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GEOMETRY OF CERTAIN FIRST ORDER DIFFERENTIAL
OPERATORS AND ITS APPLICATIONS
TO GENERAL CONNECTIONS

By NAOTO ABE

§0. Introduction.

The covariant derivative of a connection on a vector bundle is a first order
differential operator from the vector bundle to itself. In this paper, we deal
with a first order differential operator from a vector bundle over a manifold to
another vector bundle over the manifold whose properties are ‘similar to those
of a covariant derivative, which we will call an O-derivative operator. When
these vector bundles are identical, the operator is a covariant derivative of a
general connection in the sense of T. Otsuki. The general connections were
defined by T. Otsuki in [Ol] as a generalized notion of usual ones. He defined
the general connections on the tangent tensor bundles of a manifold and defined
associating geometrical objects analogous to those of usual ones, for example,
their curvature and torsion forms [02]. In his papers [01]-[O11], many results
about general connections were obtained.

Recently the present author defined general connections on arbitrary vector
bundles and studied some fundamental properties in [A]. H. Nemoto [N] applied
the theory to the normal bundle of a submanifold and developed the submanifold
geometry initiated by T. Otsuki and C.-S. Houh [H], [010] and [OH]. A.
Bejancu and T. Otsuki [BO] applied the theory to vector bundles over the
tangent bundle of a manifold, especially the vertical bundle of a Finsler manifold.
In these two papers, they deal with some vector bundles and linear operators
from one to another. The main purpose of this paper is to generalize the theory
of general connections and also prepare some formulae which can be applied to
the cases treated in these papers.

In §1, we will prepare notations used in this paper and define the O-deri-
vative operator. In §2, some algebraic properties of the space of O-derivative
operators will be studied. In §3, the curvature and torsion forms of O-deri-
vative operators will be defined. In §4, using given ones, we will construct
O-derivative operators on the dual and tensor product bundles and investigate
their curvature forms. In §5, we will define induced O-derivative operators
induced by bundle maps and investigate their curvature forms. The theory will
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be applied to geometry of subbundles in a vector bundle with a general connec-
tion in §6 and §7.

The author would like to express his hearty thanks to Professor T. Otsuki
for his helpful advice. He also would like to acknowledge the constant encourage-
ment of Professor S. Yamaguchi.

§1. Preliminaries.

We assume that all objects are smooth and all vector bundles are real
throughout this paper. Let M be a manifold, T(M) its tangent bundle and C(M)
the ring of real-valued functions on M. We will use letters V, W and these
with superscript and prime to denote vector bundles over M. The fibre of a
vector bundle V at x=M is denoted by V., and the dual bundle of V by V*.
The space of cross-sections of V is denoted by I(V), which has a canonical
C(M)-module structure. Let Hom(V, W) be the vector bundle of which fibre
Hom(V, W), at x is the vector space Hom(V,, W) of linear maps from V, to
W .. Especially Hom(V, V) is denoted by End(V). We note that Hom(V, W)
can be canonically identified with the tensor product V*@W. The space of
vector bundle homomorphisms from V to W is denoted by HOM(V,W). We
denote the zero homomorphism from V to W by 0y » or simply 0. Especially
HOM(V, V), the ring of endomorphisms on V, is denoted by END(V). In parti-
cular, for non-negative integer », we denote the space of W-valued r-forms on
M by A"(M, W) or simply A"(W). We denote the identity (resp. zero) endomor-
phism of V by Iy, (resp. 0y or simply 0). We note that HOM(V, W) can be
canonically identified with the space I'(Hom(V, W)).

Let HEHOM(V,W) and H,=H|V .= Hom(V,, W,) for each x&M. We
define a linear map H: I'V)=I'W) by (H(s))(x)=H.(s(x)) for sel(V) and
x&M. Then we see that H is a C(M)-module homomorphism, that is, H(fs)=
fH(s) for seI'(V) and feC(M). Conversely we have

LEMMA 1.1. If a linear map B: ['(V)-I'(W) satisfies B(fs)=fB(s) foz any
s€l'(V) and fC(M), then there exists a unique He HOM(V , W) such that H=B.

We will use the same symbol to denote a vector bundle homomorphism H
and the induced linear map H on the space of cross-sections. Now we make

DEFINITION. For P€ HOM(V, W), a linear map V: I'(V)—>I'(T(M)*Q@W) is
called an O-derivative operator from V to W with the principal homomorphism
P, if V satisfies

Vfs=(df)RPs+ Vs for any feCWM), ssI'(V).

Let O(V, W ; P) be the set of O-derivative operators from V to W with the
principal homomorphism P. Put OV, W):=U{O(V, W ; P)|P€ HOM(V, W)}.
Especially we denote O(V, V; P) by O(V; P) and O(V, V) by O(V).
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For special examples, we have the followings:
PROPOSITION 1.2. OV, W ; Oy w)=HOMYV, T(M)*QW).
This is a special case of the above lemma.

THEOREM 1.3 ([A]). O(V; P) is the set of covariant derivatives of general
connections on V with the principal endomorphism P=END(V).

COROLLARY 1.4. O(V; Iy) is the set of covariant derivatives of wusual con-
nections on V.

Remark. In [A], using the 1-jet bundle, it was proved that an element of
O(V ; P) uniquely determines a general connection defined by T. Otsuki [O1]
if Vis T(M)*.

DEFINITION. If xeM and v=T(M),, then we define a linear map V,:
I'(V)-W, by V,s:=i(Vs) for s€I'(V), where 7, is the inner product operator.
Similarly if XelI'(T(M)), then we define a linear map Vy: I'(V)->I'(W) by
(Vxs)(x):=Vxes. We call Vy the O-derivative operator along X.

Then we clearly get

PROPOSITION 1.5. The map T(M), XIT'(V)2(, s)—V,se€ (W) is bilinear and
satisfies

Vofs=Wf)Ps)(x)+ f(x)Vys for feCWM) and xEM.

Moreover, we have
Vxsel' W) and V,xs=fVys for s€I'(V) and Xe'(T(M)).

THEOREM 1.6. Let U be an open set of M and xU. For s, s’€l(V) and
X, X' el'(TM)), if s=s" on U and X=X" at x, then (Vgs)(x)=x s")(x).

Proof. Lemma 1.1 assures that (Vgs')(x)=Nx s')x). It is sufficient to
show that (Vxs)(x)=(xs’)(x). Take open subsets U,, U, and feC(M) such
that x= U,, Cl(U,)cU,, Ci(Uy)c U, f=1 on CI(U,) and f=0 on (U,)¢, where CI( )
and ( )¢ are the closure and the complement respectively. Then f(s—s’)=0 on
M. The above proposition implies

0=Vx(f(s—sN=(Xf)P(s—s")+fVx(s—s').
Since (Xf)(x)=0 and f(x)=1, we have (Vxs—Vyxs')(x)=0.

We note that V, or Vy uniquely determines V. This theorem assures that
we can study O-derivative operators by using components with respect to local
coordinates and frame fields.
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Remark. As first order differential operators, the symbols ¢,(V) and ¢,(Vyx)
for VOV, W ; P) are

0,(V)§)e=EQP.e and ¢,(Vx)(§e=(xc)§)Pze
for é€T(M)*, eV, and xEM.

§2. Algebraic structures of OV, W).

At first we consider, in O(V, W), addition and multiplication by elements
of END(V) and END(W) as follows.

DEFINITION. If Ve OV, W ; P?) (=1, 2), then we define the sum V!+V?2 by
(V49 xs :=Vss+V%s for s€l'(V) and XelI'(T(M)).

If VeO(V,W; P), REeEND(V) and LENDW), then we define the products
LY and VR by

(LV)xs:=L(xs) and (VR)XS =Vx(Rs).

PROPOSITION 2.1. V'+V:eOWV, W ; P'4+P?, INcsO(V,W ; LP) and VRe
oOWV,W; PR). Moreover, the set OV, W) has a right END(V) and left END(W)-
module structure with respect to these addition and multiplication.

COROLLARY 2.2 ([A]). The set O(V) has a both side END(V )-module structure.

Remark. In the case of the tangent bundle, the multiplication in O(V) was
defined and the associative law was stated in [O7]. See also [0O11] for some
algebraic properties of general connections.

Furthermore, we consider multiplication by vector bundle homomorphisms.

DEFINITION. If Le HOMW,W’), Re HOM(V’, V)and VOV, W ; P), then
we define LV and VR by

(LN)xs:=L(Nxs) and (VR)xt:=Vx(Rt)
for sel'(V),tel(V") and XeI(T(M)).
Then we have

THEOREM 2.3. LVeOWV,W’; LP),VNReO(V', W ; PR) and (LN)R=L(VR)
eOo(V’, W’; LPR). Moreover, the maps HOMW , W")x OV, W)-OWV, W’) and
oWV, W)xHOMYV’, V)—»OV’, W) are bilinear.

We will call the O-derivative operators LV and VR induced O-derivative
operators induced by vector bundle homomorphisms and denote (LV)R by LVR.
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When V=V’ and W=W"’ are isomorphic vector bundles, O(V, W) and O(V’, W’)
are isomorphic as modules. Then we will denote the corresponding operators
by the same symbol if the isomorphisms are canonical. In the case of general
connections, we get

COROLLARY 2.4 ([A]). If VOV ; P), L€ HOM(V, V’')yand Re HOM(V', V),
then we have LNRO(V’; LPR).

Remark. 1If V=T(M) and W is a subbundle of T(M), this type of induced
covariant derivatives of general connections was essentially defined in [0O7]. In
general, for V and W, let V be their Whitney sum, i: V—V and //: W—V
the inclusion homomorphisms. If P HOM(V, W), then we can find P END(V)
such that Pis=¢'Ps for seV. Similarly, if YOV, W), then we can find
T=0(V) such that Vis=:'Vs for sel(V), see also §86.

§3. Curvature and torsion forms.

At first we define the following form which generalizes the difference of
two covariant derivatives of usual connections (see also Theorem 4.7). Let V&
OWV,W; P) and VVeO(V’, V; P").

DEFINITION. If XeI'(T(M)), then a linear map S(V, V)x: I'(V')»I'(W) is
defined by

SN, Vs :=Vx(P's)—P(N%s) for sel'(V’).
We call S(V, V) the difference form of the pair (V, V).
THEOREM 3.1. SV, V)€ AHom(V’, W)).
Proof. Since VP’, PN'eO(V’, W ; PP’), we have
VP —PV OV, W; Op w)=HOMYV', T(M)*QW)=A(Hom(V’, W)).

Let 'NeOW, W’; 'P). From Theorem 2.3, it is clear that

THEOREM 3.2. The map S: OV, W)xOV’, V)—A'(Hom(V?*, W)) is bilinear.
Moreover, we have

S(LV, V)=LS(N, V") for Le HOMW,W’),

S(V, RV)=S('VR,V’)  for ReHOMYV,W)

SUV,VRY=S(N, )R’  for R'€HOMV', V).
COROLLARY 3.3. S(N, VP')—S('N, PV)+S( PN, ¥)=0.

and

Next we define the following auxiliary operator which can be used in some
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formulae concerning curvature forms.

DeFINITION. If X, Yel'(T(M)), then a linear map (VAV ). y: T'V)=T'W)
is defined by

VAV x vs : =V x(Vy8s)—Vp(V%S$) for sel'(V).
From Theorem 2.3, it is clear that

LEMMA 3.4. For X, Yl (TWM)), NAV)xy is bilinear on OV, W)X
oWV’, V). Moreover, we have

(LYIAY)x,y=L(NAV)x,y for LeHOMW, W),
(VNARV)x,y=CUVNRAV)xy  for ReHOMV,W)

and
UVAVR)x y=(VAV)x yR’ for R'€HOMV’, V).

LEmMMA 3.5. For s€l'(V’) and f€CM),
AV ) x,vs=fAV)x,ys—(Y [)PV%s
VAV xvfs=(LX, Y1)PP's—(Xf)S(V, V)ps
+XY NSV, V)xs+ VAV )x,ys.

and

Now we define the curvature form as follows.

DEeFINITION. If X, Yl (T(M)), then a linear map K('V, V, V)x,y: ['(V')—
I'(W’) is defined by

K(V, V¥, V)x,rs :="Vx(Vp(P’'$)—"Vy(Vx(P’s))—"P(Nrx,y:(P’s))
—'Vx(P(Vy$)+' PV x(Vy$)+ Vp(P(Vxs))—"P(Ny(Vks))
for s€l'(V). We call K('V, V, V') the curvature form of the triple ('V, V¥, V).
From the definitions, we have
LEMMA 3.6.
KUV, V¥, Vg, vs=CVAVP ) x,ys—CV APV ) g, ys+CPVAV ) x vs
—'PNtx,yiP’s
=(VASN, V)x,vs+PIAV)x,vs— PVcx,y1P’s
=(VAVP)x,ys—(SUV, VAV ) x,ys—"FNcx,v1P’s.

From Corollary 3.3, Lemmas 1.1, 3.5 and 3.6, we get the following funda-
mental fact:
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THEOREM 3.7. K(NV, V, V') AX(Hom(V’, W’)).

Remark. If V=V'=W=W’ and V=V'='V, then K(V, V, V) coincides with
the curvature form K(V) of the general connection Ve O(V), which was defined
in [O1] and [A].

Let V'OV, W) and V' OW?*, W’). From Lemmas 3.4 and 3.6, we obtain

THEOREM 3.8. The map K: OW, W)xOWV, W)xOWV’, V)—AX(Hom(V’',W"))
18 trilinear. Moreover, we have

KCL'N, N, N)="LK(VN,V,N')  for 'LeHOMW’, W),

K¢V, LY, V)=K(V'L,N,N')  for LeHOMW,W"),

KV, V', RV)=K(V, V'R, V')  for ReHOMV,V?")
and

K(V,V,VR)=K(V,V,VN)R"  for R'€HOM(V', V’).

For a later section, we prepare some formulae in the following special
cases:

PROPOSITION 3.9. For sel'(V’),

K(/V’ V7 v,)X,YS:‘(/V/\S(V: V/))X,YS (/PZO)y
=(VAVP) x,yS+(PIAV ) g, vs—'PVix viP’s (P=0),
=—(SCV, AV )x ¢S (P'=0).

COROLLARY 3.10.

K(V, N, V) x,vs=(VAVP)x,ys ('P=0 and P=0),
=(PVAV)x,ys (P=0 and P’=0),
=—(VAPY)x,rs ('P=0 and P’'=0),
=0 ("P=0, P=0 and P’=0).

We can generalize the torsion forms of usual connections on the tangent
bundle to the case of O-derivative operators from 7(M) to another vector bundle
over M as follows. Let VeO(T(M), W; P).

DEFINITION. For X, YelI'(T(M)), TW)x,y=I'(W) is defined by
Ty r:=VxY -y X—P([X, Y]).

We call T(V) the torsion form of V. If T(V)=0, then V is said to be torsion-
free.



212 NAOTO ABE

From Lemma 1.1, we have
THEOREM 3.11. T(N)e A*W).

Remark. In [02], T. Otsuki defined the torsion form of a general connec-
tion on the tangent bundle.

THEOREM 3.12. The map T : O(T(M), W)—A*W) is linear. Moreover, for
Le HOMW , W’), we have

T(LN)=L(T\N)).

§4. O-derivative operators on dual and tensor product bundles.

If PEHOM(V, W), then P* HOM(W*, V*) is defined by (P*n)(s):=n(Ps)
for yel’'(W*) and seI'(V). Let VOV, W ; P).

THEOREM 4.1. For nel'W*) and XeI'(T(M)), define a real-valued linear
Sfunction Ny on I'(V) by

(VE)(S) :=X(n(Ps)—n(Nxs)  for sel'(V).

Then we have
1) Vinel(V*) and V*€OW*, V*; P*);
2) The map *: OV, W)—> OW*, V*) is linear;
3) (LN)*=V*L* and (NR)*=R*V* for L HOM(W,W’), Re HOM(V’, V).

Proof. Since (2) and (3) are clear, we will prove (1). For feC(M), we get

(VE(f)=X(fn(Ps))—n(Vx(fs))
=(Xf)n(Ps)+fX(n(Ps)—n(Xf)Ps+ [V xs)
=fX(n(Ps))—fn(Vxs)=f(VEn)s).

Then Lemma 1.1 implies V¥np=I'(V*). Moreover, we get

(Ve f)(8)=X(fn(Ps)— (T xs)
=(Xf)n(Ps)+fX(9(Ps)—fn(Vxs)
=((Xf)P*n+1V%n)s).

We call V* the dual O-derivative operator of V. If P*e HOM(VE, W) (i=1, 2),
then we define P'QP2 HOM(V'QV?, W'QW?) by requiring (P'*QP?)(5;Qs,):=
(P's))Q(P%s,) for s;e (V). Let V'eO(V?:, Wt; P (=1, 2).

THEOREM 4.2. We have
(1) There exists a unique V'QV*cO(V'QV?, WQW?; P'QP?) such that
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(V'QV) x(5:@52)=(Vi s)Q(P?s0) +(P'$.)Q(V 52)

for s;,<I'(V?) and XeI'(T(M));
(2) The map Q: OV, WHXOWV? W) — OVQV? WRQW?) is bilinear ;
3) (L'QLHV'QVH=(L'VHRQL*N? and (V'QV)(R'QR*)=(V'RHQ(V*R?)
for L*e HOMW?, W¥) and R HOM(V?, V?) (=1, 2).

We call V'®V? the tensor product of V' and V2 As in the preceeding
sections, we will denote the corresponding O-derivative operators by the same
symbol in canonical isomorphisms, for example, V'QV:*x=V:QV!, (V'QVHRV?®
=V'QVIRQV?E), VW =Hom(V, W) and V*QV*=(VRV)*. For simplicity,
we denote (QV)Q@W*) by (V, W)™, (X P)RQ(R P¥)s HOM(V, W)=,
W, V)m9) by PT® and (QVRAQTHeO(V, W), (W, V)9 ; PTo) by
Y9 or more simply by ¥ for VEO(V, W). From the definitions, we have

PROPOSITION 4.3. The O-derivative operator @EO((V, Wy (W, V)T,
P™®) satisfies

Vx(s:@-+ @5, QM- @)= g(Psx)®---®(szi)®~'®(P*771)®--~®(P*7)s}

+ 3 (PS)Q-@(Ps Q- @V @(P*7)
for s, &'(V), n; " (W*).
For a later section, we prepare

PROPOSITION 4.4. Under the canonical Az’somorphz’sms WV, W)ed=(WRW)*
and W, V)2 =(VQV)*, the corresponding N O(WRW)*, (VQV)*) satisfies

(T x8)(5:®5.)=X(g(Ps,@P5:))—&(V x$:QPs)— g(Ps, @V x52)
for ge(WQW)*) and s,=I'(V).

Proof. Since 7,Qn.€ ' (W*QW?*) is considered as a function on I'(IWQW)
such that (9,®7,)(t.Qt,)=5.E)7,¢:) for t,Qt,e'(WRW), we have

T x(n@7)(5:@5)= (V& NIR(P*10)+(P*7)Q(T% 72))(5:Rs2)
=(VE)(S)P*9:)(82)+(P*00)(s:1)(VE7)(s2)
=(X(0:(P$))— 0:(V x $0)72(P33) + 11 (Ps:)(X(12(P55)) — 1:(V x S2)
=X((17:@7:)(P$:QP52)) —(1:@9:)(V 2 $:QP52) — (1@ 7)(P5:QV x 55) -

PROPOSITION 4.5. Under the canonical z'somorpAhz‘sms V, W)= Hom(W, V)
and W, V)Y D=Hom(V,W), the corresponding N=O(Hom(W, V), Hom(V, W))
satisfies
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(VxH)s=Yy(HPs)— PH(Vxs)
for HEI'(Hom(W, V)) and s<I'(V).

Proof. Since e@nel'(VQWH*) is considered as a function on I'(W) such
that (e@)(t)=7n)e for teI'W), we get

2 (e@M)(8)=((Vxe)Q(P*7)+(P)R(T%7))(s)
=(P*n)(s)Vxe+(V¥n)(s)Pe=n(Ps)V xe+(X(n(Ps))— (N xs))Pe
=Vx((e@n)Ps))—(Pe)RQn)(Vxs).

We can generalize this proposition as follows. Let VeO(V’, V; P’) and
NeOoW,W’; 'P). Then we have

THEOREM 4.6. Under the canonical isomorphisms W, V)V = Hom(V, W)
and (W', V)ED=Hom((V’, W), the corresponding 'NQRQN)Y*€O(Hom(V, W),
Hom(V’, W")) satisfies

((NQW" ) xH)s="Nx(HP's)—'PH(N%s)
for HEI'(Hom(V, W)) and sI'(V’).

The proof is similar to that of Proposition 4.5. Now we consider the dif-
ference and curvature forms S and K. Let V'eO(V’, V; P’). Theorem 4.6
implies

THEOREM 4.7. SN, V)=NQN")*)Iy.
Remark. 1f V=V'=W and V=V, then SV, V)=91,.
From the definitions, we have
THEOREM 4.8. For nel’'W*) and sel'(V’),
S, V¥n)s)=nSN, V))=—(SN, V' )*n)s).
LEMMA 4.9. For n€l'(W*) and s€I'(V"),
(V*AVE 2,y ()=[X, YIn(PP's)+Y (SN, V')xs)
—Xn(S(V, V)ys)—n(VAV )x,¥s).
Let 'NeOW, W'’; 'P). From Corollary 3.3, Lemmas 3.6 and 4.9, we get

THEOREM 4.10. For nel’'W'*) and s€I'(V’),
(K(V'*, V¥, 'I*)n)(s)=—n(K(V, ¥V, V)s).
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Let VV€0O(NY, V) (1=1, 2).

From the definitions, we have

THEOREM 4.11. For s;el'(V¥) (=1, 2),

S(V'QV?, VVRV¥)(5:Rs,)=SV", V)5, QPP s,
+P'P's,QS(V?, V¥)s,.
LEMMA 4.12. For s;,cl'(VY) (=1, 2),
(V'QVINVQV ) x, ¢(5: Q) =V AVY) ¢, $: QP*P¥s,

+SVY, V) xs:QVEPY 5,— V5 PV s, QS(V?, V¥)y s,
=SV, V)ps:QV% PY s, +VEPY s, QS(V2, V) g s,
+PPYs;Q(EAVY ) x,¥Ss.

Let 'VieOW?® W*) (i=1, 2). From Corollary 3.3, Lemmas 3.6 and.4.12,
we get

THEOREM 4.13. For s;=l'(V¥) (i=1, 2),

K(V'Q'V, V'QVE, VRV z,(5:Qs)=K('T', V!, V') x,y5,@ P P*P¥s,
+SCV, VPY) x5, QS( PPV, V¥ )ps,—S( PV, V) x5 @S(V?, T2PY)ys,
—S(V!, V'PY)ys,@S( PV, V¥)x5,+S( PV, V) s,QS('V2, V2P ) s,
+'P'P'PYs@K(T?, V2, T)x v5s.

Remark. A sort of Ricci’s formula for general connections on the tangent
tensor bundle was obtained in [09] and [OH].

§5. O-derivative operators on induced bundles.

Let N be a manifold and F: N—>M a map. If V is a vector bundle over
M, we denote the induced bundle over N by F#*V, the bundle map by F: F*V
—V and its restriction to the fibre by F, for y&N. A linear map F#*: I'(V)
—I'(F#V) is defined by (F*s)(y):=F3"(s(F(y))) for s€l'(V)and yeN. We note
that there are canonical isomorphisms: F#(V*)=(F#*V)*, F*VRW)=(F*V)Q
(F*W) and F*(Hom(V, W))= Hom(F*V, F¥W) for vector bundles V and W over
M. For vector bundle valued forms, we make

DEFINITION. If He A"(M, Hom(V, W)), we define F¥He A"(N, Hom(F*V,
F#*W)) by
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(F#H)yy, -+, v ))(O) =F 3 (Hreyy(Fxvy, -+, Fxv))(F b))

for v,;€T(N),, te(F*V), and ye N, where Fy is the differential of the map F:
N-M.

We note that, if P€HOM(V,W), then F¥*P=HOM(F*V, F*W) satisfies
(F#P)F#s=F*#(Ps) for s€l'(V). Let VeOWV,W; P).

THEOREM 5.1. We have
(1) There exists a unique O-derivative operator F¥NeO(F*V, F¥W ; F#P)

such that
(F¥V)yF#s=F3'(NVp,08) for any seI'(V),veT(N),, yEN;

(2) The map F¥: OV, W)—>O(F*V, F*¥W) is linear ;
3) FA(UN)=(F*L)F*N) and F*(NR)=(F*VN)(F*¥R) for L HOMW,K6 W’)
and Re HOMV'’, V).

Proof. Since (2) and (3) are clear, we will prove (1). At first, we will
define (F*N)t=(F*¥W), for veT(N), and tl'(F*#V). Take an open set U in
M such that F(y)eU and there exist local frame fields e, (a=1, -+, dimV).
Then F#e, are local frame fields of F*¥V on F~'(U) and t=3}t*F*e, on F~(U).

Now we make
(FAN)t =Wt N F #(Pea))(3)+ 2t F 7' (Vroea) -

We can show that this definition does not depend on the choice of local frame
fields on M. It is clear that (F*V),F#s=F3'(Vr,.s) and satisfies the formula in
Proposition 1.5. Next we will prove that (F*V)ytel'(F*W) for Y&l (T(N)).
Take local coordinates x¢ (¢=1, -, dimM) and y* (7=1, ---, dimN) and denote
0,=(0/0x*) and 0,=(0/dy%). Since Fx(0:),=X(0:x*)(¥)0a)rcyy We can locally
get the following formula:

(F#V)5, F#5=2(0:x*)F*(N5,5).

Thus (F*V)yt is a smooth cross section of W. Finally Theorem 1.5 implies the
statement (1).

We will call F#V the induced O-derivative opsrator induced by a bundle
map. We note that

COROLLARY 5.2. On OWV,W; 0), this map F# coincides with what defined
for A"(M, Hom(V, W))=HOMYV , W).

Now we consider the forms S and K. Let VeO(V’, V). From the defini-
tions and Theorem 5.1 and Corollary 5.2, we have

THEOREM 5.3. S(F#V, F¥V)=F*%S¥, V).
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Let 'NeOW, W’). Then we have
THEOREM b5.4. K(F#N, F¥V, F¥N)=F*(K(V, V¥, ¥)).
Proof. Theorem 3.7 assures that it is sufficient to prove that
K(F#N, F*N, F¥),.0,F*s=F*K(V, V¥, V)rs; ra;5),

where 0; are the natural tangent frame fields as in the proof of Theorem 5.1.
Using the formula in the theorem, we have

(F#V)o,(F #V),F #5)=(F #V)3,(3(0;x ) F #(V5,5))
=202 )F *(PV5,8)+S(0:x)(@,x*)F #*(V3,(Vo, 5)).
Then we get
(FEVAF#)5,,0,F #s=23(0:x°)(0,;x)F*(V AV )35,5, 5) -
Lemma 3.6 and Theorem 5.1 imply
K(F#*N, F#N, F#V)5,5,F*s=33(0:x")@;x ) F#*(K(N, ¥, ¥)3,,5,5) -

Remark. Two types of induced O-derivative operators defined in this and
the second sections can be applied to study submanifolds of spaces with a
general connection, for example, see [010], [H], [OH] and [N]. See also the
final paragraph in the next section.

§6. Induced O-derivative operators on subbundles.

Let V be a vector bundle over M, V a subbundle of V and i HOM(V, V)
the inclusion map. Fix a projection operator p=HOM(V, V), that is, pi=Iy.
Then we get a decomposition V=V@V’ (direct sum), where V' is a subbundle
of V, and the inclusion /€HOM(V’, V) and the projection operator p’'<
HOM(V, V’). Then we see that pi=Iy, p'i=0, pi’=0, p’i’=Iy and Ip=ip+i'p’.
We note that the decomposition of V in this section may have no relations with
a metric. In the next section, we will treat the decomposition induced by a
metric. For PE END(V), put P:=pPic END(V), Q :=p'Pic HOM(V, V'), Q" :=
' Pi’e HOM(V’, V) and P’:=p'Pi’e END(V’). Then weihave Pi=iP+i’Q and
Pi'=iQ’+i’P’. Let Y=O(V; P), that is, a covariant derivative of a general
connection, and put D:=p%Vi, B:=p'Vi, B’ :=pVi’ and D’:=p'Vi’. From Pro-
position 2.1 and Theorem 2.3, it immediately follows that

THEOREM 6.1. DOV ; P), Beo(V,V’;Q), BeoV’,V;Q", D'eOV’;
P’y and
Vi=iD+i’B in OV, V), Wi'=iB’+i'D’ in O(V’, V).

We will call D (resp. D’) the induced covariant derivative on V (resp. V’)
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and B (resp. B’) the shape operator of V (resp. V’). The first (resp. second)
equality in the above theorem corresponds to Gauss’ (resp. Weingarten’s) formula
in submanifold geometry.

DEFINITION. If a subbundle W of V satisfies PW)CW, then W is said to
be P-invariant.

Since the condition that V is P-invariant is equivalent to Q=0, we get

COROLLARY 6.2. If V is P-invariant, then Q=0 and B€O(V,V’; 0)=A"
(Hom(V, V')).

Theorem 6.1 shows that a general connection on V induces O-derivative
operators on subbundles. Conversely we can obtain induced general connections
on V from O-derivative operators as remarked in §2. For example, we see
that :0(V)pcO(V) and OV, V')pcO(V) from Theorem 2.3. On the other
hand, we have

THEOREM 6.3. For ¥=0(V), V=iO(V)p if and only if B=0, B’=0 and D’
=0, that is,

TxI'VHCl(V) and Vx((V')={0}  for any XeI(T(M)).

THEOREM 6.4. For YeO(V), V<i’/O(V, V")p if and only if D=0, B’=0
and D'=0, that s,

Tx(LWHCTV') and Vx(I'(V')={0}  for any XeI'(T(M)).

Remark. 1t VeOW) and ¥=iVpeO(V), then D=pTi=V. Thus Theorems
6.1 and 6.3 generalize a theorem in §3 of [BO].

We will study the forms S, K and T defined in §3. Put S(V)=S{¥, V).
Theorems in §3, 6.1 and Corollary 6.2 imply the followings.

THEOREM 6.5.
S(D, D), S(B’, Bye ANEnd(V)), S(B, D), S(D’, B)ye A(Hom(V, V")),
S(D’, D’), S(B, B"Ye ANEnd(V")), S(B’, D"), S(D, B"Ye A(Hom(V’, V))
»SN)i=S(D, D)+S(B’, B), p’'SN)i=S(B, D)+S(D’, B),
p’'SN)i'=S(D’, D")+S(B, B, pSN)i’=S(B’, D)+S(D, B’).

PROPOSITION 6.6. If V is P-invariant, then S(B, D)=BP, S(D’, B)=—P'B,
S(B’, By=—Q'’B and S(B, B")=BQ".

and

COROLLARY 6.7. If V and V' are P-invariant, then
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S(D, D)=S(D), S(B’, B)=0, S(B, D)=BP, S(D’, B)=—P'B
and
pSNi=S(D), p’'SN)i=BP—P’'B.

We have also equations for V',V instead of V, V.

Put K=K, ¥, V). The theorems in §3 imply

THEOREM 6.8.
K, D, D), K(B’, B, D), K(B’, D', B), K(D, B’, By AXEnd(V)),
K(B, D, D), K(D’, B, D), K(D’, D', B), K(B, B/, By A*(Hom(V, V")),
K’, D', D), K(B, B’, D"), K(B, D, B’), K(D’, B, B"Ye AXEnd(V")),
K(B’, D', D), K(D, B’, D"), K(D, D, B’), K(B’, B, B"Ye AX(Hom(V’, V))
pKN)i=K(D, D, D)+K(B’, B, D)+K(B’, D', B)+K(D, B’, B),
p’KN)i=K(B, D, D)+K(D’, B, D)+K(D’, D', B)+K(B, B’, B),
p’KN)i’=K(D’, D', D)+ K(B, B’, D'+ K(B, D, B)+K(D’, B, B,
pK )'=K(B’, D', D")+K(D, B’, D")+K(D, D, B)+K(B’, B, B').

and

Proof. From Theorems 3.8 and 6.1, we have
KW, Y, Wi=KQN, Y, ¥)=K", ¥V, iD+iB)=K{¥, ¥, iD)+ KN, ¥, i'B)
=K®, Vi, D)+K¥, Vi, B).
After some steps, we have
KN)i=i{(K(D, D, D)+K(B’, B, D)+K(B’, D', B)+K(D, B’, D))
+i#(K(B, D, D)+K(D’, B, D)+ K(D’, D’, B)+K(B, B’, B)).

Thus the first two formulae hold. The rest can be proved by the same method.

The first three equations in this theorem correspond to the equations of
Gauss, Codazzi and Ricci respectively in submanifold geometry.

Remark. If VeOV) and T=:iVp=O(V), then K(W)i=:iK(V). Thus Theorem
6.8 generalizes a theorem in §3 of [BOJ.

From Proposition 3.9 and Corollary 3.10, we get

THEOREM 6.9. If V is P-invariant, then
K(B’, B, D)x,y=(B'ABP)x,y+(Q' BAD)x,y—Q'Bcx,vP,
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K(B’, D', B)=—(S(B’, D")AB),
K(D, B’'B)=—(S(D, B")AB),
K(B, D, D)=(BAS(D, D)),
K(D', B, D)x,y=(D'ABP)x,y+(P'BAD)x,y—P’Brx,v:P,
KW', D', B)=—(S(D’, D’)AB),
K(B, B’, B)=—(BAQ’'B),
K(B, B’, D")=(BAS(B’, D)),
K(B, D, B")=(BAS(D, B"),
K@, B, B)x,y=(D'\NBQ")x,y+(P'BAB")x,y—P’Brx,v:Q’
K(B', B, B)x,y=(B’'ABQ")x,y +(Q"BAB")x,y—Q'Brx.71Q’,
where X, Y I'(T(M)).

and

COROLLARY 6.10. If V and V' are P-invariant, then
K(D, D, D)=K(D), K(B’, B, D)=(B’\BP),
K(B’, D', B)=—(B’A\P’'B), K(D, B’, B)=(PB’A\B),
K(B, D, D)=(BAS(D, D)),
K(D', B, D)x,y=(D'ABP)x,y+(P'BAD)x,y—P’Bcx,viP,
KW', D', B)=—(S(D’, D’YAB), K(B, B’, B)=0,
and pK(N)i=K(D)+(B’ ABP)—(B’AP'B)+(PB’AB),
P’ KW x,yi=(BAS(D, D))x,y+(D'ABP)x,y+(P'BAD)x,y
—P’Bix.y1P—(S(D’, D'’)AB)x,y .
We have also equations for V, V' instead of V, V'.

Let M be a submanifold of a manifold M and j: M—M the inclusion. Put
V=7#T(M)=T(M)|M, V=T(M) and let V' be a complementary subbundle of
V in V. For VeO(T(M)), put Y=;¥V=0(V). Then the above facts can be
applied to this case. Furthermore we have the following results on torsion
forms.

THEOREM 6.11.

T(D)ye AXT(M)), T(B)e AXV")
and
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JHT N=:iT(D)+i'T(B).
COROLLARY 6.12. If V is torsion-free, then D and B are torsion-free.
PROPOSITION 6.13. If T(M) is P-invariant, then
T(B)x,y=BxY—ByX  for X,YeI(T(M)).

COROLLARY 6.14. If T(M) is P-invariant, then j¥T(V)=iT(D) if and only
if B is symmetric, that is,

ByY=ByX for any X, Yel(T(M)).

Remark. 1In the case of an adapted submanifold, that is, V and V' are P-
invariant, Corollaries 6.2, 6.10, 6.12 and 6.14 were partially obtained in [H],
[010] and [N].

§7. Metric general connections and subbundles.

At first we make

DEFINITION. If gel'(W®W)*) is symmetric and non-degenerate onAeach
fiber of W, then g is called a metric on W. If VeO(V, W) satisfies Vg=0
(see Proposition 4.4), then V is said to be metrical with respect to g.

From now on, we use the same vector bundles, homomorphisms and O-
derivative operators as those in the first paragraph in §6. Let § be a metric
on V and assume that g:=g(R)<T(VRV)*) and g’ =50 RNl (V'QV")*)
are also metrics on V and V' respectively.

DEerFINITION. If Z(:®i")=0, that is, Z=g(p@p)+g'(p'®p"), then g is said
to be compatible with the decomposition of V by V and V".

Recall that we use the following notations:
T2=(T@V)*z, Dg=(DRD)*g and Bg'=(BRB)*g’.
THEOREM 7.1. If g is compatible with the decomposition, then we have
(%é)(i®i)=ﬁg+3g’ in D(T(MP*QV RV,
V2)iR:)=(DRB'*g+(BRD'*g’ in I[(TMyQV V')
and also equations for V',V instead of V, V’.

Proof. From Theorems 4.1, 4.2 and 6.1, we have
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(V@W)*2)i@01)=(QRQN*(TRV)*2)=(VRV(®i)*g

="iQV)*g=(GD+i'B)Q(ED+i’B))*g
=((RN(DRD))* g+ (DR B))*g+((' QN(BRD))*Z+('Ri" N BRB))*&
=(DRD)*g+(DQB)*((Q:")*8)+(BRD*(('®i)*8)+(BRB)*g’.

The second formula follows similarly.

From Proposition 4.4 and Corollary 6.2, we get

THEOREM 7.2. If V is P-invariant, then

dnd

Bxg'=0, (BRD"%g'=—g'(BxQP’)
D'®B)xg'=—4g'(P'QBx)  for XeI(T(M)).

COROLLARY 7.3. If g is compatible with the decomposition and V and V'
are P-invariant, then we have '

{x8)i®)=Dxg, VxD(iQi")=—g(PQBY)—g'(BxQP")

and also equations for V', V instead of V, V.

_ COROLLARY 7.4. If g is compatible wite the decomposition and V and V' are
P-invariant, then N is metrical if and only if D and D’ are metrical and g(P®
W)=—g'(BxQP’) for any XeI'(T(M)).

Remark. In the case of an adapted submanifold, Corollary 7.4 was partially
obtained in [H} and [N].
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