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ON THE STRATIFICATION OF GOOD HYPERSURFACES
By MuTtsuo Oka

1. Statement of results.

Let f(z) be a germ of an analytic function defined in a neighborhood of the
origin and let f(z)=3)a,z” be the Taylor expansion. We consider the germ of

the hypersurface V=,-%0). We assume that f has a non-degenerate Newton
boundary I'(f). The purpose of this paper is to construct a canonical Whitney
b-regular stratification $ of V which depends only on the Newton boundaries
{oI'(f)}. Under the non-degeneracy condition of the Newton boundary, the
singular locus of V is the union of several coordinate subspaces C*!. However
the b-regularity for (V*, C*!) does not hold in general and we have to know
the locus where the regularity fails. For this purpose, we introduce the con-
cept of the I-primary boundary components which plays an important role for the
stratification of V. Its rough description is as follows. Let P=%py, -, pa) be
a positive rational dual vector and let I(P)={1<i<n; p,=0}. The face func-
tion f,(z) is defined by the partial sum 3a,z* for v such that yeA(P). Here
A(P) is the face of I'(f) where P takes its minimal value d(P; f). We use the
notations of [5]. Assume that fp(z)=z%g(z;r,) Where z;(p, is the projection
of z into the affine coordinate space C?*®, In this case, we say that fp is
essentially of zppy-variables and we denote g(z;py) by f4(zr). We consider
the variety V*(P) and oV*(P) as follows. V*P)={zeC*"; fp(z)=0} and
V¥ P)={z;p,EC* P ; fo(z;p)=0}. If fp is not essensially of z;p)-variables,
OV*(P) is C*'® by definition. We call 0V*(P) a I-primary boundary component
with respect to P if V*(P) is not empty. Let V,,. be the closure of V* in C"
and let V¥ =VNC*! and let V}=V,,NC*!. Then V}fis a union of [-primary
boundary components (Lemma (3.3)). We say that the hypersurface V=f"%(0)
is good if for each subset I of {1, ---, n} with |I|>2, there is at most one fp
among {fp; I(P)=I} such that fp gives a proper [-primary boundary component.
Here P may not unique. We assume that V is a good hypersurface hereafter.
If V has a proper primary boundary component, we denote this component by
oVHL. If V does not have proper primary boundary component, dVii=¢ by
definition. Let P be a positive dual vector and let [=I(P). We say that V
satisfies the primary non-degeneracy condition or simply the PND-condition if
the following conditions are satisfied for any P such that V*(P)#¢. Let pmia
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=minimum {p,; j&1}.

(PND1) Assume that fp is essentially of z;-variables and let f =fp+f.
Write fp(2)=2z%f$(z;) where K=(ky, -+, k).

(a) (i) d(P; f)=0or (ii) d(P; f)>0 and d(P; /)=d(P; f)+ pmm or (iii) the variety
fze0m; =0, 2 22~ kifs2=0 for ;1) is empty.

(b) QV*(P) is a non-degenerate hypersurface in C*? in an e-ball B! for some e.

(PND2) Assume that fp is not essentially of z;-variables. For each z;&
C*'N\B! the fiber g7(z;) is a non-degenerate hypersurface in C?°X{z;} where
I¢ is the complement of [ in {1, ---, n}.

MAIN THEOREM. We assume that V 1s a good hypersurface which satisfies
the PND-condition. Let S(I)={V*!—aV3}i, oV} and let S=k1jé’(1). Then S is

a regular stratification of V.

For the stratification of the hypersurfaces which is not good and the strati-
fication of the complete intersection varieties, see [6].

2. Stratifications.

Let V be an analytic variety in an open set D of C». We recall the
necessary notions of the stratification which is induced by Whitney and Thom.
For further details, see [10, 7, 3]. Let S be a family of subsets of V such
that V is covered disjointly by elements of S. S iscalled a Whitney stratifica-
tion if the following conditions are satisfied.

(i) (D-strictness) Each element M of S (which is called a stratum) is a
connected smooth analytic variety such that M and M—M are closed analytic
varieties in D. Here M is the closure of M in D.

(ii) (Frontier property) Let M and N be strata of S and assume that
M#N and MNN+¢. Then MCN—N.

We recall the Whitney b-condition for a Whitney stratification S. Let
(N, M) be a pair of strata of S with NDM and let p be a point of M. Let p;
and ¢, be sequences on N and M respectively. We assume that

(2~1) pt'—")py ql_)pl TpiN_)T and I:pi—qt]_)]”

Here the arrows imply the convergence in the respective spaces and [v] is the
complex line generated by v. Thus 7=G(r, n) (r=dim N) and 2=€G(, n)=P""!
where G(r, n) is the Grassmannian manifold of »-planes in C*. We say that
(N, M) satisfies Whitney b-condition at p if A<t for any such sequences. When
each pair (N, M) with MCN satisfies the Whitney b-condition at any point p
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of M, we call S a b-regular Whitney stratification. The following proposition
is a direct consequence of the Curve Selection Lemma (§ 3 of [4] or [1]) and
Theorem 17.5 of [10].

PROPOSITION (2.2). Let p; and q. be as in (2.1). Then there are analytic
curves p(t) and q(t) defined on the interval (—e, €) (¢>>0) such that

(i) p0)=¢0)y=p and p(t)EN for t+0 and q(t)=M.

(i) TpusN—t and [p(t)—q(t)]—A

It is known that the b-condition for analytic varieties follows from the
ratio condition (R) by [2, 9]. There is also a weaker regularity condition which
is called Whitney a-condition but this condition results from b-condition ([3]).

3. Non-degenerate hypersurface and primary boundary components.

Let f(z)=3]a,z* be an analytic function of n variables which is defined in

a neighborhood of the origin. The Newton polyhedron /7.(f) is the convex
hull of the union of {v+R?} for v such that a,#0. The Newton boundary
I'(f) is the union of the compact faces of the Newton polyhedron. We assume
that the Newton boundary I'(f) is non-degenerate. As we are mainly interested
in non-isolated singularities, we also use the notation 0/ +(f) which is the union
of the boundaries of I'.(f) which are not necessarily compact. The inclusion
I'(f)col' .(f) is obvious by the definition.

Let >* be a fixed unimodular simplicial subdivision which is com-
patible with the dual Newton diagrams {I™*(f)} and let #:X—>C" be the
associated modification map. See [8] and [5] for the definition. Let V,, be
the closure of V* and let ¥ be the proper transform of V,, by #. Let =: V-V,
be the restriction of # to V. For finite vertices Q,, ---, Q, of 3% we define
a subvariety E(Q,, -+, Q,) of V by E(Q)N - NE(Q,) and let E(Q,, ---, Q)*=
EWQ,, -, QS)_P%iE(P) where E(P) is the divisor of ¥V which corresponds to

P. Note that E(Q,, -+, Q,)* is non-empty only if Q,, ---, @, are vertices of an
(n—1)-simplex of >3*. The collection of E(Q,, ---, Q,)* gives a regular strati-
fication S of V. Let ¢=(P,, -+, P,). Then we have

@1 VnCr={y,=Ck; f,(y,)=0}
where fo(y.)=f(#(.)/ I 94757,

THEOREM (3.2). V is a smooth complex manifold and =« : I7—>Vm is a proper
modification of V., in the neighborhood of the origin.

The assertion is well known if the origin is an isolated singular point of
Vpr. The general case can be proved similarly., Let I be a subset of {1, -, n}.
We define the coordinate subspace C? and C*! by C!={z=(zy, -, za); 2,=0 if
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j&lI} and C*'={zeC"; z,=0 iff j&I} respectively. For simplicity we usually
write C*" instead of C*! if I={l, .-, n}. We define the I-proper boundary
Vi of V in C* by V,,NC*. If I is empty, V3/={0} by definition. Then
we claim:

LEMMA (3.3). The I-proper boundary V3i of V is the union of the I-primary
boundary components.

Proof. Let m:V—V,. be the resolution of V,, constructed in §3. Let
7*I be the union of the strata E(P,, ---, P)* of the stratification § of ¥ such
that =(E(P, -, P)*)CC*!. As m is a proper surjective mapping, it is clear
that z(V*1)=V*!. Let E(P, -, P,)* be such a stratum and let ¢=(P,, -+, P,)
be an (n—1)-simplex of 31*. Let P=P,+ -+ +P,. Then P is a positive dual

vector with I(P)=I. We may assume that /={m+1, ---, n} (m=s) for sim-
plicity and o=(p,;) has the following form.

A C

G &)

where A and B are unimodular matrixes of mXm and (n—m)X(n—m) respec-
tively. Then Lemma (3.3) follows from the following.

SUBLEMMA (3.4). The restriction of n to E(Py, -+, Po)* is a submersion onto
oV *(P).

Proof. Let y be an arbitrary point of E(P,, :--, Po)*. Recall that E(P,,
-+, P)* is defined by

Vo1= =y0s=h(ya)=0

where h is characterized by

(35) W) TT 98070 =fo2(w,)).

Note that 4(P)= [:\1 A(P,). Thus h(y,) does not contain the variables ¥4, *+, ¥4,

Let z=#(y,). Then we have z;=(y;)? i.e.,
(3.6) =11 92" G=m+1, -, m.

In particular, {z;} (m+1=<j7<n) depend only on Y,cm+1y..Ven. Let E* be the
subvariety of C¥*" defined by A(y,)=0. E* is nothing but the product of C**Xx
E(Py, -, P)*. Let V*P) be the subvariety of the base space C** which is
defined by

V¥ P)={zeC*"; fz)=0}.
It is clear that #: E*—V*(P) is an isomorphism by (3.5). Let q;: V¥(P)—dV*(P)
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and p: E*—E(P,, ---, Po)* be the canonical projections, We have the commuta-
tive diagram :

Y

Ex > V¥(P)
; o
E(Pl’ TN Pa)* _TC_____-) aV*(P)

Let ¢ be the composition go#: E*—0V*(P). By the commutativity of the dia-
gram, ¢=m-p. By the assumption PNDI and PND2, ¢ is a submersion. As
¢=m-p, this implies that = : E(Py, -+, P)*—0V*(P) is a submersion. This com-
pletes the proofs of Sublemma (3.4) and Lemma (3.3).

Remark (3.7). Assume that f(z;) is not identically zero. Then V*! is de-
fined by f(z;)=0. In this case, fp(z)=f(z;) and for any P with I(P)=I. Thus
V*I jtself is the unique I-primary boundary component. In this case, V is non-
singular on V*I,

4. Key Lemma.

We first consider the following situation. Let p(t)=(p,(t), -+, pa(t)) be an
analytic curve defined in the interval (—1, 1) with the Taylor expansion p,()=
a;t’i+(higher terms). We assume that

(i) f(p)=0,

(i) a,#0 for each j=1, :--, n and b;=0 if and only if /.

Let B=%b,, -+, ba), a=(ay, -+, a,). Let bmpn=minimum {b,; j&I} and
Jmin=1{J; b;=bmm}. Let ¢(tf) be an analytic curve in V*!(B) with ¢(0)=p(0).
We assume that

(iii) TpV*—r and [p()—q(t)]—A.

Then we assert
KEYy LEMMA (4.1). 2 is contained in t.

Proof. 1t is well-known that the tangent space T,V* is characterized by
df(z)*={veT,C"; df(z)(v)=0}. Let us consider the limit of df(p(¢)). For a
real analytic function k(¢), we define an integer ord(k(t)) by the order of k(¢)
at t=0. Similarly we define the order of a vector-valued analytic function by
the minimum of the order of the coordinate functions. Thus ord(df(p(1))) is the
minimum of ord(0f/0z.p))) for i=1, ---, n. Let m=ord(df(p(t))) and let 7=

df(p(t)/t™,ws. By the PND1-(b)-condition, m<d(B; f). Let 7= i‘;yidzl. Then

we have an obvious equality r=7*. Considering the leading term of (i), we
obtain fz(a)=0.
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Case (a). Assume that fx(2) is not essentially of z,-variables. Then V*!(B)
=C*! by the definition. Then by the PND2-condition, there exists an index
7 (j&I) such that 0fg/0z(a)+0 if 121 |a,|? is small enough. Thus we have

€.

m<d(B; f)—bmm. Assume that m=d(B; f)—bms,. Then we must have

4.2) afB 2 (@=0 for j&/maUl and 7,= fB (@) for /€ mm
If m<d(B, f)"‘bmm, we have that
4.3) 7,=0 for ;& mnUI.

Note that y7,=0 for /<[ in both cases. This implies that 7|C?=0.

Now we consider the line [p(t)—q(t)]. Let k=ord(p(t)—q()). As gq(t)=C*!,
it is easy to see that 1<k<bmm. Let /1 (p()—q@®))/t*|i=. By the definition
of 2, we have that [i]:l. If B<bmm, 4 is a vector in C?. In this case, it is
clear that 7’(71)=0. Assume that k=bm,n. Then A,=a, if j&Jmn and 2;=0 if
7€ JminJI. We consider the equality

n

Il

[% 9fs (@)bja ]ti‘B D34 (higher terms).

Thus we obtain the equality

(4.4) ) gfﬂ (@)b;a,=0.

J€l 02,

If m<d(B; f)—bmu, 7(§)=0 is immediate from (4.3).* Assume thalt m=d(B; f)
—bmin. By (4.2) and (4.4), we can see easily that 7(4)=0. Here 4 is identified

with the tangent vector anlji at p(0).
J=1 aZ]

Case (b). Assume that fz(z) is essentially of z,-variables. Let fz(2)=2%f%(2)
where z* is a monomial in the variables {z,; j&I}. Then V*!(B)={f%(z;)=0}
and ord(fa(p®))=ord(p(t):)=d(B; f). We have two equalities:

afB d‘h(t>

45) 5oL oo B =0 ana g Py ed

Let B=ord(f5(p(t))) agd d=ord(f(p(t))). First we assume that PND1-(a)-(i) holds.
As F(p)=[fs(pt)+F(p@)=0, we have
(4.6) B+d(B; f)=62d(B; f)

where f(z) is the secondary face fungtion of f with respect to the weight B.
The equality holds if and only if fz(a)+0. We consider the equality which
follows immediately from (4.5).
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@) 3 L] pio-e 0]+
afB d(h(t)
iezz [ 0z, ]
207 32 pon— 3L (g | 442 =0,

By the assumption, p;(t)=¢it) modulo (t*) for any j. This implies that
ord[af 2 (p(t))— 9% (q(t))]>k Thus the order of the last sum is at least
d(B; f)+k. On the other hand, we have

(o) af 2

Z(00)2d(B; )2d(B; )b (<)

by PNDI1-(a)-(7¢) where f= f—fB. AS EZbmi., the order of the second sum in
(4.7) is also at least d(B; f)+k. The order of the first sum in (4.7) is (at
least) m+k—1. As mZd(B; f) by the PNDI-(b)-condition and k=bm,,, the
coefficient of t™+*-! of (4.7) is equal to #(1). Thus we conclude that #(A)=0.
Assume (a)-(i): d(B; f)=0. We consider the following equality instead of (4.7).

n f d
3 5 PO Z] =00+

2 [ 2L ien- L qen [ 440 =0

Here we have used the equality —f(q(t))— f B (q(t)) By the PNDI-(b)-condi-

tion, m=0. Thus by a similar argument, we have ?(§)=0. Note that m=
d(B; f) if the PNDI1-(a)-condition is satisfied.

Assume that PNDI1-(a)-(7zz) holds. We may assume that d(B;f)<d(B; 1)
+bmin. We consider (4.7) again. The order of the last sum is at least d(B; f)
+k. We can write f4(p(t)=At’+(higher terms) by (4.6) where §=d(B; f)—
d(B; f). Note that 0<B. As f(p(t))=0, we have that fa(a@)+ia¥=0. Thus
we have

%(b(ﬁ)zml‘dw;ﬁ"’J—I—(hz'gher terms)  for je&I
7

ng (a)+lkja"’/a,=<a, 9/ (a)— kjfB(a)>/a,. As fx(@)=0, there exists
z, 0z,

an index j,& 1 such that 1;,0;&0 by the PNDI1- (a) (777) condition. Thus the order
of the first term of (4.7) is at most d(B; f)— b,,+k—1. The order of the
second term is at least d(B; f) As k<bmin, we have the inequality: d(B; f)
—b,,+k—1<d(B; 7). By the assumption that d(B; f)<d(B; f)+bmia, We have

where 7,=
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also the inequglity: d(B;f)—b,D+k—1<d(B; f)+k. Therefore we conclude as
before that 7(4)=0. This completes the proof of Lemma (4.1).

5. Proof of Main Theorem.

In this section, we will prove Main Theorem in §1. Let Y and Z be a
pair of strata of S such that YNZ #¢. We assume that Y €S(J) and Z&S(K).
Then we must have JOK. If J=K, the b-regularity is obvious as V is good.
Thus we may assume that J#K. If Y is an open dense stratum in C*/, the
b-regularity for (¥, Z) is again obvious. Thus we assume that Y=+C7. Let
p(t) and ¢(¢) be real analytic curves defined on (—1, 1) such that (i) p(0)=¢(0)
eZ. (i) p(heY for t>0. (iii) ¢@t)eZ for t=0. Assume that the tangent
space T,«)Y converges to 7 and the line [p(t)—g(t)] converges to A. Y is a
non-degenerate hypersurface defined by f%(z;,)=0 for some P with I(P)=].
Assume that p;(t)=a;t’7+(higher terms) for j€J. For brevity’s sake, we assume
that J={1, ---, m}. Let B=%b,, -, by) and a=(a,, -, an). As p(0)=¢(0)=a;,
eZ, K=I(P). By looking at the leading terms of the equality A(p(f))=0, we
can see that ax belongs to the K-primary component Y*X(B). Let R=P+rQ
for a sufficiently small »>0. Then it is an easy linear algebra to see the
following.

() (fp)s=fr. (ii) The secondary face function fr of f with respect to R
is equal to the secondary face function of f» with respect to B.

Thus the PND-condition for f implies the PND-condition for fp. Now we
use Lemma (4.1) to obtain the regularity for the pair (Y, Z). This completes
the proof of Main Theorem.

Example (5.1). Let f(2)=(z,2,)%(2}+25)+(2:2,)%(z2+23). Then the singular
locus of V is the union of the two dimensional coordinate planes C? for |I|=2.
Let I={1, 2}. Then by an easy calculation, we have a proper primary boundary
components defined by C:z}+2z;=0. C consists of five lines, say C,, ---, Cs.
Thus S(I)={C*'—C, C,, -+, Cs}. The same is true for I={3, 4}. Thus the
stratification of V consists of the following strata: V* C*! (I+#{1, 2}, {3, 4}),

cxuu_C Cc*sa—p C,, D, (=1, - ,5), CP (j=1, -, 4), {0} where D= Opi
=1
= {zi+21=0},
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