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SUBMANIFOLDS WITH PARALLEL RICCI TENSOR

By YOSHIO MATSUYAMA

Let M"”’(c) be a Riemannian (n+ p)-manifold of constant sectional curvature
¢, which is called a real space form. If ¢=0, then M"”’(O) denotes the Euclidean
(n+p)-space R™+?, If ¢>0 (resp. ¢<0), then M™?#) denotes the Euclidean
(n+ p)-sphere S™*P(¢) (resp. the hyperbolic (n-+ p)-space H™*?(¢)) in R*+P+!, We
consider submanifolds isometrically immersed in a real space form. Ryan [5]
showed: Let M™(n>2) be a hypersurface in M"*'(¢). If M is not of constant
curvature ¢ and if the Ricci tensor of M is parallel, then either M is locally
isometric to the product M*X M2 * 0<k<n (if =0, then k=+2), or {=0 and
the rank of the second fundamental form A (=A,) is equal to 2 everywhere.
Here, M% is a sphere of some radius contained in some Euclidean space R**!
(resp. M2°% is one in some Euclidean space perpendicular to R**!), except
possibly one of M; (=1, 2) is a Euclidean space (this can only occur if ¢<0,
and £=0 or n if ¢<0) or a hyperbolic space with some negative curvature ¢
(this can only occur if ¢<0). In order to prove the above result Ryan made
use of the following remarkable result ([5]): let M™ be as above. If the mean
curvature is constant, then the second fundamental form of M is parallel.

On the other hand, in [3], [4] the author proved:

THEOREM. Let M™ be an n~(>2)-dimensional minimal Einstein submanifold in an
(n+2)-dimensional space form M ™**) with constant curvature ¢. Then the second
Sfundamental form of M is parallel and that (1) if ¢<0, then M is totally geodesic
and that (2) if ¢>0, then either M is totally geodesic or locally isometric to the

product S™ (\/23>X5m(\/23) (n=2m) of two spheres in totally geodesic M™(¢)

in M™@) or the product S"‘(\/1—3—~>><S’"(\/1 )XS’”(\/‘%) (n=3m) of three spheres

in M)
In this paper we would like to prove the following:

THEOREM 1. Let M™ be an n(>2)-dimensional submanifold in M™?(&) with
the parallel Ricci tensor. If the mean curvature normal H is parallel and the
normal connection of M is trivial, then the second fundamental form of M is
parallel and M is locally isometric to the product M™X - XM™, 1=ZI<p+1,
where each M™ is an ns-dimensional sphere of some radius contained in some
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Euclidean space N™+' of dimension n;+1, N™i+' L N™i*' for i+, except possibly
one of the M™ is a Euclidean space N™ (this can only occur if ¢<0) or hyper-
bolic space H™(C) with some negative curvature ¢ (this can only occur if ¢<0).

COROLLARY 2. Let M™ be an Einstein submanifold in M ™). If the mean
curvature normal H s parallel, then the second fundamental form of M is parallel.

Remark 1. Let f: M—R® be a surface of constant curvature c¢+0, which
is not contained in a sphere (See [1], p. 432). Embedd R® into R* and let u be
a unit vector orthogonal to R®. Then f : Mx R—R* which defined by f(x, t)
=f(x)+tu gives an example of hypersurfaces in R* with parallel Ricci tensor,
of which the second fundamental tensor is not parallel. By this example, the
assumption on the mean curvature vector in Theorem 1 is necessary. Also,
the assumption on the normal connection in Theorem 1 is not necessary if
p=2 and H=0 (See [2], Lemma 7).

Remark 2. In S%1) the product s( )xs( ) ( 7 3) of three

spheres is a minimal Einstein submanifold. In S%1) the product SZ( N

XS‘(%)XS‘(—) of three spheres is a minimal submanifold with the parallel
. V2 V2
T 2 2
Ricci tensor. In S7(1) the product S (\/5 xS <V5)XS (\/5> of three spheres
1

and the product S* (2 )XS’( )XS‘( 5 )XS‘( 5 ) of four spheres are minimal sub-

manifolds with the parallel Ricci tensor. And, these normal connections are

trivial-«e---eee (See [7]).
Finally, we would like to thank the referee for valuable comments.

1. Submanifolds.

Let f be an isometric immersion of a connected Riemannian n-manifold
M™ into a real space form M n+2(¢) of constant curvature & For all local
formulas we may consider f as an imbedding and thus identify x=M with
f(x)EM The tangent space T .M is identified with a subspace of the tangent
space T, M. The normal space T': is the subspace of T .M consisting of all
XETxM which are orthogonal to T .M with respect to the RxemanmNan metric
g. Let ¥V (resp. V) denote the covariant differentiation in M (resp. M), and D
the covariant differentiation in the normal bundle.

With each £€=T'% is associated a linear transformation of T M in the follow-
ing way. Extend & to a normal vector field defined in a neighborhood of x
and define —A4.X to be the tangential component of Vx& for XeT, M. AX
depends only on & at x and X. Given an orthonormal basis &, ---, §, of T3
we write A,=A¢, and call the A,’s the second fundamental forms associated
with &, -, &,. If &, -, &, are now orthonormal normal vector fields in a
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neighborhood U of x, they »determine normal connection forms s,g in U by

Dzéazﬁzsaﬁ(X)éﬂ: saﬂ_l_sﬂa:()

for XeT ;M. Let X and Y be tangent to M and &, -+, &, orthonormal normal
vector fields. Then we have the following relationships (in this section Greek
indices run from 1 to p) [3]:

(L) VY =VyY+a(X,Y),
o(X, Y)=2g(AX, V), 8(AX, V)=g(AY, X),

(1.2) (VXAC,)Y—%sa,g(X)Ang:(VYAa)X—§saﬂ(Y)A/gX

——Codazzi equation,
(1.3) R¥(X, Y)&a:§g([Aa’ AglX, V)5,
(1.4) Ric=(n—1)¢I+2X(trace A,)Ae—2 A2,

where ¢ is also called the second fundamental form of f, and RY, Ric and [
denote the curvature tensor with respect to D, the Ricci tensor for M and the
identity transformation of T .M, respectively.

The mean curvature normal H is defined by

H=73(trace As)a,

where the right side is independent of our choice of the orthonormal basis for
T:. An immersion is said to be minimal if its mean curvature normal vanishes
identically, i.e., if trace A,=0 for all a.

2. Proofs of Theorem 1 and Corollary 2.

Let f be an isometric immersion of M™ into M™?(¢) with the assumption
of Theorem 1. From the results of [2], [6] and [7] we have only to prove
that the second fundamental form of M is parallel.

If p=1, then the theorem follows from Proposition 5 of Ryan [5].

We may assume that p=2. If H+0 at x, then we can choose an ortho-

normal normal vector fields &,, ---, &, defined in a neiborhood U of x such that
$1=%. Then on U we have
(2.1) trace A,=constant and trace A;=0, 2<8<p.

If M is minimal, then as we of course have for any a
trace A,=0,

we may assume that (2.1) holds on M. Now since the normal connection is
trivial, by continuity it is sufficient to prove that VA,=0. In terms of (1.4)
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we have

1.4) Ric=(n—1)¢l+(trace Ax) A —2 AL

Then from (2.1) we have

(2.2) %(VA,X)A“—}—EA,I(VAQ)—(trace ADVA,=0.

On the other hand, from the triviality of the normal connection, i.e., AzA,=
A,Ap for 1=8, y<p we have

(2.3) (VAp) A+ Ag(VA)—(VA) Ap— AT A)=0.

Since A,’s are also simultaneously parallelizable, we may consider 4;: T;—R

so that
[Zl(éa) 0 }
A= .
0 2.(8a)

Moreover we can take an orthonormal frame {e;, -, ¢,} of M such that A,e;=
A(E.)e;. Theorem 1 is trivial when M ™ is totally umblic. So we may assume
that for some B, Ag#pl. Therefore we get i#; such that 2;(§5)#2,&p). For
simplicity, put A=2; and p=1;, Now, put AzX=2A&pX, A,X=2)X, AgY=
n(&p)Y and A,Y=pu,)Y, B+y. Then from (2.2) we have

24 2AEN(Vr A) X+ 2 Aa(Vr Ae) X—(trace A)(Vy A) X=0,
(2.5) )V x A)Y +2 Aa(Vx ALY —(trace A)(Vx ADY =0.

Similarly, from (2.3) we have

(2.6) AEN(Vy Ap) X+ As(Vy A) X—A(Ep)(Vy A X— A, (Vy Ag) X=0,
2.7) &N x Ap)Y +As(Vx Ap)Y — pu(6p)(Vx A))Y — A (Vx Ap)Y =0.
Subtracting (2.5) from (2.4), using Codazzi equations (1.2), we have
(2.8) SAE)—pENVxA)Y =0.

Similarly, from (2.6) and (2.7) we have
(AN —plENN AR)Y —(A(ég)—ué)(Vx A)Y =0.
Since A(€5)# (&) by the assumption, we get

AE)—u&,)
A& s)—p(Ep)

for any y. Substituting this into (2.8), we obtain

(2.9) (VxA,)Y = (VxAp)Y
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(2.10) (VxAp)Y=0.

From (2.9), it follows (VxA4,)Y =0 for all 7.

This proves Theorem 1.

Next, we prove Corollary 2. Let M™ be an Einstein submanifold in
M™*+%(&) with the parallel mean curvature normal H.

If H+0 at x, then as in the above we choose an orthonormal normal

vector fields &,, &, defined in a neighborhood U of x such that E,=Tg|—. Now

DH=0 implies D&,=0 and hence s,,=0 in U. This implies U satisfies the
assumption of Theorem 1. Hence the second fundamental form of M is parallel
in U. If there exists a neighborhood V which satisfies H=0, then V holds the
assumption of Theorem. Hence the second fundamental form of M is parallel
in V. By continuity we obtain that the second fundamental form of M is

parallel.
This proves Corollary 2.
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