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SUBMANIFOLDS WITH PARALLEL RICCI TENSOR

BY YOSHIO MATSUYAMA

Let Mn+P(c) be a Riemannian (n + £)-manifold of constant sectional curvature
c, which is called a real space form. If c=0, then Mn+p(0) denotes the Euclidean
(w+£)-space Rn+P. If c>0 (resp. c<0), then Mn+P(c) denotes the Euclidean
(n+£)-sphere Sn+P(c) (resp. the hyperbolic (n + /0-space Hn+P(c)) in Rn+P+1. We
consider submanifolds isometrically immersed in a real space form. Ryan [5]
showed: Let Mn(n>2) be a hypersurface in Mn+\c). If M is not of constant
curvature c and if the Ricci tensor of M is parallel, then either M is locally
isometric to the product M\xMTk

7 0^k<>n (if c=0, then kΦ2\ or c=0 and
the rank of the second fundamental form A (=i4i) is equal to 2 everywhere.
Here, M\ is a sphere of some radius contained in some Euclidean space Rk+1

(resp. M\~k is one in some Euclidean space perpendicular to Rk+1), except
possibly one of Mt (2 = 1, 2) is a Euclidean space (this can only occur if c<0,
and k=0 or n if c<0) or a hyperbolic space with some negative curvature c
(this can only occur if c<0). In order to prove the above result Ryan made
use of the following remarkable result ([5]): let Mn be as above. If the mean
curvature is constant, then the second fundamental form of M is parallel.

On the other hand, in [3], [4] the author proved:

THEOREM. Let Mn bean n(>2)-dimensional minimal Einsteinsubmanifoldin an
(w+2)-dimensional space form Mn+2(c) with constant curvature c. Then the second
fundamental form of M is parallel and that (1) if c^O, then M is totally geodesic
and that (2) if c>0, then either M is totally geodesic or locally isometric to the

product 5 m ( τ 7 p ) x 5 m ( ^ p ) ( ^ = 2 ^ ) of two spheres in totally geodesic Mn+\c)

in Mn+2(c) or the product sm(-^)xSm(τ/^)xSm(-77^) (n=3m) of three spheres

in Mn+\c).

In this paper we would like to prove the following:

THEOREM 1. Let Mn be an n(>2)-dimensional submanifold in Mn+P{c) with
the parallel Ricci tensor. If the mean curvature normal H is parallel and the
normal connection of M is trivial, then the second fundamental form of M is
parallel and M is locally isometric to the product M n i χ ••• xMnι, 1 ^ / ^ ί + l ,
where each Mni is an ni-dimensional sphere of some radius contained in some
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Euclidean space Nni+1 of dimension Πi+1, Nni+1±NnJ+1 for iφj} except possibly
one of the Mni is a Euclidean space Nni {this can only occur if c^O) or hyper-
bolic space Hni(c) with some negative curvature c (this can only occur if c<0).

COROLLARY 2. Let Mn be an Einstein submanifold in Mn+\c). If the mean
curvature normal H is parallel, then the second fundamental form of M is parallel.

Remark 1. Let / : M->R3 be a surface of constant curvature cφO, which
is not contained in a sphere (See [1], p. 432). Embedd RB into i?4 and let u be
a unit vector orthogonal to RB. Then fiMxR-^R* which defined by f(x,t)
=f(x)+tu gives an example of hypersurfaces in R4 with parallel Ricci tensor,
of which the second fundamental tensor is not parallel. By this example, the
assumption on the mean curvature vector in Theorem 1 is necessary. Also,
the assumption on the normal connection in Theorem 1 is not necessary if
/>=2 and HφO (See [2], Lemma 7).

Remark 2. In S5(l) the product sX^)xS1(^γ)xSί(-Jγ) o f t h r e e

spheres is a minimal Einstein submanifold. In S6(l) the product S2(—γψ\

XS1(-^\xS1(γ) of three spheres is a minimal submanifold with the parallel

Ricci tensor. In 57(1) the product S 2 ( ^ ) x S 2 ( ^ | = ) x S 1 ( - ^ ) of three spheres

and the product s l ( τ ) x S 1 ( τ ) x S 1 ( τ ) X l S 1 ( τ ) o f f o u r spheres are minimal sub-

manifolds with the parallel Ricci tensor. And, these normal connections are

trivial (See [7]).
Finally, we would like to thank the referee for valuable comments.

1. Submanifolds.

Let / be an isometric immersion of a connected Riemannian rc-manifold
Mn into a real space form Mn+P(c) of constant curvature c. For all local
formulas we may consider / as an imbedding and thus identify x e M with
/ ( Ϊ ) G M . The tangent space TXM is identified with a subspace of the tangent
space TXM. The normal space T£ is the subspace of TXM consisting of all
X^TXM which are orthogonal to TXM with respect to the Riemannian metric
g. Let 7 (resp. 7) denote the covariant differentiation in M (resp. M), and D
the covariant differentiation in the normal bundle.

With each ξ^T^ is associated a linear transformation of TXMin the follow-
ing way. Extend £ to a normal vector field defined in a neighborhood of x
and define —AξX to be the tangential component of 7 ^ | for X<BTXM. ΛξX
depends only on ξ at x and X. Given an orthonormal basis £i, ••• , £p of T ί
we write Aa=Aξa and call the ^4α*s the second fundamental forms associated
with ξu — , ξp. If ξu ••• , ξp are now orthonormal normal vector fields in a
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neighborhood U of x, they determine normal connection forms saβ in U by

saβ + sβa=0

for X^TXM. Let X and Y be tangent to M and ξu ••• , fp orthonormal normal
vector fields. Then we have the following relationships (in this section Greek
indices run from 1 to p) [3] :

(1.1) lxY=lxY+σ{X, Y),

σ(X, Y)=Hg{AaX, Y)ξa, g(AaX, Y)=g(ΛaY, X),
a

(1.2) (yxAa)Y-Z
β

Codazzi equation,
(1.3) R»(X, Y)ξa=Ίlg(ίAa, Aβ]X, Y)ξβ,

β

(1.4) Ac=(n-l)2 r/+Σ(tracei4αMβ-Σi4J,
a a

where σ is also called the second fundamental form of /, and RN, Ric and /
denote the curvature tensor with respect to D, the Ricci tensor for M and the
identity transformation of TXM, respectively.

The mean curvature normal H is defined by

where the right side is independent of our choice of the orthonormal basis for
T£. An immersion is said to be minimal if its mean curvature normal vanishes
identically, i.e., if trace Aa=0 for all a.

2. Proofs of Theorem 1 and Corollary 2.

Let / be an isometric immersion of Mn into Mn+P(c) with the assumption
of Theorem 1. From the results of [2], [6] and [7] we have only to prove
that the second fundamental form of M is parallel.

If p=l, then the theorem follows from Proposition 5 of Ryan [5].
We may assume that p^2. If HφO at x, then we can choose an ortho-

normal normal vector fields ξlr •••, ξp defined in a neiborhood U of x such that
IT

£ I = 7 T F Γ Then on U we have

(2.1) traceAλ—constant and t r a c e ^ ^ O , 2<β^p.

If M is minimal, then as we of course have for any a

trace ̂ 4«—0,

we may assume that (2.1) holds on M. Now since the normal connection is
trivial, by continuity it is sufficient to prove that ΊAa=0. In terms of (1.4)
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we have

(1.4/ Ric=

Then from (2.1) we have

(2.2)

On the other hand, from the triviality of the normal connection, i.e., AβAr=
ArAβ for l^jS, γ£p we have

(2.3) C7Aβ)Ar+Aβς7Ar)-C*Aτ)Aβ-Af7Aβ)=0.

Since Aa's are also simultaneously parallelizable, we may consider λ%: Ti—>R
so that

L o λn(ξa)\

Moreover we can take an orthonormal frame {plf ••• , en} of M such that Aaei—
λi{ξa)ei. Theorem 1 is trivial when Mn is totally umblic. So we may assume
that for some β, Aβφpl. Therefore we get iφj such that λi{ξβ)Φλj{ξβ). For
simplicity, put λ—λt and μ=λj. Now, put AβX=λ(ξβ)X> AγX=λ(ξr)X, AβY—
μ(ξβ)Y and ArY=μ(ξr)Y, βφγ. Then from (2.2) we have

(2.4)
a a

(2.5) Hμ(ξa)WχAa)Y+ZAa(lxAa)Y-(trace Aι)(VxAι)Y=0.
α α

Similarly, from (2.3) we have

(2.6) λ{ξr)(lγAβ)X+Aβ{ΊYAr)X-λ(ξβ){ΊYA1)X-Ar{lYAβ)X=O,

(2.7) μ(ξr)(lxAβ)Y+Aβ{lxAr)Y-μ(ξβ)(lxAr)Y-Ar{lxAβ)Y=O.

Subtracting (2.5) from (2.4), using Codazzi equations (1.2), we have

(2.8) Σ(λ(ξ«)-μ(U

Similarly, from (2.6) and (2.7) we have

Since λ(ζβ)Φμ(ξβ) by the assumption, we get

for any γ. Substituting this into (2.8), we obtain
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(2.10) C

From (2.9), it follows C7xΛr)Y^=0 for all γ.

This proves Theorem 1.

Next, we prove Corollary 2. Let Mn be an Einstein submanifold in

Mn+2(c) with the parallel mean curvature normal H.

If HφQ at x, then as in the above we choose an orthonormal normal
TT

vector fields ξlf ξ2 defined in a neighborhood U of x such that £I=TTFΓ NOW

=0 implies D£i=0 and hence s12=0 in U. This implies U satisfies the

assumption of Theorem 1. Hence the second fundamental form of M is parallel

in U. If there exists a neighborhood V which satisfies H=0, then V holds the

assumption of Theorem. Hence the second fundamental form of M is parallel

in V. By continuity we obtain that the second fundamental form of M is

parallel.

This proves Corollary 2.
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