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§ 0. Introduction.

We denote by map (X, Y) the space of continuous maps X-+Y preserving
base points endowed with Compact-Open topology. We are interested in studing
homotopy groups πA(maρ(Z, Y), / ) . This problem has been attacked in papers
[1]> [2], [3], [5], and etc.. In this note we are mainly concerned with the
subspace ε(X, Y) consisting of homotopy equivalences.

Since πk(ε(X, Y), /) is isomorphic to πk(ε(X, X), lx) for any / the study of
πk(ε(X, X), lχ), i.e. π f t(map(Z, X), lx) is essential. Our purpose is to describe
these homotopy groups in the case of X being a principal bundle over a n-
sphere Sn. One of difficulty for determing πk(map(X, Y), f) arises from a
choise of the base point. For example if we chose the trivial map as the base
point these groups are explained as a set {ΣkX, Y}, i.e. the group of homotopy
classes of maps from the itterated suspension ΣkX to Y preserving base points.
Therefore, in this case, we consider the problem solved, so our purpose is in
getting expression like this for our homotopy groups.

Let p X->Sn be a principal G-bundle. Then we have a fibre space

map (X, G) — > map (X, X) — > map {X, Sn),

and therefore a long exact sequence:

ττ*+1(map(X, Sn), p) — > π,(map(Z, G), e0)
d

— > τr*(map(X, X), lx) — > 7Γ,(map(X, Sn), p)

where e0 denote the constant map eQ(X)—eQ the unit of G.
Hence we want to describe the boundary homomorphism

3*+Γ. π*+1(map(X, Sn), p)—>π*(map(X, G), e0).

Of course, this needs some description of three objects:

, Sn), p), τr*(map(X, G), e0) and dk+ί.
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Let ξ: Sn-*BG be the characteristic map of the bundle. Then dk+i is equivalent
to the induced homomorphism

ξ*:πk+1(map(X, Sn), p)—> τr,+1(map(Z, BG), ζp),

and the target of ξ* is isomorphic to the group {Σk+1X, BG) because of the
contractibility of ξp. However, in general, we could not have a suitable des-
cription of πk+1(map(X, Sn), p) compatible with the above identification. On the
other hand, we noted that the space X/G which is obtained from X by collaps-
ing G to the base point is homeomorphic to a wedge sum SnVΣnG, and as a
fundamental lemma, we will show in § 1 that there exists an isomorphism:

π,+ 1(map(Z/G, Y), f)^πk+n+1(Y)+{Σk+n+1G, Y}

having convenient properties for describing dk+i>
Thus we can determine dk+ι for elements contained in the image:

, SΛ), p) — > π,+ 1(map(Z, Sn), p),

and moreover this is enable us to calculate homotopy groups of certain sub-
spaces of map(Z, X) (Theorem 2.3 and 2.4).

Here we give an example. Let p : S7—>S3 be the Hopf bundle and map (S7 S2)
be the space of maps (S7, 53)->(57, S3). Then we have

τr,(map(S7; S3), l)^πkUS7)+πk+Ί(SΊ)+πk+,(S3)

although we have π*(maρ(S7, S7), l) = π*+7(S7).
Through out this paper we denote by oo the base point and by όδ the con-

stant map X-ΪCO for any X.

§ 1. A fundamental isomorphism.

Let X be the space Λ\jDnxΛ obtained from the following identification:

(x, a)=ξ(x, a), ζ: Sn^XA—> A, £(oo, a)=a ,

and let X/A be the space obtained from collapsing i to oo. In this section we
are mainly concerned with homotopy groups

π*(map(XΛ4, Y), f).

First we note that there are the natural homeomorphism

j : (DnxA/Sn-ίXAf oo) — > {X/A, oo)

and its induced homeomorphism

j γ : (map (X/A, Y)y f) — > (map (Dn X A/S^1 X A} Y), fj).
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Hence our purpose is to study π%(map(DnχA/Sn-ίX A, Y), fj). Consider the
fibre space

r:map(DnχAf Y)—> mapCS^X A, Y) .

defined by restricting the domain of maps on Sn~1xA. Since the fibre r~\oo)
is just considered as the space mzp{DnxA/Sn~lxA, Y) we have a long exact
sequence:

— > π*(m<iv(Sn-ιXA, Y), oo) — > π*(map(DnxA/Sn-1χA, Y), fj)

— > 7r*(map(£*xΛ Y), fj') — > .

On the other hand we have a commutative diagram

π*(map(Z)nX A, Y), fj) —> π^S^XA, Y), δδ)

π^(map(coχ^4, Y)f δδ)

where arrows denote homomorphism induced by maps analogus to the map r.
Since it follows from the contractibility of the cell that the vertical arrow is
isomorphic we can know the injectivity of r*.

Hence from the long exact sequence we have

LEMMA 1.1. There exists an isomorphism

π*(mzv(DnxA/Sn-ιXA, Y), fj)

^π*+ί(map(Sn-ίXA, Y), όό)/proj.*τr*+i(map(i4, Y), δό).

And moreover we have the standard isomorphism

{Σ*+1(Sn'1xA), Y}^{Σ*+1Sn'\ Y} + {Σ*+ιA, r } + {27*(S7l"1#A), Y)

where Sn~λ$A denotes the reduced join of S71'1 with A.
Now combining these isomorphisms we have an isomorphism

, Y), f)={Σ^Sn-\

Thus our fundamental lemma is the following

LEMMA 1.2. (1) σγ is natural, i.e. for a map a: Y-+Z we have the com-
mutative diagram

, Y\ go) - {Σ*+ιS«-\ Y} + {Σ*(Sn-ι$A), Y}

(2) Let us consider the fibring
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map(ZM, Y) —> map(X, Y) —> map (.4, Y).

Then there exists the following identification of the boundary

;r*+1(maρC4, Y), 53) — > π*(map(X/A, K), /)

{Σ*+1A, Y\—>{Σ*+1Sn'1f Y} + {Σ*(Sn-1$A), Y]

where λξ=ξ\Sn~1XoD and c(ξ) denotes the Hopf construction of ξ.

Proof. (1) easily follows from definitions. Next consider the commutative
diagram of fibrings

map(X/A, Y) —> map(Z, Y) —> map {A, Y)

\ \ \
map(DnχA/Sn-1xA, Y) —> map(DnxA, Y) —> mapCS^xΛ Y).

Then, back to Lemma 1.1 and using the commutativity of the homotopy exact
sequences the proof is completed from expressing

Σξ: Σ(Sn-1xA)~ΣSn-1VΣAVSn-1$A—> ΣA

as (Σλξ, Σid, c(ί)).

Here we give a few direct consequence of Lemma 1.2. Define a subgroup
of {Σ*A, Y} by

Γ^ξ:Y)={a\aΣ*λξ=:0=aΣ*'1c(ς)}

and a quotient group of {S*+n, Y} + {Σ*+nA, Y} by

J ^ S : r)={S*+ n, Y} + {Σ*+nA, Y}/Δ{Σ*+Ά, Y}(Σ*+1λξ, Σ*c(ξ))

where Δ is the diagonal map:

{Σ*+1A, Y}—>{Σ*+1A, Y) + {Σ*+ιA7 Y)

PROPOSITION 1.3. // Y is a topological group then there exists a short exact
sequence

{0} — > Δ*{ξ : Y) — > τr*(map(X, Y), f) —> Γ * « : Y) — ^ {0}.

Proof. Define a homeomorphism φ: (map(Z, Y), /)->(map (Z, Y), όδ) by

Since ^^ in π* is an isomorphism the proof follows from applying Lemma 1.2
to the case f=όδ.
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Next, let p be the map X=A\jDnxA-^Sn defined by

p\Λ=oo and p \ Dn X A=(Dn / Sn-ι)($τo\.

Since p has a decomposition X^X/A^Sn we have

PROPOSITION 1.4. There exists a short exact sequence

{0} — > J*(£ S») — * τr*(map (Z, Sn), />) — > Γ*(ξ S") — > {0}.

For example, Let X-^Sn be a Sm"1-bundle with its characteristic mapf : Sn~ι

->0(m). Then Γ*( | Sn) and Δ*(ξ Sπ) can be described as follows:

Γ*(ξ S n )= {a I α ί * ί = 0 = α J *
and

where λ—dcn is in the homotopy exact sequence of the bundle and / denotes the
/-homomorphism.

§2. Principal G-bundles over Sn.

Let p: X->Sn be a principal G-bundle with its characteristic map ξ: S71—•
BG. We are interested in homotopy groups

where π 0 denotes a semi-group of homotopy classes of maps X-+X with the
distinguished element lx.

Let £ : map (X, X)—>map (X, S71) be the fibre space associated with the bundle
and let the fibre p~\p) identify with the space map(Z, G) which is considered
as a subspace of map(Z, X) by imbedding f(x)->x-f(x) where denotes the
right action of G on X as usual.

Then we have the homotopy exact sequence of the fibrlng:

, G), 55) — > τr*(map(X, X), l

, Sn), p) — > π*_i(maρ(Z, G),

Here we note that maρ(Z, G) naturally is a topological group and hence π0

also is a group. However, in this case the boundary is homomorphic but the
inclusion is not homomorphic. Now we want to determine the boundary

3: τr*+1(maρ(X, Sn), p) — > ττ*(map(X, G), όo) *^0

The target can be identified with the group {Σ*X, G} but, in general, we
have no expression like that about π*(map(X, Sn), p) (see 1.4).

However, under some conditions, this is isomorphic to a quotient group of
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{S*+r\ Sn} + {Σ*+nG, S71} so there is some posibility to calculate the boundary 9.
Now considering following diagrams of fibrings:

* m a P (-*"» ^ G ) — > m a p ^

and map(G, X)

X _+ sn map {X, X) — > map (Xf Sn)

where upper fibrings denote universal fibrings for G and map(G, X) we know
that 3 is equivalent to ζξ, i. e. we have a commutative diagram

τr*+1(map(Z, Sn), p) — > π*(map(G, X), co)
3

&\ I 3

τr^+i(map (X, BG), ξp).

Let q: X-+X/G bs the map collapsing G to oo. Then q induces a diagram

π*(map(Z, BG), ξp)

qx/G*

Next, let μ be the multiplication of G and let c(μ): G%G-+G be the Hopf
construction of μ. For any space Y, define a homomorphism

F*(f : F ) : {.Σ*+1G, F}—>{S*+ n

f Y} + {Σ*+nG, Y}

by F*(f: r)(α)=α2'*+ 1^+2'*αc( iM)(^#lσ) where ^ = 9 | for the boundary 3: π n

—>7rn_i(G). Then, from Lemma 1.2 and above diagrams, we have

PROPOSITION 2.1. Suppose that qχ/G*+ι is onto. Then the kernel of

3*+i: 7r#+i(map(X, Sn), p) — > π*(map(Z, G), όδ)

is isomorphic to a subgroup of π*+n+ί(Sn)+{Σ*+n+1G, Sn}/F*+ί({Σ*+2G, Sn}), i.e.
*+*G, Sn}).

Thus, s'nce we have that π*(map(G, Sn), oό)=0 (^<n—dim G) Proposition 2.1
implies

THEOREM 2.2. There exists a short exact sequence (l^*<n—1—dim G):
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{0} — ^ (ί*+1)"1(Γ*+1(5 : βσ)-image) — > π*+ n + 1(

), l x ) — > d?(0) —» {0}

Now we consider another fibrings. Let map(J*Γ; G) b3 the subspace of
map(X, X) consisting with maps preserving G into G, and let Fib. X be the
subspace of maps preserving fibres. Clearly these spaces are related with each
other through fibrings as shown in the following diagram

map(Z, G)

Fib. X—> map(Z, X) <— map(Z; G)

1 I I
map(Sn, Sn) — > map(Z, Sn) <— map(Z/G, Sn)

°P Q

Using the commutativity of the diagram, first we obtain from Lemma 1.2

THEOREM 2.3. For * ^ 1 there exist a short exact sequence:

W - ^ (f*+1)"1(Γ*+1(ί : BGyimage) —* π*+n+1(Sn)+{Σ*+n+1G, Sn}

-^ {Σ^X, BG) — ^ ^(map (X G), lx)

—* (ζ*)-\P*(ξ 5G)-image) — > {0}

Secondly we investigate the fibring:

map (X, G) — > Fib. X — > map (Sn, Sn).

We note that the fibre map °p is decomposed as follows:

map(Sn, Sn) — > map(Z/G, Sn) — > map(Z, Sn)

Let φn be a map: (Dn, Sn~1)-^(Sn

f oo) of degree 1. Since we may consider
that π*(maρ(Sn, Sn), lsn) is isomorphic to π^(map(Dn/Sn~1, Sn), φn) the homo-
morphism (°p)* may be considered as the (proj.)*, i.e. we have a commutative
diagram

VS"-1, Sn), φn) —> π*(map(S\ Sn), lsn)

j(proj.)* \(°P)*

, Sn), oδ) — > π*(map(Z/G, Sn), p)
j *

Hence, considering the fibre map:
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""1, Sn), όό) — > (map CD71, Sn), φn) — > (map{Dn/Sn'\ Sn), φn)

V Y V

(map OS71"1 X G, Sn), δδ)—>(map (D71 X G, Sn), δδ)—>(map ( £ n X G/S71"1 X G, Sn),

we have identifications:

π*(map(X/G, Sn), p) <— ^ ( m a p ( 5 n , Sn), lsn)

, Sn), p) < π*(m*Q(Dn/Sn-\ Sn), φ)
I proj.^ -

-1 -1
{Σ*+1Sn-\ S^ + iΣWiS^G), Sn} —> {Σ*+1Sn'\ Sn\

Now we define a subgroup T*(ξ) of π*+n(BG) by

T*(f)={Λ 2:* + 1 ^|/ιe{^*+ ι G, BG), ΛoJ* c ( A £ χ^#i σ )=0}.

THEOREM 2.4. 77z£r<? βmίs α short exact sequence (S#(ί)=ίϊ 1 T*(β):

{0} —^Λr*+n+i(Sn)/Sa|e+1($)—^{J*+1Z, BG}—>π*(Fib. Z, l x ) — > S * ( ί ) — ^

Proof. The proof is clearly completed from describing the boundary

9* : 7Γ*(map(Sra, Sn), lSn) — > π*_i(map(Z, G), δδ)

and this can be read off In the following diagram with Lemma 1.2.

ib. X, lχ) — > τr*(map(Sπ, Sn), l 5 n ) — > π*_χ(map(Z, G),

ίr*(map(*, SΛ), #) s

',B0),ςp).

§ 3. Examples.

Let p: Z^->Sn be the S3-prIncipal bundle whose characteristic map is ξ: Sn

->BS3, and we call it a iV-suspension trivial bundle if the iV-fold suspension of
dξ is trivial.

If Xξ is TV-suspension trivial it is known in [4] that ΣN~4X has the homotopy
type of sN+n-iVSN-1VSN+n-\ Hence from Theorem 2.3 we have
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Example 3.1. If p:Xξ->Sn is A^-suspension trivial then there exists an
exact sequence (k^N—1)

πk+n+ι(Sn) πk+n+1(BS3)

{0}—>&ίi(0)—» + —> +
4(5n) ΊZ k + n

where ξ* is the induced homomorphism by ξ, i. e.

Remark. In the case Λf=l we have £=0.

Next, let pm: Z m -^S 2 be the S^principal bundle with its characteristic map
S'-^S1 of degree m. Since {Σ*+1Xm, BS1}=0=π^+2(BS1) for * ^ l Theorem 2.4
gives

3.2. *( m

At last, considering the ^-principal bundle SO(3)->S2, Proposition 1.3 gives

Example 3.3. There exists a short exact sequence

{0}—>H(*, η) — > τr*(map(SO(3), SO(3)), 1) —•> G(*, ?) — ^ {0}

where if(*, gy) and G(*, iy) are defined respectively as follows:

H(*, η)=π*+2(S2)+πn+*+1(S2)/{2a+aΣ η, α **+2(S8)}

G(*, ^ )={2α=0-α2 τ *- 1

Let ί :S 7 ->S 3 be the Hopf bundle, in which we have dξ=λξ=c: Sz-+S\
Hence the followings follows from Theorem 2.3 and 2.4 respectively.

Example 3.4.

Example 3.5. For the Hopf map v: S7^S3 we define the homomorphism

(Σ*v): ^*+4(S8) — > π*+7(S3)

by (2T*^)(a)=«2T*v. Then we have an exact sequence



ON THE HOMOTOPY OF CERTAIN MAPPING SPACES 315

REFERENCES

[ 1 ] H. FEDERER, A study of function spaces by spectral sequences, Trans. Amer.
Math. Soc, 82(1956), 340-361.

[ 2 ] M.G. BARRATT, Track groups I , Proc. London Math. Soc, (3) 5 (1955), 71-106.
[ 3 ] J.M. M0LLER, On spaces of maps between complex projective spaces, Proc. Amer.

Math. Soc, 91 (1984), 471-476.
~ 4 ] S. SASAO, The stable group of self-homotopy equivalences of sphere bundles over

the sphere, Kodai Math. Jour., 4 (1981), 231-238.
[ 5 ] S. SASAO, The homotopy of Map(CPm, CPn), Jour. London Math. Soc, (2)8

(1974), 193-197.
[ 6 ] S. T. Hu, Concerning the homotopy groups of the component of the mapping

space Ys, Indag. Math., 8 (1946), 623-629.
[ 7 ] V. L. HANSEN, On spaces of maps of ^-manifolds into the n-sphere, Trans. Amer.

Math. Soc, 265 (1981), 273-281.
[ 8 ] G.W. WHITWHEAD, A generalization of Hopf invariant, Ann. of Math., 51 (1950),

192-237.

DEPARTMENT OF MATHEMATICS

TOKYO INSTITUTE OF TECHNOLOGY

OH-OKAYAMA, MEGURO-KU

TOKYO, JAPAN






