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GEOMETRY OF CERTAIN FIRST ORDER DIFFERENTIAL

OPERATORS AND ITS APPLICATIONS

TO GENERAL CONNECTIONS

BY NAOTO ABE

§ 0. Introduction.

The covarίant derivative of a connection on a vector bundle is a first order
differential operator from the vector bundle to itself. In this paper, we deal
with a first order differential operator from a vector bundle over a manifold to
another vector bundle over the manifold whose properties are similar to those
of a covariant derivative, which we will call an O-derivative operator. When
these vector bundles are identical, the operator is a covariant derivative of a
general connection in the sense of T. Otsuki. The general connections were
defined by T. Otsuki in [01] as a generalized notion of usual ones. He defined
the general connections on the tangent tensor bundles of a manifold and defined
associating geometrical objects analogous to those of usual ones, for example,
their curvature and torsion forms [02]. In his papers [Ol]-[O11], many results
about general connections were obtained.

Recently the present author defined general connections on arbitrary vector
bundles and studied some fundamental properties in [A], H. Nemoto [N] applied
the theory to the normal bundle of a submanifold and developed the submanifold
geometry initiated by T. Otsuki and C.-S. Houh [H], [O10] and [OH]. A.
Bejancu and T. Otsuki [BO] applied the theory to vector bundles over the
tangent bundle of a manifold, especially the vertical bundle of a Finsler manifold.
In these two papers, they deal with some vector bundles and linear operators
from one to another. The main purpose of this paper is to generalize the theory
of general connections and also prepare some formulae which can be applied to
the cases treated in these papers.

In § 1, we will prepare notations used in this paper and define the O-deri-
vative operator. In §2, some algebraic properties of the space of O-derivative
operators will be studied. In § 3, the curvature and torsion forms of O-deri-
vative operators will be defined. In §4, using given ones, we will construct
O-derivative operators on the dual and tensor product bundles and investigate
their curvature forms. In §5, we will define induced O-derivative operators
induced by bundle maps and investigate their curvature forms. The theory will
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be applied to geometry of subbundles in a vector bundle with a general connec-
tion in § 6 and § 7.

The author would like to express his hearty thanks to Professor T. Otsuki
for his helpful advice. He also would like to acknowledge the constant encourage-
ment of Professor S. Yamaguchi.

§ 1. Preliminaries.

We assume that all objects are smooth and all vector bundles are real
throughout this paper. Let M be a manifold, T(M) its tangent bundle and C(M)
the ring of real-valued functions on M. We will use letters 7, W and these
with superscript and prime to denote vector bundles over M. The fibre of a
vector bundle 7 at X G M I S denoted by Vx and the dual bundle of 7 by 7*.
The space of cross-sections of 7 is denoted by Γ(V), which has a canonical
C(M)-module structure. Let Hom(V, W) be the vector bundle of which fibre
Hom(V, W)x at x is the vector space Hom(Vxy Wx) of linear maps from Vx to
Wx. Especially Hom(V, V) is denoted by End(V). We note that Hom{V, W)
can be canonically identified with the tensor product V*®W. The space of
vector bundle homomorphisms from 7 to W is denoted by H0M(V, W). We
denote the zero homomorphism from 7 to W by 0VtW or simply 0. Especially
H0M(V, 7), the ring of endomorphisms on 7, is denoted by END(V). In parti-
cular, for non-negative integer r, we denote the space of W-valued r-forms on
M by Ar(M, W) or simply Λr(W). We denote the identity (resp. zero) endomor-
phism of 7 by Iv (resp. 0v or simply 0). We note that H0M(V, W) can be
canonically identified with the space Γ(Hom(V, W)).

Let HSΞH0M(V,W) and Hx=H\Vxς=Hom(Vx,Wx) for each X G M . We
define a linear map H: Γ(V)->Γ(W) by (H(s))(x)=HMx)) for s<=Γ(V) and
I G M . Then we see that H is a C(M)-module homomorphism, that is, i/(/s)=
fH(s) for S<ΞΓ(V) and fe=C(M). Conversely we have

LEMMA 1.1. // a linear map B: Γ(V)->Γ(W) satisfies B(fs)=fB(s) for_ any
and /eC(Af), then there exists a unique H<ΞH0M(V, W) such that H=B.

We will use the same symbol to denote a vector bundle homomorphism H
and the induced linear map H on the space of cross-sections. Now we make

DEFINITION. For P^H0M{V, W), a linear map 7 : Γ(V)-+Γ(T(M)*®W) is
called an O-derivative operator from V to W with the principal homomorphism
P, if 7 satisfies

7/s=(d/)®Ps+/7s for any f^C{M),s^Γ{V).

Let 0 ( 7 , W P) be the set of O-derivative operators from V to W with the
principal homomorphism P. Put O(V, W):=KJ{O(V, W; P)\P(ΞHOM(V, W)}.
Especially we denote O(Vf V P) by O(V P) and O(V, V) by O(V).
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For special examples, we have the followings:

PROPOSITION 1.2. 0(7 , W; 0v,w)=HOM(V, T(M)*®PF).

This is a special case of the above lemma.

THEOREM 1.3 ([A]). O(V P) is the set of covariant derivatives of general
connections on V with the principal endomorphism P^END(V).

COROLLARY 1.4. 0 ( 7 Iγ) is the set of covariant derivatives of usual con-
nections on 7.

Remark. In [A], using the 1-jet bundle, it was proved that an element of
0 ( 7 P) uniquely determines a general connection defined by T. Otsuki [01]
if 7 is T{M)*.

DEFINITION. If X G M and v^T(M)Xy then we define a linear map 7 υ :
Γ(V)-*WX by 7υs:=zυ(7s) for s^Γ(V), where iΌ is the inner product operator.
Similarly if X^Γ{T{M))y then we define a linear m a p 7 z : Γ(V)->Γ(JV) by
(Vjrs)(#):=Vjr<j?)S. We call 7^ the O-derivative operator along X.

Then we clearly get

PROPOSITION 1.5. The map T(M)XXΓ(V)Ξ>(V, S)^1ΌS^Γ(W) is bilinear and

satisfies

lvfs={vf)(Ps)(x)+f{x)lυs for ft=C(M) and

Moreover, we have

lxs^Γ(W) and lfXs=flxs for s^Γ{V) and Xz=Γ(T(M)).

THEOREM 1.6. Let U be an open set of M and x^U. For s, sf^Γ(V) and
X, XftΞΓ(T(M)), if s=s' on U and X=X' at x, then Φxs){x)=(lx,s')(x).

Proof. Lemma 1.1 assures that C7χs')(x)=(lx>s')(x). It is sufficient to
show that C7χs)(x)=C7xs')(x). Take open subsets Uu Uo and f^C(M) such
that XSΞUU CKUJdUo, Cl(U0)c:U, / = 1 on Cl{Uλ) and / = 0 on (U0)

c, where Cl{ )
and ( )c are the closure and the complement respectively. Then /(s—s r)=0 on
M. The above proposition implies

Since (Xf)(x)=0 and /(x)=l, we have (!xs-Vxs'Xx)=O.

We note that 7 υ or 7χ uniquely determines 7. This theorem assures that
we can study O-derivative operators by using components with respect to local
coordinates and frame fields.
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Remark. As first order differential operators, the symbols σ1 (7) and σ
for 7eO(7, W P) are

ξ^x and

for f GΞT(M)*, etΞVx and

§ 2. Algebraic structures of O(V, FT).

At first we consider, in O(V', W), addition and multiplication by elements
of £ΛΓD(7) and £iVD(P7) as follows.

DEFINITION. If 7*eO(7, W P*) (/=1, 2), then we define the sum Ψ+Ψ by

for seΓ(F) and X(ΞΓ(T(M)).

If 7GΞO(7, P7; P), R(EΞEND(V) and L^END(W)y then we define the products
LV and 7/? by

and

PROPOSITION 2.1. 7 1 + V 2 G O ( 7 , if P x+P 2), L7eO(7, W; LP)
0(7, TF Pi?). Moreover, the set O(V, W) has a right END(V) and left END(W)-
module structure with respect to these addition and multiplication.

COROLLARY 2.2 ([A]). The set 0{V) has a both side END{V)-module structure.

Remark. In the case of the tangent bundle, the multiplication in 0(V) was
defined and the associative law was stated in [07]. See also [Oil] for some
algebraic properties of general connections.

Furthermore, we consider multiplication by vector bundle homomorphisms.

DEFINITION. If LΪΞH0M{W, W')y R<=H0M(V'f V) and 7GΞO(7, W P), then
we define L7 and 7i? by

(L7)zs:-L(7^s) and (!R)xt:=

for s^Γ^.t^Γiy') and

Then we have

THEOREM 2.3. L7eO(7, W \ LP), 1R^O(V\ W; PR) and (LV)R=LC7R)
<=0(V', W LPR). Moreover, the maps H0M(W, PFOX0(7, W)-*0{V, W) and
0{V, W)XHOM(V, V)-^0{Vf, W) are bilinear.

We will call the O-derivative operators L7 and 1R induced O-derivative
operators induced by vector bundle homomorphisms and denote (L1)R by LΊR.
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When F = F ' and W=W are isomorphic vector bundles, O(V, W) and O(V, W)
are isomorphic as modules. Then we will denote the corresponding operators
by the same symbol if the isomorphisms are canonical. In the case of general
connections, we get

COROLLARY 2.4 ([A]). // 7eO(7 P), L^H0M{V, V) and R<ΞH0M{V', 7),
then we have L7#eO(7' LPR).

Remark. If V=T(M) and W is a subbundle of T{M), this type of induced
covariant derivatives of general connections was essentially defined in [07]. In
general, for 7 and W, let V be their Whitney sum, /: 7->V and i': W-^V
the inclusion homomorphisms. If P^H0M(V', W), then we can find P^END(V)
such that Pis-ϊPs for S<ΞV. Similarly, if 7eO(7, W), then we can find
7eO(7) such that lis=i'ls for s^Γ{V)y see also §6.

§ 3. Curvature and torsion forms.

At first we define the following form which generalizes the difference of
two covariant derivatives of usual connections (see also Theorem 4.7). Let 7 e
0(y,W; P) and 7 '<ΞO(7', 7 P').

DEFINITION. If ZeΓ(T(M)), then a linear map 5(7, Ψ)x: Γ(V')^Γ(W) is
defined by

) for

We call S(7, 70 the difference form of the pair (7, V).

THEOREM 3.1. S(V, Ψ)^A\Hom{Vf

y W)).

Proof. Since IP', PΨ(Ξθ(V',W; PR'), we have

7 P / ~ P 7 / e 0 ( 7 / , W; 0^(ίF)=J^OM(7/, T(M)*(8)P7)=^1(/ίί?m(7/, W)).

Let '7Gθ(ίf, P7'; T) . From Theorem 2.3, it is clear that

THEOREM 3.2. The map S : O(Vy W)Xθ(V, 7)-^Λ1(Hom(71, W)) is bilinear.
Moreover, we have

S(L7, 7')=LS(7, 70 for

S{'1, RΨ)=S('VR, 70 for R<Ξ.H0M(V, W)
and

S('7, 1R')=S{Ί, 1)R' for R'ζΞH0M{V, 7).

COROLLARY 3.3. S('7, 7P0-SC7, PΨ)+S('P1, 70=0.

Next we define the following auxiliary operator which can be used in some
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formulae concerning curvature forms.

DEFINITION. If X, Y<=Γ(T(M)), then a linear map C7AΨ)χ,Y: Γ(V')-*Γ<W)
is defined by

(7Λ7/)z.rs:=7χ(7ί,s)-7 r(7is) for seΓ(F).

From Theorem 2.3, it is clear that

LEMMA 3.4. For X, YELΓ(T(M)), (7Λ7')jr,y is bilinear on O(V, W)X
O(V, V). Moreover, we have

.γ for

C!/\Rlf)x,γ={'!Rf\l')χ,γ for RΪΞHOM(V, W)
and

{'lf\lRf)x>Y=('!f\!)x>YR' for Rf^HOM{Vf\V).

LEMMA 3.5. For seΓ(F0 and /

WΛΨ)fx,γS=f(ΊΛΨ)χ,γS-(Yf)PΨxs
and

,y/s=([*, Ylf)PP's-(Xf)Sφ, Ψ)γs

, Ψ)χS+f(lΛΨ)x,Ys.

Now we define the curvature form as follows.

DEFINITION. If X, YZΞΓ{T(M)), then a linear map K('Ί, 7, Ψ)x,γ: Γ(V')
Γ(W') is defined by

K(Ί, 7, 7 /)z )rs:= /7χ(7F(P /s))- /7y(7z(P /s))

for SΪΞΓ(V). We call jKί^, 7, 70 the curvature form of the triple ('7, 7, 70.

From the definitions, we have

LEMMA 3.6.

#C7, 7, 70z,FS=(/

From Corollary 3.3, Lemmas 1.1, 3.5 and 3.6, we get the following funda-
mental fact:
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THEOREM 3.7. K('V, 7, Ψ)eEA2(Hom(V, W')).

Remark. If V=V'=W=W' and V=V'='V, then ΛΓ(7, 7, 7) coincides with
the curvature form /f(V) of the general connection VeO(F), which was defined
in [01] and [A].

Let Ψ(Ξθ(V\ W) and 'ΨZΞO(W\ Wf). From Lemmas 3.4 and 3.6, we obtain

THEOREM 3.8. The map K: 0(W, W)X 0(V, W)X 0(V, V)->A\Hom{Vf, W'))
is trilinear. Moreover, we have

KCLΊtltl'^'LKC!,!,!') for 'LΪΞH0M{W',W1) ,

K('Ψ, Lly l')=K('ΨL, 7, 70 for LΪΞH0M{W, Wι),

K(Ί, Ψ, RΊ')=K(Ί, ΨR, 70 for R<=H0M(V, V1)
and

K{'1, 7,1'R')=K{'1, 1, Ψ)R' for R'<=H0M{V\ V).

For a later section, we prepare some formulae in the following special
cases:

PROPOSITION 3.9. For

tfCV, V, V/)*.rS=(/VΛS(V, Ψ))χ.rs (7P=0),

= ( /7Λ7P0x (r5+( /P7Λ70z )r5- /P7c^, r 3P
/5 (P=0),

= -(S( /V,V)ΛV /)X.FS (P'=0).

COROLLARY 3.10.

#('V, 7, 70x>rS-(/7Λ7P0χ,rS (7P=0

,rS (P=0

=0 ( ^ = 0 , P =

We can generalize the torsion forms of usual connections on the tangent
bundle to the case of O-derivative operators from T(M) to another vector bundle
over M as follows. Let 7eO(T(M), W; P).

DEFINITION. For X, Y<=Γ(T(M)), T{l)XtY^Γ{W) is defined by

, 7]).

We call T(V) the torsion form of 7. If T(V)=0, then 7 is said to be torsion-
free.
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From Lemma 1.1, we have

THEOREM 3.11.

Remark. In [02], T. Otsuki defined the torsion form of a general connec-
tion on the tangent bundle.

THEOREM 3.12. The map T: 0(T(M), W)-*A\W) is linear. Moreover, for
LSEH0M{W,W'), we have

§ 4. O-derivative operators on dual and tensor product bundles.

If P<=H0M(y,W), then P*tEHOM(W*, 7*) is defined by (P*η)(s):=η(Ps)
for η(ΞΓ{W*) and SEΞΓ(V). Let 7 G Ξ O ( F , W; P).

THEOREM 4.1. For η<ΞΓ(W*) and XΪΞΓ(T(M)), define a real-valued linear
function lxη on Γ(V) by

for s

Then we have
(1) !$η(=Γ(V*) and 7*Gθ(ίΓ*, F * P*);
(2) The map * : 0 ( 7 , W)-*> O(PF*, V*) is linear;

(3) (L7)*-7*L* and (7i?)*=/?*7* /or L^H0M{Wy W), Rς=H0M(V', V).

Proof. Since (2) and (3) are clear, we will prove (1). For f(=C(M), we get

<yϊηXfs)=X(fη(Ps))-ηQ7χ(fs))

=(Xf)η(Ps)+fX(η(Ps))-η((Xf)Ps+Γ7xs)

=/^(5(ft))-/7(7xs)=/(7i ?)(s).

Then Lemma 1.1 implies l%η<=Γ(V*). Moreover, we get

We call 7* the dual O-derivative operator of 7. If P^HOMQf*, Wl) (ι = l, 2),
then we define P1®P2^H0M{V1®V\ Wι®Wz) by requiring {Pι®P2){sx®s2) : =
(P1s1)(8)(P2s2) for Si^ΓίF*). Let 7*^0(7*, ^ P*) (/=1, 2).

THEOREM 4.2. TF̂  have

(1) T/zer̂  gjcίsίs α unique Ψ®ΨEΞO(V1®VZ, Wλ®Wz P'^P2) such that
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for St^Γiy1) and
(2) The map ® : 0{V\ Wl)x0{V\ W2)-^ O(Yι®V\ Wι®W2) -is bilinear)
(3) (L1®L2XΨ®Ψ)={L1Ψ)®{L*Ψ) and {Ψ®Ψ){Rι®R2)={ΨRι)®(ΨR2)

for V^HOMψί1, Wu) and R^HOMiV*, V1) (ί=l, 2).

We call 7*(g)72 the tensor product of V1 and V2. As in the preceeding
sections, we will denote the corresponding O-derivative operators by the same
symbol in canonical isomorphisms, for example, V1(g)V2^V2<g)V1, (F 1 ® 1 ^ 2 )®^ 3

^Fx(g)(F2(g)F3), V*(g)W=Hom(V, W) and F*®F*^(F(g)F)*. For simplicity,
we denote {®rV)®{®sW*) by (V ,WYr>s\ (®rP)®(®sP*)£ΞHOM{(V ,WYr s\
(W, VYr's>) by P c r s ) and^ (® r7)®((8) s7*)e0((y, WYr>s\ (W, V)Cr s ) P C r s )) by
7 C r s ) or more simply by 7 for 7 e O ( F , W). From the definitions, we have

PROPOSITION 4.3. The O-derivative operator 7GΞO((F, Wyr's\ (JV, F)C r s )

P c r ' s ) ) satisfies

+ Έ ( 1 ) 0

for Si^ΓiV), ηjEΞΓQV*).

For a later section, we prepare

PROPOSITION 4.4. Under the canonical isomorphisms (F,
and (JV, F)C 0 > 2 )=(F(g)y)*, the corresponding 7eO((ϊF(g)W0*, (F(g)F)*) satisfies

for g<=ΞΓ((W<g)W)*) and

Proof. Since η^η^ΓfJV^W*) is considered as a function on Γ(JV®W)
such that {ηι®ηi){tι®t2)=ηι{tι)Ύ]2{t2) for ^ ^ e Γ C P F ® 1 ^ ) , we have

PROPOSITION 4.5. ^nder ίfte canonical isomorphisms (V, W)aΛ^Hom(ffl, V)
and (W,Vyι'ι^Hom(V,W), the corresponding l(Ξθ(Hom(JV, V), Hom(V,W))
satisfies
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for H£ΞΓ(Hom(W, V)) and

Proof, Since e®η<^Γ(V®W*) is considered as a function on Γ(W) such
that (e<g>η)(t)=η(t)e for t^ΓQV), we get

={P^η){s)lxeΛ-{lxη){s)Pe=η{Ps)lxe^{X(η{Ps))--η{lxs))Pe

=lχ{{e®η){Ps))-({Pe)®rj){lxs).

We can generalize this proposition as follows. Let 7'eO(F', V P') and
Ί<=ΞO(W, W 'P). Then we have

THEOREM 4.6; Under the canonical isomorphisms QV,V)°'^
and (JV'iV'y^^UomiV^W), the corresponding f!®(l')*^O(Hom{V\W),
Hom{V, W')) satisfies

for H(ΞΓ(Hom(V, W)) and SELΓ{V).

The proof is similar to that of Proposition 4.5. Now we consider the dif-
ference and curvature forms 5 and K. Let V'eO(F', V; P'). Theorem 4.6
implies

THEOREM 4.7. 5(7,1')=(

Remark. If V=V'=W and 7=7 7 , then S(7, 7)=7/ κ .

From the definitions, we have

THEOREM 4.8. For η^Γ(W*) and SΪΞΓ{V'),

(S(7/*,y*)7)(s)=9(S(7, 70s)=-(S(7, Ψ)*η)(s).

LEMMA 4.9. For η<=Γ(W*) and SΪΞΓ(V'\

, Ψ)xs)

Let '7eO(W\ ^ 'P). From Corollary 3.3, Lemmas 3.6 and 4.9, we get

THEOREM 4.10. For η£ΞΓ(W'*) and s<=Γ(V),

(ΛΓ(7'*, 7*, /7*)i7)(s)=-i7(/f(/7, 7, 70s).
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Let 7 i / e0(7 i / , 7i)(* = l, 2).

From the definitions, we have

THEOREM 4.11. For Si^Γ{Vu) (*=1, 2),

S{Ψ®1\ Ψ/(S)^2Ί(sι<S)s2)=S(Ψ, 71/)s1(g)P2P2/s2

+P 1 P 1 s 1 ®S(7 2 , 72 /)s2.

LEMMA 4.12. F<?r SieΞΓ(F") (/=1, 2),

2, 72')rS2

-S(7\ 71 /)rSiΘ72

rP
2 /s2+7^1 /s1®S(72, 72/)χS2

+P1P1/51(g)(72Λ720x,r52.

Let V G O ^ r O ί ^ l ^ ) . From Corollary 3.3, Lemmas 3.6 and.̂ 4.12,
we get

THEOREM 4.13. For st^Γ(Vu) (ί=l, 2),

2Ψf Ψf)χSt+S(fP1Ψ9 71/)yS1®S(/7ί, ΨP2')xs2

+ 'PιPίPί's1®K('Ψ, Ψ, 720X,FS2.

Remark. A sort of Ricci's formula for general connections on the tangent
tensor bundle was obtained in [09] and [OH].

§ 5. 0-derivative operators on induced bundles.

Let Λf be a manifold and F: N-+M a map. If V is a vector bundle over
M, we denote the induced bundle over N by F*V', the bundle map by F: F*V
->F and its restriction to the fibre by Fy for y^N. A linear map F # : Γ(V)
->Γ(F#F) is defined by (F*s)(y):=FyKs(F(y))) for SEΞΓ(V) and y^N. We note
that there are canonical isomorphisms: F*(F*)^(F*F)*, F*(7(8)PF)s(F*7)®
(FW) and F*(Hom{V, W)) = Hom(F*V', F*W) for vector bundles V and W over
M. For vector bundle valued forms, we make

DEFINITION. If H^Λr(M, Horn(V, W)\ we define F*H<=Ar(N,Hom(F«V,
F*W)) by
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((F*H)y(vl9 - , Vr))(t):=F?(ίHFW(F*vu - , F*vr))(Fyt))

for Vi(ΞT(N)y, t(Ξ(F*V)y and y<^N, where F* is the differential of the map F:
N->M.

We note that, if PSΞHOM(V,W), then F*PeϊHOM(F*V, F*W) satisfies
(F*P)F*s=F*(Ps) for S(ΞΓ(V). Let 7 e O ( 7 , T7; P).

THEOREM 5.1. We have

(1) There exists a unique O-derivative operator F * 7 e O ( F * 7 , F*W F*P)
that

(F«r7)υF*s=FylC7F,υs) for any S<ΞΓ(V), vtΞT(N)y,

(2) The map F * : 0 ( 7 , WO->0(F*7, F#W^) zs /meαr;
(3) F # (L7)=(F*L)(F # 7) αnc/ F#(7i?) = (F#7)(F#i?) /or L e HOMQV, W')

and RΪΞH0M(V', V).

Proof. Since (2) and (3) are clear, we will prove (1). At first, we will
define (F*Ί)Όt^(F*W)y for v^T{N)y and ί e Γ ( F * 7 ) . Take an open set t/ in
M such that F(y)^U and there exist local frame fields ea ( α = l , ••• , dim7).
Then F # ^ α are local frame fields of F * 7 on F~\U) and t=Σίt"F*ea on F ' ^ ί / ) .
Now we make

We can show that this definition does not depend on the choice of local frame
fields on M. It is clear that (F#7) υF#s=F~ 1(7F + υs) and satisfies the formula in
Proposition 1.5. Next we will prove that (F*l)vt£ΞΓ(F*W) for Yt=Γ(T(N)).
Take local coordinates xa (α = l, •••, dimM) and yι (2=1, •••, dimΛ^) and denote
da=(d/dxa) and d^d/dy*). Since F*(di)y=^(diXa)(y)(da)Fw, we can locally
get the following formula:

Thus {F*l)γt is a smooth cross section of W. Finally Theorem 1.5 implies the
statement (1).

We will call F*7 the induced O-derivative operator induced by a bundle
map. We note that

COROLLARY 5.2. On 0(V,W; 0), this map F * coincides with what defined
for A\M, Hom(V, W))=H0M(V, W).

Now we consider the forms S and K. Let 7 e O ( 7 ' , 7). From the defini-
tions and Theorem 5.1 and Corollary 5.2, we have

THEOREM 5.3. S(F*7, F*70=F*(S(7, 70).
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Let '7eO(PF, W). Then we have

THEOREM 5.4. K(F*Ίf F*l, F*lf)=F*{K(Ίy 7, 70).

Proof, Theorem 3.7 assures that it is sufficient to prove that

*'7, F*7, F*Ψ)di>djF*s=F*{K{Ίy 7, 7')

where 3* are the natural tangent frame fields as in the proof of Theorem 5.1.
Using the formula in the theorem, we have

Then we get

Lemma 3.6 and Theorem 5.1 imply

K(F*Ί, F*V, F*Ψ)di,d.F*s^(dix
b)(djXa)F*(K('V, 7, Ψ)db.das).

Remark, Two types of induced O-derivative operators defined in this and
the second sections can be applied to study submanifolds of spaces with a
general connection, for example, see [O10], [H], [OH] and [N], See also the
final paragraph in the next section.

§6. Induced O-derivative operators on subbundles.

Let V be a vector bundle over M, F a subbundle of V and ZGHOM(V, V)
the inclusion map. Fix a projection operator p<=HOM(V, V), that is, pi=Iv.
Then we get a decomposition V—V®V (direct sum), where V is a subbundle
of V, and the inclusion i'eHOAKY', V) and the projection operator />'e
H0M(V, V). Then we see that pi=Iv, P'i=ΰ, pi'=0, p'ϊ=^Iv> and Iv=ip+i'p'.
We note that the decomposition of V in this section may have no relations with
a metric. In the next section, we will treat the decomposition induced by a
metric. For PZΞEND{V), put P:=pPi^END(V)f Q :=p'PieίHOM(y, V')y Q

f :=
pΎi'€ΞHOM(V, V) and P'^pTi'eENDiV). Then we [have Pi=iP+i'Q and
Pϊ=iQ'+ifP'% Let ^ G O ( F ; P), that is, a covariant derivative of a general
connection, and put D:=pli, B:=p'!i, Bf :=plif and D':=p'W. From Pro-
position 2.1 and Theorem 2.3, it immediately follows that

THEOREM 6.1. DEΞO(V P), B<=O(V, V \ Q), B'<=O(V', V; <?'), fl'
P') and

li^iD+ϊB in O(V, V),!i'=iB'+i'D' in 0{V'y V).

We will call D (resp. D') the induced covariant derivative on V (resp. V)
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and B (resp. B') the shape operator of V (resp. V). The first (resp. second)
equality in the above theorem corresponds to Gauss' (resp. Weingarten's) formula
in submanifold geometry.

DEFINITION. If a subbundle W of V satisfies P(W)dW, then W is said to
be P-invariant.

Since the condition that V is P-invariant is equivalent to Q=0, we get

COROLLARY 6.2. If V is P-invariant, then Q=0 and BEΞO(V, V O^A1

(Hom(y, V')).

Theorem 6.1 shows that a general connection on V induces O-derivative
operators on subbundles. Conversely we can obtain induced general connections
on V from O-derivative operators as remarked in § 2. For example, we see
that iO(V)pClO(V) and i'O{V, V')pζZθ(V) from Theorem 2.3. On the other
hand, we have

THEOREM 6.3. For 7<=O(F), l<=iO(V)p if and only if B=0, B'=0 and D'
=0, that is,

7χ(Γ(F))cΓ(F) and 7χ(Γ(7'))={0} for any X<=Γ(T(M)).

THEOREM 6.4. For 7^0(F), l<=i'O(y, V')p if and only if D=0, B'=0
and D'=0, that is,

lx(Γ<y))CLΓ(y') and Vx(Γ(V'))={0} for any X<=Γ(T(M)).

Remark. It VeO(F) and l=HptΞθ(V), then D=pli=l. Thus Theorems
6.1 and 6.3 generalize a theorem in §3 of [BO].

We will study the forms S, K and T defined in § 3. Put S(7)=S(7, 7).
Theorems in §3, 6.1 and Corollary 6.2 imply the followings.

THEOREM 6.5.

S(D, D), S{B', B)^A\End{V)), S{B, D), S{D'y B)^A\Hom{V, V')),

S{D', D'), S(B, B')s=A\End(y')), S(B', D')y S(D, B')<=A\Hom(V, V))
and _

pSCt)i=S(D, D)+S(B', B), p'S{l)i=S(B, D)+S{D', B),

p'S(ϊ)i'=S(D', D')+S(B, B'), pS{l)ϊ=S{B', D')+S{D, B').

PROPOSITION 6.6. // V is P-invariant, then S(B, D)=BP, S(D', B)=—P'B,
S(B', B)=-Q'B and S(B, B')=BQ'.

COROLLARY 6.7. // V and Vr are P-invariant, then
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S(D, D)=S(D), S(B', B)=0, S(B, D)=BP, S(D'y B)=-P'B
and

pS(l)i=S(D), p'S($)i=BP-P'B.

We have also equations for V, V instead of V, V.

Put /f(7)=if(7, 7, 7). The theorems in § 3 imply

THEOREM 6.8.

K(D, D, D), K(B', B, D), K(B', D', B)\ K(D, B'y B)^Λ\End(V))}

K(B, D, D), Kφ', B, D), K(D', D'i B), K{B, B', B)^A\Hom{V, V')),

K(D', D'f D'), K(B, B', DO, K(B, Dy B'), K{D', B, Bf)^A\End{Vf)),

K(B'f Ώf, Ώf), K(D, Bf, D'), K(D, D, Bf)y K(B\ B, B')<=A\Hom(y', V))
and

pKC7)i=K(D, D, D)+K(B', B, D)+K(B', D', B)+K(Dy B'y B),

)i=K{B, D, D)+K(D', B, D)+K(D', D', B)+K(B, B\ B),

p'K{l)ϊ=K(D', D', D')+K{B, B', D')+K(B, D, B')+K(D', B, B'),

pKW=K(B', D', D')+K(D, B', D')+K{D, D, Bf)+K{B', B, Bf).

Proof. From Theorems 3.8 and 6.1, we have

K{ly 7, 7>"=tf(7, 7, 7ι)=/f(7, 7, iD+ϊB)=K{l, 1, iD)+K{l, 7, i'B)

=/f(7, It, D)+K&, W, B).

After some steps, we have

KC7)i=i(K(D, D, D)+K(B'y B, D)+K(B'y D'y B)+K(Dy B'y D))

+i'(K(B, Dy D)+K{D'y By D)+K(D', D'y B)+K(By B'', B)).

Thus the first two formulae hold. The rest can be proved by the same method.

The first three equations in this theorem correspond to the equations of
Gauss, Codazzi and Ricci respectively in submanifold geometry.

Remark. If V<Ξ0(F) and 7=ίV/>eO(F), then K(ί)i=iK(l). Thus Theorem
6.8 generalizes a theorem in § 3 of [BO].

From Proposition 3.9 and Corollary 3.10, we get

THEOREM 6.9. // V is P-invariant, then

K{B'y B, D)x,γ=(B'ΛBP)x,γ+(Q'BΛD)x,γ-Q'BίX,γlPy
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K(B', D', B)=-{S(B', D')AB),

K(D, B'B)=-(S(D, B')AB),

K(B,D,D)=(BAS(D,D)),

K(D', B, D)x,y={DΆBP)x,y+{P'BAD)x,y-P'Bιx,γlP,

K(D', D', B)=-(S(D', D')AB),

K(B, B', B)=-{BAQ'B),

K(B, B',D')=(BAS(B',D')),

K(B, D, B')=(BAS(D, B')),

K(D', B, B')x,γ=(DΆBQ')x,γ+(P'BAB')x,y-P'BLX,y,Q'
and

K(B', B, B')x,γ=(BΆBQ')x,γ+(Q'BAB')x,y-Q'Bιx.yiQ',

where X, Y(ΞΓ(T(M)).

COROLLARY 6.10. // V and V are P-invariant, then

K(D, D, D)=K{D), K(B', B, D)=(BΆBP),

K{B', D', B)=-(BΆP'B), K(D, B', B)=(PBΆB),

K(B, D, D)=(BΛS(D, D)),

K{D', B, D)x,γ=(DΆBP)x,γ+(P'BAD)x,γ-P'BίX,Y]P,

K(D', D', B)=-(S(D', D')AB), K(B, B', β)=0,
and

pK(!)i=K(D)+(BΆBP)-(BΆP'B)+(PBΆB),

p'K{ϊ)x,γi={BAS{D,D))x,γ+{DΆBP)x,y+{P'BAD)x,y

-P'Bιx.Y1P-(S{D', D')AB)X,Y.

We have also equations for V, V instead of V, V.
Let M be a submanifold of a manifold M and j : M->M the inclusion. Put

V=j*T(β)=T(M)\M, V=T(M) and let V be_a complementary subbundle of
V in V. For 7eO(T(M)), put ψ=/ sVe0(F). Then the above facts can be
applied to this case. Furthermore we have the following results on torsion
forms.

THEOREM 6.11.

and
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y*(T(7))=ιT(Z»+i/T(B).

COROLLARY 6.12. // 7 is torsion-free, then D and B are torsion-free.

PROPOSITION 6.13. / / T(M) is P-invariant, then

T(B)x,γ=BxY-BγX for

COROLLARY 6.14. // T{M) is F-invariant, then j*T(l)=iT{D) if and only
if B is symmetric, that is,

BXY=BYX for any X, F E Γ ( T ( M ) ) .

Remark. In the case of an adapted submanifold, that is, V and V are P-
invariant, Corollaries 6.2, 6.10, 6.12 and 6.14 were partially obtained in [H],
[O10] and [N].

§ 7. Metric general connections and subbundles.

At first we make

DEFINITION. If g^Γ((W(g)W)*) is symmetric and non-degenerate on each
fiber of W, then g is called a metric on W. If 1&O(V ,W) satisfies Ig—^d
(see Proposition 4.4), then V is said to be metrical with respect to g.

From now on, we use the same vector bundles, homomorphisms and O-
derivative operators as those in the first paragraph in § 6. Let g be a metric
on V and assume that g:=g(i(g)i)<ΞΓ((y®V)*) and g' :=g{ϊ®i')£ΞΓ{{V'®V')*)
are also metrics on V and V respectively.

DEFINITION. If g{i®if)—^}, that is, g=g(p(g)p)+g/(p/®p'), then g is said
to be compatible with the decomposition of V by V and V.

Recall that we use the following notations:

lg={l®l)*g,Dg=(D®D)*g and Bg'=(B®B)*gf.

THEOREM 7.1. // g is compatible with the decomposition, then we have

in Γ(T(M)

β®Λ / )V in

and also equations for V',V instead of V, V\

Proof. From Theorems 4.1, 4.2 and 6.1, we have
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=(ϊi®li)*g=((iD+ΪB)®(iD+ΪB))*g

The second formula follows similarly.

From Proposition 4.4 and Corollary 6.2, we get

THEOREM 7.2. // V is P-invariant, then

and
{D'®B)xg'=-g'(P'®Bx) for X(=Γ(T(M)).

COROLLARY 7.3. // g is compatible with the decomposition and V and V
are P-invariant, then we have

ΰχg, (7χ*)(ι®f')= -g{P®B'x)-g'(Bx®Pf)

and also equations for V, V instead of V, V.

COROLLARY 7.4. // g is compatible wife the decomposition and V and V are
P-invariant, then 7 is metrical if and only if D and D' are metrical and g(P®
B'z)=-g'(Bx®P') for any XΪΞΓ(T{M)).

Remark. In the case of an adapted submanifold, Corollary 7.4 was partially
obtained in [H] and [N].
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