qά-* λ.

Here the arrows imply the convergence in the respective spaces and [υ] is the
complex line generated by v. Thus τeG(r, n) (r=dim N) and 2 G G ( 1 , w)=P n " 1

where G(r, n) is the Grassmannian manifold of r-planes in Cn. We say that
(TV, M) satisfies Whitney b-condition at p if i e r for any such sequences. When
each pair (TV, M) with Mc.N satisfies the Whitney ^-condition at any point p



STRATIFICATION OF GOOD HYPERSURF ACES 443

of M, we call S a b-regular Whitney stratification. The following proposition
is a direct consequence of the Curve Selection Lemma (§3 of [4] or [1]) and
Theorem 17.5 of [10].

PROPOSITION (2.2). Let pi and q% be as in (2.1). Then there are analytic
curves p(t) and q(t) defined on the interval (—ε, ε) (ε>0) such that

(i) p(0)=q(0)=zp and p(t)^N for tφQ and
(ii) TpWN-+τ and

It is known that the ^-condition for analytic varieties follows from the
ratio condition (R) by [2, 9]. There is also a weaker regularity condition which
is called Whitney a-condition but this condition results from ^-condition ([3]).

3. Non-degenerate hypersurface and primary boundary components.

Let f{z)=^avz
v be an analytic function of n variables which is defined in

a neighborhood of the origin. The Newton polyhedron Γ+(f) is the convex
hull of the union of {v+R+} for v such that avφ0. The Newton boundary
Γ(f) is the union of the compact faces of the Newton polyhedron. We assume
that the Newton boundary Γ(f) is non-degenerate. As we are mainly interested
in non-isolated singularities, we also use the notation dΓ+(f) which is the union
of the boundaries of Γ+(f) which are not necessarily compact. The inclusion
Γ(f)ddΓ+(f) is obvious by the definition.

Let Σ * be a fixed unimodular simplicial subdivision which is com-
patible with the dual Newton diagrams {Γ*(f)} and let ft: X-^Cn be the
associated modification map. See [8] and [5] for the definition. Let Vpr be
the closure of F * and let V be the proper transform of Vpr by ft. Let π : V-+V'pr

be the restriction of ft to V. For finite vertices Qu •••, Qs of Σ*, we define
a s u b v a r i e t y E ( Q l f -- , Qs) of V b y E(Q1)Π ••• Γ\E(QS) a n d l e t E{QU •••, Q s ) * =
E(Q1} •••, Qs)— U E(P) where E(P) is the divisor of V which corresponds to

P+Qi

P. Note that E(Qlf •••, Qs)* is non-empty only if Qu •••, Qs are vertices of an
(n — l)-simplex of Σ * . The collection of E{QU ••• , Qs)* gives a regular strati-
fication S of V. Let σ=(Plf •••, Pn). Then we have

(3.1)

where Mv*)=fMya))/Π

T H E O R E M (3.2). V is a smooth complex manifold and π: V-^Vpr is a proper
modification of Vpr in the neighborhood of the origin.

The assertion is well known if the origin is an isolated singular point of
Vpr. The general case can be proved similarly. Let / be a subset of {1, •••, n).
We define the coordinate subspace C1 and C * 7 by C1 — \z—(zu •••, zn); z ; = 0 if
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and C*I = {z(ΞCn Zj=0 iff /<£/} respectively. For simplicity we usually
write C*n instead of C*7 if /={1, •••, n}. We define the I-proper boundary
V%I

r of V in C* 7 by F p r n C * 7 . If / is empty, Vfr={0\ by definition. Then
we claim:

LEMMA (3.3). The I-proper boundary Vψr of V is the union of the I-primary
boundary components.

Proof. Let π:Ϋ->Vpr be the resolution of Vpr constructed in § 3. Let
F * 7 be the union of the strata E(Pit •••, P s)* of the stratification § of V such
that π(E(Pu •••, PS)*)CC*7. As π is a proper surjective mapping, it is clear
that τr(F* 7 )=F* 7 . Let E(PU - , Λ)* be such a stratum and let σ=(Plf - , Pn)
be an (n-l)-simplex of 2 * . Let P=P1-] \-Ps. Then P is a positive dual
vector with I(P)~L We may assume that / = { m + l , ••• , n} (m^>s) for sim-
plicity and σ=(ptj) has the following form.

vo B)

where A and 5 are unimodular matrixes of mXm and (n—m)X(n—m) respec-
tively. Then Lemma (3.3) follows from the following.

SUBLEMMA (3.4). The restriction of π to E{PU ••• , Ps)* is a submersion onto

dV*(P).

Proof. Let y be an arbitrary point of E(PU ••• , P8)*. Recall that E(PU

•••, P s )* is defined by

where h is characterized by

(3.5) A t e

Note that Δ(P)— (\Δ(PX). Thus A(ifσ) does not contain the variables yσU •••, yσs.

Let z—τt{yσ). Then we have zI={yI)
B i.e.,

z,= ft(3.6)

In particular, {zj} (m+l£j£n) depend only on yσin+»,...,yσn. Let £ * be the
subvariety of C?71 defined by h(yσ)=0. E* is nothing but the product of C**X
E(Pl9 •••, Ps)*. Let y*(P) be the subvariety of the base space C*n which is
defined by

It is clear that π : £*->7*(P) is an isomorphism by (3.5). Let q1: F*(P)->3V*(P)
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and p: E*-+E(Plf •••, P s)* be the canonical projections. We have the commuta-
tive diagram:

£ * * V*(P)

\ρ

E{PU - , P s )* > dV*(P)

Let φ be the composition g°π: £*^3F*(P) . By the commutativity of the dia-
gram, φ=π°p. By the assumption PND1 and PND2, φ is a submersion. As
φ—π»p, this implies that π : E(P1} ••• , P5)*-»9V*(P) is a submersion. This com-
pletes the proofs of Sublemma (3.4) and Lemma (3.3).

Remark (3.7). Assume that f(zj) is not identically zero. Then F * 7 is de-
fined by /(*/)=(). In this case, //>(*)=/(*/) and for any P with 7(P)=/. Thus
F * 7 itself is the unique /-primary boundary component. In this case, V is non-
singular on F * 7 .

4. Key Lemma.

We first consider the following situation. Let p(t)—(pλ(t), •*• > ίn(0) be an
analytic curve defined in the interval (—1, 1) with the Taylor expansion pi(t)=
a itbiJr {higher terms). We assume that

(i)
(ii) djφO for each / = 1 , •••, n and 6^=0 if and only if 2<=/.
Let B=t(b1} -" , ftn), α=(αi, •••, an). Let 6m i n=minimum {bj'y jψl) and

/min={/;fy=&mm}. Let ^(ί) be an analytic curve in 7* 7 (£) with ?(0)=/>(0).
We assume that

(iii) T p ( ί ) y*->r and

Then we assert

KEY LEMMA (4.1). λ is contained in τ.

Proof. It is well-known that the tangent space T 2 F * is characterized by
df(zy={Ό&TtC

n;df(z)(Ό)=Q}. Let us consider the limit of df(p(t)\ Fora
real analytic function k(t), we define an integer ord(k(t)) by the order of k(t)
at ί=0. Similarly we define the order of a vector-valued analytic function by
the minimum of the order of the coordinate functions. Thus ord(df(p(t))) is the
minimum of ord(df/dzi(p(t))) for * = 1 , •••, n. Let m=ord(df(p(tj)) and let γ=

df(p(t))/tmIί=0. By the PNDl-(b)-condition, m£d(B; /) . Let f= Σ ridzx. Then
1 = 1

we have an obvious equality τ—yL. Considering the leading term of (i), we
obtain /s(α)=0.
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Case (a). Assume that fB(z) is not essentially of ^-variables. Then F*7(Z?)
= C * 7 by the definition. Then by the PND2-condition, there exists an index
j (j£I) such that dfB/dzj(a)Φθ if 2 \aτ\

2 is small enough. Thus we have

m^d(B; f)—bmιn. Assume that m—d{B\ f)—bmm. Then we must have

(4.2) ^ ( « ) = ° f o r y^/mmW/ and r , = -|£?-(α) for ; e / m m .

If m<d(B; f)—bmιn, we have that

(4.3) fr=0 for y e / m ι n u / .

Note that p t =0 for ι'e/ in both cases. This implies that f \CI=0.
N o w w e c o n s i d e r t h e l i n e [ p ( t ) — q ( t ) \ L e t k - o r d ( p { t ) - q { t ) ) . A s q W ,

it is easy to see that l ^ i ^ i m m . Let 1={p(f)—q(f))/tk\t=o By the definition
of λ, we have that [ 3 ] = λ If k<bmin, λ is a vector in C 7 . In this case, it is
clear that f(3)=0. Assume that k—bmιn. Then ^ = α j if / G / m m and ^ = 0 if

nW/. We consider the equality

L j

Thus we obtain the equality

(4.4) Σ ψ-(a)bja,=0.

If m<d(B; f)—bmxn, f(λ)=O is immediate from (4.3). Assume that m—d{B\ f)
—bmin. By (4.2) and (4.4), we can see easily that f(3)=0. Here 3 is identified

n 3
with the tangent vector S ^ ^ — at ^(0).

;=i OZj

Case (b). Assume that fB(z) is essentially of Z/-variables. Let fB{z)=zLfe

B{z)
where zL is a monomial in the variables {z3\ jφ.l\. Then F* 7 (£)— {
and ord(fB{p(t)))=ord{p{t)L)^d(B\ / ) . We have two equalities:

( 4 . 5 ) f j | L ( ί ( ί ) ) ^ s o a n d ^ ^ L
ι OZ at

^ s o and Σ ^ i m ^ s 0 .
j at iEi ozι at

Let β=ord(fe

B(p(t))) and δ=ord(f(p(t))). First we assume that PNDl-(α)-(«) holds.

As f(p(f))=fB(P(t))+f(P(f))=Of we have

(4.6) β+d(B;f)=δ^d(B;f)

where fB(z) is the secondary face function of / with respect to the weight B.
The equality holds if and only if fB(a)Φθ. We consider the equality which
follows immediately from (4.5).
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(4.7) ± 4

By the assumption, pj(t)=qj(t) modulo (tk) for any 7. This implies that

ord\^{p{t))-~{q{t))]>k. Thus the order of the last sum is at least

d(B; f)+k. On the other hand, we have

by PNDl-(α)-(«) where f=f—fB. As k^bm\n, the order of the second sum in
(4.7) is also at least d(B; /)+&. The order of the first sum in (4.7) is (at
least) m+k — 1. As m£d(B;f) by the JPNDl-(&)-condition and k^bminχ the
coefficient of tm+k~1 of (4.7) is equal to f(λ). Thus we conclude that ?(2)=0.
Assume (a)-(i): d(B / )=0. We consider the following equality instead of (4.7).

Here we have used the equality ^(q(t))=-^-(q(t)). By the PNDl-(b)-condi-
ozx όzx

tion, m=0. Thus by a similar argument, we have f(/)=0. Note that m=
d(5 /) if the PNDl-(a)-condition is satisfied.

Assume that PNDl-(α)-(«V) holds. We may assume that d(B; f)<d(B; f)
+&min. We consider (4.7) again. The order of the last sum is at least d(B f)
+ k. We can write f%(p(t))=λtθ+{higher terms) by (4.6) where θ=d(B;f)-
d(B f). Note that θ£β. As f(p(t))=O, we have that fB(a)+λaκ=0. Thus
we have

4 ^ / : terms) for

where ηj^-~^-(a)+λkjaκ/aj=(aj-~(a)--kjfB(a))/aj. As fB(a)=0, there exists
CtZj \ QZj '

an index joφl such that r)JoΦθ by the PNDl-(α)-(m) condition. Thus the order
of the first term of (4.7) is at most d(B; f)—bJo+k — l. The order of the
second term is at least d(B f). As k<bmin, we have the inequality: d(B f)
—bjo+k — Kd(B;f). By the assumption that d(B f)<d(B; f)+bmin, we have
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also the inequality: d(B; / ) — b J o + k — K d ( B ; f)+k. Therefore we conclude as
before that f(λ)=O. This completes the proof of Lemma (4.1).

5. Proof of Main Theorem.

In this section, we will prove Main Theorem in § 1. Let Y and Z be a
pair of strata of S such that ΫΓλZφφ. We assume that Y^S(J) and Z^S(K).
Then we must have J~DK. If J=K, the ^-regularity is obvious as V is good.
Thus we may assume that JφK. If Y is an open dense stratum in C**7, the
^-regularity for (Y, Z) is again obvious. Thus we assume that YφCJ. Let
p(t) and q{t) be real analytic curves defined on (—1, 1) such that (i) p(0)=q(Q)
e Z . (ii) p(t)(ΞY for t>0. (iii) q(f)^Z for t>0. Assume that the tangent
space TpcnY converges to τ and the line \_p(f)—q(f)] converges to λ. Y is a
non-degenerate hypersurface defined by fP(zj)=Q for some P with I(P)=J.
Assume that pj(t)=a/^+(higher terms) for / e / . For brevity's sake, we assume
that /={1, — , m). Let B=\bly •••, bm) and a=(au •••, am). As />(0)=tf(0)=αj
G Z , K—I{P), By looking at the leading terms of the equality h(p(t))=O, we
can see that aκ belongs to the if-primary component Y*K(B). Let R=P+rQ
for a sufficiently small r>0. Then it is an easy linear algebra to see the
following.

(i) (/P)B=/R. (ϋ) The secondary face function fR of / with respect to R
is equal to the secondary face function of fP with respect to B.

Thus the PND-condition for / implies the PND-condition for fP. Now we
use Lemma (4.1) to obtain the regularity for the pair (Y, Z). This completes
the proof of Main Theorem.

Example (5.1). Let f(z)=(z1z2)\zl+zt)+(zsz4)
2(z!+zl). Then the singular

locus of V is the union of the two dimensional coordinate planes C1 for | / | = 2 .
Let /={1, 2}. Then by an easy calculation, we have a proper primary boundary
components defined by C: zf+z!=0. C consists of five lines, say Cu •••, C5.
Thus S(I)={C^-Cy Cu -" , C5}. The same is true for 7={3, 4}. Thus the
stratification of V consists of the following strata: V*, C* 7 (IΦ{1, 2}, {3,4}),

C*{1 2 1 - C , C*(3 4 }-£>, C t, Dτ (2 = 1, - , 5), C1'1 (; = 1, •••, 4), {0} where D= \J Dt

{ f ϊ 0 }
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