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FINITENESS OF SOME FAMILIES OF MEROMORPHIC MAPS
By HiroTAKA FUJIMOTO

1. Introduction.

In [3], H. Cartan proved that there exist at most two distinct nonconstant
meromorphic functions on C which have the same inverse images with multi-
plicities counted for three distinct values. Relating to this the author showed
in his paper [5] that, for given N+2 hyperplanes H,, ---, Hy+, in P¥(C) located
in general position and effective divisors E,, ---, Eys+, on C™, the set of all
linearly nondegenerate meromorphic maps f of C" into P¥(C) such that f*H;=
E, (1=Zi<N+2) as divisors is finite. The purpose of this paper is to give a
generalization of this result to the case of meromorphic maps of a compact
complex manifold minus a thin analytic set into a projective algebraic manifold.

Let Y be a projective algebraic manifold. For a complex holomorphic line
bundle L—Y we denote the set of all holomorphic sections of L by H°(Y, O(L))
and the set of all divisors D, associated with zeros of nonzero holomorphic
sections ¢ of L by |L].

DErFINITION 1.1. A meromorphic map f of a complex manifold X into ¥
is said to be algebraically nondegenerate with respect to L if f(X)#Supp(D,)
for any o= HY(Y, ©(L%))—{0}, where d is a positive integer.

The main result is stated as follows.

MAIN THEOREM. Let Y be an N-dimensional projective algebraic manifold,
L—Y a positive holomorphic line bundle and let X be an n-dimensional compact
complex manifold minus a thin analytic subset. Take effective divisors E,, -+, Enis
on X and D,, -, Dy, | L| such that
1.2) [\ Supp(D;)=0

1S SN 42, 3#1
for each i=1, 2, -+, N+2. Then the set & of all meromorphic maps of X into
Y which are algebraically nondegenerate with respect to L and satisfy the con-
dition f¥(D,)=E, (1<i<N+2) is finite.

In the previous papers ([6], [7]) the author stated that, for the particular
case where X=C" or X is a compact normal complex space minus an irreducible
analytic set, the same conclusion holds under the weaker assumption that
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D,, ---, D,_y, D;.y, -+, Dy+, are algebraically independent with respect to L for
each /=1, 2, ---, N+2. However, he found a gap in the proof of Lemma 4.3
in [6]. It is an open problem whether the assumption (1.2) of Main Theorem
can be replaced by this weaker one or not.

In Main Theorem, we can take E,= --- =Ey,,=0. Then we have

COROLLARY 1.3. Under the same assumption as in Main Theorem, the set of
all meromorphic maps of X into Y —\Uic.cn+:Supp D, which are algebraically non-
degenerate with respect to L is finite.

This is closely related to the result of Langmann [10].

2. Preliminaries.

Let X, Y be (o-compact connected) complex manifolds and f:X—Y be a
meromorphic map, namely, a many-valued map of X into Y such that (i) the
graph G'={(x, y); ye f(x)} is an analytic subset of XXY, (ii) the projection
nx|G/: G'—X is proper and (iii) f is single-valued on a nonempty open set U
in X. We denote by I, the set of all x=X such that f(x) contains at least
two points. Then, I, is an analytic set in X with codim/;=2 and f may be
considered a single-valued map on X—I,.

We consider particularly meromorphic maps into P¥(C). Taking homogene-
ous coordinates (w,: - : wy+;) on P¥(C), we set Hyy={wy+,=0}. By identify-
ing a point (zy, -+, zy) in C¥ with (z,:---:zx:1) in P¥(C), we may regard as
PY¥(C)=C¥\UHy,,. We can show easily the following:

(2.1) Every meromorphic map f: X—P¥(C) with f(X)Z Hy+: can be written

as

(%) F)=(pu(x): -t on(x): 1)

outside a thin analytic set with meromorphic functions ¢, -, oy on X. Con-
versely, each system of meromorphic functions ¢y, -+, @y on X gives a mero-

morphic map f: X—P¥(C) satisfying the identity (x).

We now consider the set ¥(X) of all one-codimensional irreducible analytic
subsets of X.

DEFINITION 2.2. We define a divisor D on X to be a map D: ¥ (X)—»Z
which satisfies the condition that each x= X has a neighborhood U such that

HVeV (X)), UNV+@, D(V)#0} <40,

where Z denotes the ring of all integers and #A4 means the number of elements
in a set A.

For a divisor D on X we set ¥ ,={V; D(V)#0}. The support of D is
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defined by Supp D=\yey,V. The set ¥p is at most countable. By notation
D=3 ,m;V, we mean that ¥ ,C{V,;i=1,2, ---} and m;=D(V,), and we write
D=0 if ¥p=@. A divisor D is called effective if D(V,)=0 for each:. For a
divisor D=X);m;V, and an open subset U of X let each V;N\U have the
irreducible decomposition V,NU=\;V,,. Then we define the restriction of D
to U by D[U=ZwmiVU.

Let ¢ be a nonzero holomorphic function on a connected open subset U of
X. For each x€U, taking holomorphic local coordinates z with x=(0), we
expand ¢ as

9(2)= 3 Pa2)

around x, where P,(z) is a homogeneous polynomial of degree m or vanishes
identically. We set
vo(x) :=min{m; P,#0},

which does not depend on the choice of holomorphic local coordinates z. Set
Z={x<U ; ¢(x)=0} and consider the irreducible decomposition Z=\J,Z,. Then,
vo(x) is equal to a constant m, on each R(Z)NZ,, where R(Z) denotes the set
of all regularities of Z. We define the zero divisor of ¢ by D,:=Xm.Z..
Let f be a nonzero meromorphic function on X. For each x= X, taking non-
zero holomorphic functions ¢ and ¢ on a neighborhood of x with f=¢/¢, we
define the order of f at x by v,:=y,—v,. It is easily seen that there exists
exactly one divisor D;=3;m;V, on X such that v,(x)=0 on X—SuppD, and
vi(x)=m, on V;N\RSuppD;). We call ordy(f):=D;(V) the order of f along
V for each Ve?'(X). The zero divisor Z; and the pole divisor P; of f are
defined by Z;:=3n >V, and P;=3 5 «(—m,)V, respectively.

PROPOSITION 2.3. For two nonzero meromorphic functions f, and f, on X
the following three conditions are mutually equivalent;

(i) there is a nowhere zero holomorphic function h with f,=hf,,

(i) D;,=Dy,

(iii) there exists an analytic set A of pure codimension one such that
ADSupp D;,\USupp Dy, and each irreducible component of A contains at least one
point x= R(A) with vy (x)=vy(x).

Particularly, if X is compact, the condition (i) can be replaced by

(i) there exists a nonzero constant ¢ with f,=cf,.

Proof. 1t is obvious that (i) implies (ii) and (ii) implies (iii). Suppose that
fi and f, satisfy the condition (iii), and set h:=f,/f,. Then,

Supp D»CSupp D, USupp Dy ,CA.

We can write D,=>:m,A,, where m, are integers and A, are irreducible
components of A. By the assumption, for each 7 there exists one point
x:€R(A)NA, such that vy (x.)=v,,(x.). This implies that
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My=vp(x)=vy (%)= (x:)=0

for each 7. Therefore, D,=0. This means that A is a nowhere zero holo-
morphic function on X and so f, (=1, 2) satisfy the condition (i). Here, A is
constant if X is compact.

Let f: X—Y be a meromorphic map and D be a divisor on Y such that
f(X)ZSuppD. For each x€X—I, we can take a neighborhood U of x in X
and a neighborhood V of f(x) such that f(U)CV and D|V=D, for a nonzero
meromorphic function ¢ on V. Obviously, ¢-f|U is a nonzero meromorphic
function on U and the divisor D,., does not depend on the choice of the above
¢. Then, there exists exactly one divisor D* on X—1I, such that D*|U=D,.,
for each ¢-f with the above property. Let D*=3);n,V, on X—1I,. Since I,
is of codimension =2, V,e¥?(X) and {V,} is locally finite. We call the divisor
D) :=3un,V, the pull-back of D by f.

3. Langmann’s finiteness theorem for nowhere zero holomorphic
functions.

For a complex manifold X we denote the field of all meromorphic functions
on X by M(X) and the multiplicative group of all nowhere zero holomorphic
functions on X by H*(X).

Let X be a complex manifold and X an open subset of X such that
A:=X—X is a thin analytic set in X. Regarding M()?) and H*(X) as subsets
of M(X) naturally, we set H%(X):=H*X YNM(X). The multiplicative group
C*:=C—{0} may be considered as a subgroup of the group H%(X). We con-
sider the factor group G:=H%(X)/C*. For each h in H%(X) we denote by
[h] the class in G which contains h.

ProOPOSITION 3.1 (cf., [9], Satz 3.4). In the above situation, if X is compact
and A has s irreducible components, then rank;G<s—1.

Proof. We may assume that each irreducible component A; (1<t<s) of A
is of codimension one because every h in H%(X) has no zero on A,—(UJuxtAu)
whenever A, is of codimension=2. ~We first consider the case s=1. For each
h in H*%(X) h is holomorphic on X if ord,2=0, and 1/h is holomorphic on X
if ord42<0. In either case, & is necessarily a constant by the maximum principle.
This shows that rank;G=0. Suppose that s=2. We define a Z-homomorphism
of G into Z*! by

B(h)y=(ord,h, -, ords,_ B)EZ**  (he H%(X)).

For hy and h, in H%(X), if @(h,)=®(h,), the meromorphic function ¢:=h,/h,
has neither zero nor pole on )?-As. By the above argument, ¢ is a constant
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and so [h,]1=[h,]. Therefore, @ is injective. The group G may be considered
as a subgroup of Z*-'. We then have rank;G<s—1.

We now give the following finiteness theorem.

THEOREM 3.2. Let X be a compact complex manifold and X be an open
subset of X such that A:=X—X is a thin analytic set in X. For nonzero mero-
morphic functions a, (1=<i<p), consider the set F of all elements ([h,], -+, [hp])
€GP with hye H%(X) which satisfy the conditions

y
;aih =

and Yicraih,#0 for any IC{1, 2, ---, p}. Then, $Z is bounded by a constant
R(p, s) depending only on p and the number s of irreducible components of A.

This is a special case of Langmann [10], Lemma 1.2. We shall give here
a function-theoretic direct proof, which provides a better estimate than his,
particularly, in the case where a;h, (1<i/<p) are linearly independent over C.
For our purpose, we need some lemmas.

Let U™ :={(zy, -, za); |2,] <1} and A={z,=0}NU™.

LEMMA 3.3. If V is a d-dimensional C-vector space of M(U™), then
#lordag; eV —{0}}=d.

Proof. Take a vector subspace W of V with dimW=d—1. It suffices to
show that
#lordap; oV —{0}} <#{ordsp; W —{0}} +1,

which gives Lemma 3.3 by induction on d. Assume that there exists some
@, in V—{0} such that ord . {ord,p; oW —{0}}. Take any o=V —{0} with
ord p+ord,p,. Then, we can see ¢p=cp,-+¢ for some ¢ in C and ¢ in W—{0}
and we easily see ordp=ord < {ordX; XeW—{0}}. This completes the proof.

LEMMA 3.4. Let a,, -+, ap,es MU™)*:=MU™)—{0} and P a subset of M(U™)*
such that [P]1={[h]; heP} is a finitely generated subgroup of the factor group
MU™*/C*. Consider the set %, of all elements (ord h,, -+, ord h,)E ZP with
h, in P which satisfy the conditions

M

(3.5) Cl,;]’ll:l, E aihﬁﬁo
€I

1

1

for any ICA{1, -+, p}. Then $9, is bounded by a constant depending only on p
and r=rank,[ P].

Proof. Since [P] is countable, we can find a point a’=(a,, -, a,) with
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la.| <1 such that, setting a*(z):=ai(z, a’) and h¥(z)=hi(z, a’) for h,, -+, hp,&P
satisfying the condition in Lemma 3.4, we have X ;c;a¥h¥+0 for any IC{1, ---, p}
and ord,a¥=ord,a,, ord,h*=ordh,. Therefore, we may consider a¥ and h¥
instead of @, and h,. By this reason, we assume n=1.

Let hy, ---, h, satisfy the condition (3.5) and set f,=a;h, (1=:/<p). We
first consider systems (f;, -+, fp) satisfying the additional condition that
f1, -, fp are linearly independent over C. By the assumption that

futfat - +fp=1

we have
l(l) 2(1) f(l)
T 1+ f2 fz + -+ fpp fp=0 (1§1§P—1);

where f{ denotes the /-th derivatives of f,. Therefore,

det( PO £ U £ N 1§1§p__1)
36 —(__1\t-1 fl fz—l f1,+1 fp
GO =D d t(ff” 12’ . o<i<p 1) '
e , cee B ,__.; sSs —
1 Io
We now take g, ---, g, M(U?) which give a system of generators of [P],

where r=rank,[P]. Each A, can be written as
h.=c.glet - gror

with some ¢;€C* and m,;=Z. Then,

(:);_f)m:(zi <z)+mil( ji (L)+ +m”(§_i)m

for each /. On the other hand, for each / there exists a polynomial P,(uy, **+, u;)

such that
43} ’ ’\r ’ -1
=R (D) ()

and P, is isobaric of weight / if we associate weight 2 with each variable u,,
namely, if P(u, u? -, u') is homogeneous of degree / as a polynomial in u.
From these facts, we can conclude that both of the denominator W, and the
numerator W, of the right hand side of (3.6) are written as polynomials of
(ai/a,)® and (gj/gp® (1<i<p, 1=<j<r, 0ZI<p—2) which are isobaric of
weight p(p—1)/2 if we associate weight ! with each (aj/a.,)*-* and (gj/g,)"".
Let V be the set of all polynomials of (ai/a,)® and (g5/g)*® (=0, 1, ---, p—2)
which are isobaric of weight p(p—1)/2. Then, V is a C-vector subspace of
MUY with dimV<d(r+p, p—1, p(p—1)/2), where d(u, v, w) denotes the
dimension of the C-vector space of all polynomials of uXuv variables x,;(1<i<u,
1<7=<v) which are isobaric of weight w if we associate weight ; with each
%x.;. In view of Lemma 3.3, we have

#lordup; oV —{0}} <d(r+p, p—1, p(p—1)/2).
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This shows that the number of possible values of ord,W, and of ord,W, are
both at most d(r+p, p—1, p(p—1)/2). Therefore, the number of possible values
of each ord,f, is at most d(r+p, p—1, p(p—1)/2)%. Since ordsh,=ord,f;—
ord a,, we conclude that

#{(ordhy, -+, ord4h,)EY,; ash, (1<:<p) are linearly independent}
=d(r+p, p—1, p(p—1)/2)*7.

We now start to prove Lemma 3.4 by induction on p. The case p=1 is
trivial. Assume that Lemma 3.4 is true for the case <p—1. Set Z:=
{(f1, =, fo); fri=aihy, -, fp:=a,h, satisfy the condition (3.5)}. For each
subset I of {1, ---, p} we consider the set %, of all elements (fy, -, fp) in F
such that f, (&) are linearly independent over C and they satisfy the identity

(3.7 . EEI ¢ fo=1

for some ¢;€C* ({eI). Then, as is easily seen, F=\J,;%;. So, it suffices to

show that
g{lordafy, -+, ordsfp); (f1, =, fR)EF 1}

is finite for an arbitrarily fixed I. Changing indices, we assume I={1, 2, .-, ¢}
(1=g<p). We next consider a set f=(J41, =+, Jp) Of proper subsets of
{1, 2, ---, p} such that Ile], JiN{L,2, -, q}#@®, and define the set
F{ =N F 1,5, Where F; ,;, is the set of all (f,)€Z; satisfying the condition
that there exist some d;=C* such that 3es,d,f.=0 and 3ic; d, f:#0 for any
I'2],. For an element (f,, -, fp)EF satisfying the identity (3.7), we have

A—cdfit - +U=e)fok 33 f1=0

for some ¢, in C*. For each /=¢+1, -, p, if we take a minimal subset J;
such that (€], and Xie;,d.f.=0, then J, intersects with {1, 2, ---, g} by the
condition (3.5), where d;=1—¢, for 1</<q¢ and d;=1 for ¢+1=j=<p. This
shows that (f,) is contained in #¢ for #=(J,). Therefore, #,=\ ,#{. Onthe
other hand, by the above shown facts we have

#{(Ord,{fly Ty OI'dqu); (fly Tty fq)EfI}<OO

Moreover, for J,=1{J,, j1, =, js} Wwith 1=<j,<q, by applying the induction hypo-
thesis to the functions f,,/f,, -, f;,/f;, We see

#{(ordAfjl_ordAfjo) o, ordgf,,—ordaf,,); (fz)eyl,‘ll} <oo.
It then follows that
#llordyf,, =+, orduf,); (fIEF 1} <oo.

Since /€], for any [ (¢+1=ZI1<p), we conclude
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{lordyfy, -+, ordaf,); (f)EF ) <oo

and so #{(ord,f.); (f)E.Z,;} is finite. As is seen by the above arguments, %
is bounded by a constant depending only on p and rankz[P]. This completes
the proof of Lemma 3.4.

Proof of Theorem 3.2. Let A=\Ji_; A, be the irreducible decomposition of
A. We may assume codim A,=1 for each ¢t. For each A, we take a point
x,€ R(A,) and choose holomorphic local coordinates (z{®, ---, z§’) on a neigh-
borhood U, of x, with x,=(0) such that U,={|z#| <1} and ANU,={z=0}N
U, Set P:=H%(X), which may be considered as a subgroup of M(U,)* be-
cause the restriction map of M()? )into M(U,) is injective. We may also regard
[P]:={[h]; heP} as a subset of HF(U,—ANU,;)/C*. On the other hand,
[P] is of rank<s—1 by Proposition 3.1. Therefore, Lemma 3.4 implies that
the number of possible cases of (ords,h,, -+, ords,h,) is bounded by a constant
depending only on p and s. On the other hand, two members &, A’ in H%(X)
satisfy the condition [A]=[hA’] if and only if ord,,~h=ord,h’ for each ¢. From
these facts, we conclude Theorem 3.2.

4. A finiteness theorem of meromorphic maps into PY(C).

Let f be a meromorphic map of a complex space X into PY(C).

DEFINITION 4.1. We say f to be [linearly nondegenerate if f(X) is not
included in any hyperplane in P¥(C).

The purpose of this section is to prove the following

THEOREM 4.2. Let X be a complex space such that X=X-A for a compact
complex space X and a thin analytic subset A of X. For hyperplanes H,, -+, Hy,
on P¥(C) located in general position and effective divisors E,, -+, Eyy, on X,
consider the set & of all linearly nondegenerate meromorphic maps of X into
PY¥(C) such that f*H,=E, 1<i<N+2). Then, $F is bounded by a constant
depending only on N and the number of irreducible components of A.

For the proof, we need some preparations. We first recall the following
generalization of the classical Picard-Borel theorem, which was proved by the
author in [4] and by M.L. Green in [8] independently.

PROPOSITION 4.3. Let U"={(z,, -, za); |z.| <1}, A:=U"N\{z,=0} and let
fu -, fp be nowhere zero holomorphic functions on U—A. If each f./f, (i#])
has essential singularities along A, then f,, -, f, are linearly independent over
the field M(U™) of all mervomorphic functions on U™.

For the proof, see [4], p. 280.
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We obtain from this the following:

PROPOSITION 4.4. Let a', -, a?e M(X)* and f,, -, fr€HXX) satisfying
the condition
alf1+ +a”fp=0.

Consider a partition of indices
{1) 2) Ty p}zle.IZU U./k

such that i and j are contained in the same class J, if and only if f./f, has a
meromorphic extension to X. Then, 3.esa'f,=0 for each I=1,2, ---, k.

Proof. This is shown by induction on k2. We have nothing to prove for
the case k=1. Assume that 2=2 and Proposition 4.3 holds for the case <k —1.
Then some f,,/f,, ({o# j,) has an essential singularity and so essential singularities
at all points of an irreducible component A, of A. Take a point x,=R(4,)
and choose holomorphic local coordinates z,, ---, z, on a neighborhood U™ of x,
in X such that x,=(0), U"={|z,|<1} and U"NA=U"N{z,=0}. Let

{1, =, pI=1VU - Uk

be a partition such that 7 and j are in the same class /5 if and only if f./f,
has a meromorphic extension to U”. Then, we see £#’=2 and each J, is in-
cluded in some J;,. Changing indices, we may assume me&], for 1<m<k’.
Set

™= X alfi/fa) (EMU™)

1€y,
for each m. Apply Proposition 4.3 to the identity
2 Bmfmz E alftzo
1s1sp

lsmsk’

to show B™=0 on U" for each m. This concludes

= (

1,Cip

glazfz)z > a, f.=0

* el

on X for each m. Since ${/; [,CJn} <k, we have Xic;,a.f,=0 for each / by
the induction hypothesis. This completes the proof.

COROLLARY 4.5. In the same situation as in Proposz'tzon~4.4, Sfunctions
gy, o, g in H¥X) satisfying the condition that git--- glre M(X) (LEZ) only
when [,= --- =1,=0 are algebraically independent over MU™).

Proof. Set fo:=glt--- gbr for I=(ly, -+, {;). By the assumption, f;/f & MX)
for any distinct / and m. By Eroposition 4.4, there is no non-trivial linear
relation with coefficients in M*(X) among {f;}. This shows Corollary 4.5.
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We next consider pXg matrices (h,,; 1</<p, 1<;7<q) with components
h,, in H*(X) for various p and g¢.

PROPOSITION 4.6.  For each g, (Z1) there exists some constant Q(P, o)
depending only on p and g, such that, if ¢>Q(p, q,) and

4.7 det(h,,; i=1, -+, p, j=J1, =+, Jp)=0

for all 7, with 1=j,=q, then there exist v functions ky, ---, k, & H¥X) with
25rs P such that, after a suitable change of indices if necessary, 1., :=h.;/(hisk.)
eMX) for 1<i<r, 1=<7<¢q, and

det(y.;; 1=1, -, 7, j=71, =+, j0=0
for all j, with 1<7,=q..

Proof. We consider the factor group G=H*(X )/H £(X) which is obviously

torsion free. Choose #;, -, € H*(X) such that [%,], ---, [%,] are multiplica-
tively independent over Z and each 4,, is represented as

t
ho=a, il (1<i<p, 1<j<q)

for some a,;€ H%(X). Set l,;=(L,, -+, l{;)€Z" and take integers p,, -+, by, ¢,

such that
—lup + +l ]pt'i’QJzO

and llj_‘li'j:l”'"“li'j' 1f and Only 1f l,,j—'lirj:lzj'_l,;'j' for léi, ilép, 1§],
j7’<gq, and minors

1 t
ALy 5 o) i=det(@u ) o i i=dy, e, by F=51, 0 Js)

satisfy the condition that AZ%(%,, -+, 1.)#0 if and only if AJ Hu?y, - uPt)#0
for any I=(, -+, i;) and J=(jy, =+, 75). Set P,,(u) =a,u'e M(X)[u], where
MX Mul denotes the ring of all polynomials in u with coefficients in M(X ).
Then, we have

(4.8) rank(P,,(u); 1Si<p, IS7=¢q)<p.
In fact, by the assumption, we see

1
det(aljnll“ e n 117]‘+1 ; Z_ TN p, ] ]1’ e, ]‘p):O

for all (7,), where 7.+, is an arbitrary functnon in H*(X). This is an identity
of rational functions with coefficients in M(X ) and indeterminates %, ***, e+t
by Corollary 4.5. By substituting n,=u? (1</<t) and %,+,=u, we get (4.8).

We now apply Main Lemma in the previous paper [6], §2, p. 531, which
remains valid if we replace the coefficient field C by M(X). We can conclude
that for each g, (=1) there exists some constant Q(p, ¢,) (>¢,) depending only
on p and ¢, such that, if ¢>Q(p, ¢,), then
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la—lin=liy—lyy= - Lgy—lirg,
for all 7, 7/ with 1<4, 7/<# and
rank(P,(u); 1<i<r, 1S75¢0)<r
after a suitable change of indices 7 and j, where 2<r<p. Then we have
Li—Lliy= - =lg—lig,.
Mg

Set (my,, =+, my):=li;—l;, and define k,=75;"** .- 9;'**, which satisfy the desired
condition. This completes the proof of Proposition 4.6.

Next, we study functions 4,, -+, 4, in M()? )* and pXg¢ matrices (r.,;
1=i<p, 1<j=q) with components in H*%(X) such that

At o FArp,=0  (1Z;=¢)

for various p and gq.

LEMMA 4.9. For each q, (Z1) there exists a constant Q'(p, q,) such that, if
q>Q'(p, qo), then there is some s, with 2<s,<p such that, after a suitable change
of indices i and j

/217’1}“" +XsoTsoj:O

and DicsAy.;#0 for any 1S {1, -+, s,} and 1<j=q,.
Proof. Set ¢¥=0 and define
= 2 gpCst4o

1sssi-1
inductively. We shall show that Q(p, go)=g¢% satisfies the desired condition.
Suppose that ¢>Q’(p, o). For each (=(,, -+, 4;) with 1=4,< - <i,Zp
2<Zs<p) we set

I‘—:I"l"'ls ={s; '211Tlxj+ +'21.3713j=0} .
Take the smallest s, with 2<s,<p such that #/,>g¥, for some (=(i, -, 7).
We note here #l1»..,=¢>¢}. Choose some (iy, -+, 75)) with this property. By

changing indices, we assume 7,=1, -, 4;,;=5s,. Then, if s<s,, we have §I,<g¥
for any ¢=(;,, -+, 7,) with 1<, < -+ <4,<s,. Therefore,

U, =@, -, 1), 120, - <080, 255<So})

= X2 g&,Cs
1s5s89-1

< ¥,Cs=q¥—q,.
—1§352so—1q3p s =50 qo

This implies that
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#(112~~~30—U{Illmls; 1—§Zl< <Z's§50y 2§s<30})
>q3— (35— 90)=¢,.

By changing indices, we can assume that [y,..,,D{1,2, -+, ¢} and I, ...,N
{1, 2, -, qo} =@ for any (5, -+, 75) with 2<s<s,. This shows Lemma 4.9.

We now start to prove Theorem 4.2. We may identify P¥(C) with the
subspace
Hy:={(w,:: Wxa); Wit - +wy2=0}

of PY+Y(C) and H, with HyN{w,=0} (1<i<N+2), where (wy: - :wy4e) IS @
system of homogeneous coordinates on P¥*'(C). For convenience sake, we set
p=N+2 in the following.

Assume that & contains ¢ distinct maps f,, ===, f, We shall prove that ¢
is not larger than a constant Q*(p, s,) depending only on p and the number s,
of irreducible components of A. Each f, can be represented as

fi=@y 0 L @py)

with meromorphic functions ¢,, on X satisfying the condition
o1t - +07=0

where we may assume ¢,;=1 by (2.1). By the assumption, ¢;, (1</<p—1)are
linearly independent over C. Moreover, since D¢i]= f*H,— f*H,=FE;—E, for
every j, we see h.,:=¢;;/pn=H*X). We then have

(4.10) Ouhyt o +@pihg ;=0

for 1=<j=<q. Therefore, h,, (1=Zi<p, 1<j7<g) satisfy the assumption of Prop-
osition 4.6.

Assume that g, mappings among the maps f,, say fi, -, fq,, have mero-
morphic extensions to X. Then, for j=1, -, gy, hy;€E HY(X), ZigispPirh:;=0
and Xic;@ih.;#0 whenever IS {1, 2, ---, p}. Therefore, we can apply Theo-
rem 3.2 to these functions to show that the number of the distinct systems
(Chy,d, -, [he,]) 1<j<q,) is bounded by a constant Q*(p, s,) depending only
on p and s,. On the other hand, if

([hlj:]’ ttty [hPJ]):([hlj’]; “tty [hpj’:l)

for some j, j/, then we can write ¢;; =c;p;, for some ¢;=C* In this case,
we have ;014 4+ ¢cp@p;=@17+ -+ +¢p;7=0. Since ¢y, -+, @p-1, are linearly
independent over C, we get ¢,= - =c, and so j=j’. This concludes ¢;<
Q*(p, so).

For our purpose, by the above shown fact we may assume that every f,
(1£5=¢) has essential singularities along A. For the case p=3, it suffices to
take Q*(p, so)=Q(3, 2), where Q(p, ¢,) is the quantity given in Proposition 4.6.
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In fact, if ¢>Q(3, 2), then after a suitable change of indices we have
Tisi=hi/(hik)E M(X)

for some ki, -, k,e H¥(X) and rank(y,,; =1, 2, 3, j=1, 2)<r, where 2<r<3.
In the case where det(y,,; 1</, j<2)=0, there exists some 7 in M (X' * with
T12=7711, Yo2=7721. Then, §0iz=hi2§0i1———Tizh12ki§0i1"—'T)’ilh1z§0i1kz:7'h12¢u for
i=1,2, and @u=—(Qi+@u)=rhisps. So, fi=f,. This is a contradiction. In
the case where det(y,,; 1=<7, 7<2)+0, we have necessarily =3 and the identities

OuRy Qo ko st a1 Reys; =0 (7=1, 2)

imply that (@:k.)/(puk))E M ()? ) for 7=2,3. This concludes that f, has a
meromorphic extension to X, which contradicts the assumption.

Assume that there exist Q*(3, s,), -+, @*(p—1, s,) with the desired properties
for each s,, where Q*(—1, s)<Q*(/, s,) for (=4, ---, p—1. Let R(p, s.),
Q(p, qo) and Q’(p, q,) be the quantities given by Theorem 3.2, Proposition 4.6
and Lemma 4.9 respectively, where we may assume R(p—1, so)<R(p, s,). We
now define inductively the numbers Q¥ (p, s,) for /=1, 2 and Q*(p, s,) by the
following conditions;

(4.11)  Q(p, s0)>R(p, s XQ*(p—1, so)+1)

(4.12) Q®™(p, s0)>Q'(p, Q(P, so)+1),

(4.13) QX(p, s0)=ZQ(p, Q™(p, s0)),

(4.14) Q®(p, 50)=Q(p—1, s,) for each /=1, 2 and Q*(p, s0)=ZQ*(p—1, so).

Suppose that ¢>Q*(p, s,). Then, by the use of Proposition 4.6 and (4.13),
after a suitable change of indices we can find some k%, -, k. H¥X) 2Zr<p)
such that 7,;=h,;/(hjk)e M(X) for 1<i<r and 1<75Q(p, so) and

rank(y,,; 1<i<r, 1=7SQ(p, so))<r.

Therefore, there exists some 4,, -, A& M(X) with (4, -, 2,)%(0, ---, 0) such

that
zlr1j+ i +lrrrj=0 (léjé ch)(ﬁ; SO))-

Changing indices if necessary, we may assume that A,#0, -+, 4,#0, Ay41= -
=2,=0. Then, by the use of Lemma 4.9, we can assume that

(4.15) Ayt o +Auru,=0
for any j=1, 2, -, Q(p, so)+1 and e diy,,#0 for IS{1, 2, -+, u}. Apply
Theorem 3.2 to the functions a,=A4;, -+, ay,=2, to show that the number of

distinct systems among
{{Cruds s rwDE@UHE(X)/C*); 1< 7=QN(p, sot
is at most R(u, so) (SR(p, sy)). Among Q(p, s,) systems (ri,, ***, yu;) Which

belongs to the same class ([71,], -+, [74,]). Therefore, after changing indices
and renewing ¢;,, we can write
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fi=(eukE i cuky i Quiyt 1 @)

with some ¢,;€C* and k¥, -, k¥ HXX) for j=1, 2, ---, Q*p—1, s,). Then
by (4.15) we see

rank(c,,; 1Si=u, 1) Q*(p—1, s)+D)<u.
We may write

C1;= zuczjdt

2512
for some d;,=C 2<i<u). Set k¥*:=k¥+d;k¥ for 2</<u and define the maps
J?jz(CijEk*i sl CuREE L Quray t o Q)

of X into P¥-YC) for j=1, 2, ---, Q*(p—1, s¢)+1. Then f, are all nondegene-
rate. For k¥, -+, k¥, Qu+1y -+, ¢p-1, are linearly independent by the assumption
and so kF+d.k¥, -+, kE4+duk¥, Qutiy -, @p-1, are also linearly independent.
Moreover, if

(CoghF*toor i Cy k¥ L Quary o 1 Ppoyy)
=(CopkF¥ 2ot Cuy RE* D Quary 1 L Q1)
then ¢,,=dc,; (2<i<u) for some d=C* and
Crjkt=—(coskE+ - FeukE+Puist o +¢p5)
=—d(Coj RE+ - FCuy REFQuary+ - +0ps)
=dc,; k¥,

which implies f,=f;. Therefore, the set &’ of all meromorphic maps f of X
into PY-C)=PY(C)N{w,=0} with F*H,=D;» (2<i<u) and F*H,=E,
(u+1=:1<p) contains Q*(p—1, so)+1 distinct elements. This contradicts the
induction hypothesis. The proof of Theorem 4.2 is completed.

5. Proof of Main Theorem.

For the proof of Main Theorem, we need some lemmas.

LEMMA 5.1 ([1]). Let L—Y be a very ample line bundle over an N-dimen-
sional smooth projective algebraic manifold Y and ¢, -, oy HY(Y, O(L))*.
If
(), SuwpD, =0,

12)sN
then @©1/Qy+1, =+, On/@n+1 are algebraically independent over C.

For the proof, see [1], p. 213.
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LEMMA 5.2 ([1]). Let L—Y be a line bundle as in Lemma 5.1 and
01, P H Y, O(L)* satisfy the condition that

Supp Dy, -+ NSupp Dy,,_,NSupp Dy, -+ NSupp D, ,,= D

for each j=1, ---, N+2. Take a nonzero irreducible homogeneous polynomial
R(uy, -+, unas) such that R(py, =+, @n+2)=0 on Y, and set
R(u)= > a‘l""‘1‘1+2u:1 uz\/ﬁgz

1+ +iy o=k

Then,
ako,.‘oio, aokou.o:péo, trty aoo...ok:,to.

For the proof, see [1], pp. 213~216.

LEMMA 5.3. Let L be a line bundle over an N-dimensional compact complex
manifold Y which has at least one system of N-+1 algebraically independent
holomorphic sections. Then, there exists a positive constant ky depending only on
L such that for arbitrary algebraically independent ¢y, -, oy, HXY, O(L)) the
meromorphic map D :=(@,:- 1@y Y—>PY¥(C) satisfies the condition that
tD-1Q(w)<k, for every point w in a nonempty Zariski open subset G of Y.

For the proof, see [6], p. 537.

Now, we start to prove Main Theorem. By the assumption, there exists a
positive integer d such that L¢ is very ample. For our purpose, we may
replace L by L¢ and so assume that L is very ample from the beginning.
Indeed, the set & is included in the set of all meromorphic maps of X into Y
which are algebraically nondegenerate with respect to L and satisfy the
condition f*(dD;)=dE,. Moreover, the divisors dD,, :--, dDys,=|L%| satisfy
the assumption of Main Theorem. Therefore, it suffices to prove Main Theorem
for L2,

Take holomorphic sections ¢y, -+, @x+. of L with D;=D,, (1=i=N+2).
Then, ¢i1/Qn+z **, Px+1/Pn+e2 are algebraically dependent and ¢./@y41, -+,
¢on/¢wn+1 are algebraically independent by Lemma 5.1. It follows from these
facts that there exists a nonzero homogeneous polynomial R(u) of degree £=1
such that

R((Pb tty SDN+2):0~

Ruw)= 3 Rjuw),
1sj5s42

We write

where R;(u) are nonzero monomials. By virtue of Lemma 5.2, we may assume
(5.4) Ri(w)=c,uf, -, Ry()=CyioUliss,

where ¢, C* (1Zi<N+2).
We now consider a holomorphic map ¥ : Y—P%C) defined by
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V(y)=(Ri@:(y), =, @nea(¥)) 11 Rors(@(y), =5 @w+2(¥))).

Instead of the set € we study the set & of all meromorphic maps f:=¥.f of
X into P%C) with fe€é. Each fe¢ is linearly nondegenerate because f is

algebraically nondegenerate with respect to L. We set
Bi={v=0 (1<jss+1)
Hep:={vi+ - +0,3,=0},

where (v,:---:vs,) denotes homogeneous coordinates on P*(C). Then, the
hyperplanes H,, :--, H,, are located in general position. Moreover, we set

~

Ej=11E1+ oy Eys
if Rj(w)=cu,' - u3? (ceC*. We then have
fHH)=W*H)=E, (1<j<s+2).

As a consequence of Theorem 4.2, we obtain #£<co. Take an arbitrary map
foe&. It suffices to show that

#Hree; ¥ -f=V-fi} <.

To see this, we apply Lemma 5.3 to algebraically independent sections
(1), -+, (py+1)®. By the help of (5.4) we can conclude that there exists a
positive constant d, such that #¥-¥(w)<d, for every point w in a nonempty
Zariski open subset G of Y. Suppose that there are mutually distinct ¢+1
meromorphic maps f,, =+, f,€& such that ¥ f,;=¥.f,. Set

G*:={xeX; fi(x)eG for all j and fix)#f;(x) for 0<7<j'<q}.

By the assumption of nondegeneracy of f,, G* is an open dense subset of X.
For a point x,=G* we have f(x,)G and

{folxq), -+, fq(xo>}cw_lw(xo),

whence ¢+1=d,. This completes the proof of Main Theorem.
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