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1. Introduction.

Let (M, g) be a 4-dimensional oriented Riemannian manifold. The star
operator * defined on the space of 2-forms A2M satisfies *°*—id. So A2M
splits into two eigenspaces as Λ2M=Λ2

+MQ)Λ2-M, where Λ\M and Λ2-M are the
eigenspaces corresponding to eigenvalues + 1 and — 1, respectively. Let W be
WeyΓs conformal curvature tensor of g. For each point p<=M, we may regard
Wp as a symmetric linear endomorphism of A\M. And let W+ (resp. W-) be
the restriction of W to A+M (resp. AIM). A 4-dimensional oriented Riemannian
manifold (M, g) is called self-dual (resp. anti-self-dual) if W-=0 (resp. W+=0).
B.Y. Chen proposed the following problem:

Problem. Classify all self-dual and anti-self-dual Hermitian surfaces.

B. Y. Chen ([2]) classified compact self-dual Kahler surfaces, thereafter
J. P. Bourguignon ([1]) and A. Derdzinski ([3]) reproved it independently by
different methods. On one hand, M. Itoh ([5]) gave a classification of compact
anti-self-dual Kahler surfaces. Hence in the case of Kahler surfaces, the above
problem is completely solved. So it will be in turn a problem to classify
self-dual, anti-self-dual Hermitian surfaces. In the present paper, we shall
prove the followings

THEOREM A. Let (M, /, g) be a ^-dimensional almost Hermitian manifold.
If it is self-dual and Einstein, then it is of pointwise constant holomorphic
sectional curvature.

THEOREM B. A compact Hermitian surface M is anti-self-dual if and only
if M is a locally conformal Kahler manifold with τ=3τ*, where τ and τ* denote
the scalar curvature and the ^-scalar curvature of M respectively.
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2. Preliminaries.

Let M=(M, J, g) be a 4-dimensional almost Hermitian manifold. We assume

that M is oriented by the volume form -yi?2, where Ω is the Kahler form

defined by Ω(X, Y)=g(X, JY) for X, Y^X{M) (3C(M) denotes the Lie algebra
of all differentiate vector fields on M). We denote by 7, R, p, τ and W the
Riemannian connection, the Riemannian curvature tensor, the Ricci tensor, the
scalar curvature and the WeyΓs conformal curvature tensor of M respectively.
The Riemannian curvature tensor R and the WeyΓs conformal curvature tensor
W are defined respectively by

R(X, y ) = [ 7 χ , 7 F ] - 7 C X i l Ί ,

W{X, Y)=R(Xf Y)-lr{AXΛY+XΛAY} + ̂ rXΛY,
Δ Ό

where A denotes a field of symmetric endomorphism which corresponds to the
Ricci tensor p, and X/\Y denotes the endomorphism which maps Z upon
g(Y, Z)X-g(X, Z)Y, for X, Y, ZZΞ3C(M). Furthermore, we denote by p* and
r* the Ricci *-tensor and the *-scalar curvature of M respectively (cf. [11]
p. 367).

Let {ei} = {ely e2—Jeu e3, e±—Jez] be a positively oriented orthonormal basis
of the tangent space TVM at a point p^Mf and {e1} the dual basis. We
denote by T%M the complexification of the tangent space TPM (p<=M). We put

(2.1)

Then {/j, f2] becomes a unitary basis of T%M, and its dual basis {fΛ} is
given by

(2.2)
/ f (

In the sequel, we shall adopt the following notational conventions

(2.3) Rtm=g(R(e%, ej)ek,eι),

Ay fβ)fc, ΪD) >

KAB=p(fA,fB),
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Wιjk[=g(W(etf βj)ek, eL)

WABCD=g(W(fA,fB)fc,fD),

where ι, /, k, /e{l, 2, 3, 4} and A, B, C, D G ( 1 , 2,1, 2}.
The WeyΓs conformal curvature operator (also denoted by W) is the

symmetric endomorphism of the vector bundle Λ2M defined by

g(W(cWΛc(y)), c(z)Λc{w))=~g(W(x, y)z, w)

for x, y, z, W(ΞTPM, p<=M, where c denotes the duality TM->T*M (the
cotangent bundle of M) defined by means of the metric g.

3. Self-dual and anti-self-dual Kahler surfaces.

Since the WeyΓs conformal curvature tensor W is invariant under any
conformal change of the Riemannian metric, the notion of self-duality (resp.
anti-self-duality) is conformal invariant. On one hand, if (M, /, g) is a
Hermitian surface, then (M, /, fg) is also a Hermitian surface, for any positive-
valued smooth function / on M. However, this is not valid for Kahler surfaces.
So, the self-duality (resp. anti-self-duality) gives a strong restriction for Kahler
surfaces.

We shall recall some results about self-dual, anti-self-dual Kahler surfaces

([1], C2], [3], [5]).

THEOREM 3.1 ([5]). Let (M, /, g) be a Kahler surface. If it is self-dual
with respect to the canonical orientation and it is Einstein, then it is of constant
holomorphic sectional curvature.

THEOREM 3.2 ([5]). Let (M, /, g) be a Kahler surface. Then it is anti-self-
dual if and only if its scalar curvature vanishes everywhere.

4. Curvature conditions.

First, we shall write the curvature conditions for a 4-dimensional almost
Hermitian manifold to be self-dual. Let M be a 4-dimensional almost Hermitian
manifold, p any point of M, {eu e2—Jeι, e3, ei=Je3} any positively oriented ortho-
normal basis of TPM and {e*} the dual basis. We take {fA} and {fΛ} as in (2.1) and
(2.2) respectively. Then we see easily that {e1Ae2-esAei=VZIl(f1Afϊ-f2Af2)f

e1Aez-e'Ae2 = f1Af+fιAf\e1Ae'-e2Ae" = ^^Λ{f1Afι-fιAp)} forms a
basis of AIM at j ε M . Thus, by the definition, M is self-dual if and only if
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(4.1) WllΛB-WΛAB=0, WliAB=WιtAB=0

for any A and B in {1, 2,ϊ, 2}. Hence we have

PROPOSITION 4.1. A ^-dimensional almost Her mitt an manifold is self-dual
with respect to the canonical orientation if and only if

(4.2) 12Kmι=τ, Kim-Kmi=0, Kim=0

for any basis {fA} of T%M of the form (2.1) at each point

Proof. We may see that W1ΪAB—W22AB=O for any A and B in {1, 2,1, 2}
if and only if 12Kl22ϊ=τ, ifing—^2212=0* a n d also that W1 2 i lβ=0 for any A and
JB in {1, 2,1, 2} if and only if Kmi=0, i ^ - i ^ ^ O , 12Kim=τ. Q. E. D.

Next, we shall consider a 4-dimensional anti-self-dual almost Hermitian manifold

(M, /, g). We see easily that {e'Ae^e'Ae^V^iPAf+ΓAf), e'Ae^+e'Ae2

=/ 1Λ/ 2+/ IΛ/ 2, ^ Λ ^ + ^ Λ e ^ - V ^ Ϊ C / ' Λ / 2 - / ^ / 2 ) } forms a basis of ^ M
at p&M. Thus, by the definition, we see that M is anti-self-dual if and only if

(4.3) WllAB+WnAB=Q, ^ 1 . ^ = ^ 8 ^ = 0

for any A and B in {1, 2, T, 2}.
In contrast with Proposition 4.1, we have easily

PROPOSITION 4.2. A ^.-dimensional almost Hermitian manifold (M, J, g) is
anti-self-dual with respect to the canonical orientation if and only if

(4.4) τ = 3 τ * , Klll2+K2-2l2=0, Klut=0

for any basis {fA} of T%M of the form (2.1) at each point p^M.

Proof. The proof is similar to the one of Proposition 4.1. But we will
use the followings

and τ*-τ=8K12Γ2. Q. E. D.

5. Self-dual almost Hermitian manifolds.

In this section, we shall prove Theorem A. First, we prepare the follow-
ing result by S. Tanno ([9]).

PROPOSITION. An almost Hermitian manifold (Mm, /, g) is of constant
holomorphic sectional curvature at p^My if and only if
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R(e%> Jβj> Jβk, βι)+R{ei9 Jek, JeJ} eι)
J

ΓR{eι, JeJ} Jeh ek)

+R(eif Jeu JeJ} ek)+R(elf Jek, ]eu βj)+R(elf Jelf Jek, e3)

+R(e3, Jeif Jek, et)+R(e3, Jek, Jeti et)+R{e39 Jet, Jeu ek)

+R(eJf Jeu Jel} ek)+R(ek, Je3, ]ely et)+R(ek, Jel} Je3, eL)

for any basis \eι}'ίL1 of TPM, where R(x, y, z, w)=g(R(x, y)z, w) for
x, y, z, w^TpM.

By (2.1), (2.3) and the above proposition, we have immediately the following

LEMMA 4.3. A ^-dimensional almost Hermitian manifold (M, /, g) is of
constant holomorphic sectional curvature H at a point p in M // and only if

for any basis {fA} of TC

PM of the form (2.1).

We are now in a position to prove Theorem A.
We suppose that M—{M, J, g) is a 4-dimensional self-dual, Einstein almost

Hermitian manifold. From p=-τ-g, by the straightforward calculation, we get

(5.2) Kmι=K2-22-2, Kim=Kim=Q, Kim+Ktm=0

for any basis {fA} of TC

VM of the form (2.1). By the second equation of (4.2)
and the third equation of (5.2), we get the second equation of (5.1). Next, we
take any basis {f'A} of T%M of the form (2.1). Then we may express f[—
aft+bU fr2=cf1+df2 for some (α, b, c, d) such that | β | 2 + | ^ | 2 = | ^ | 2 + | ^ | 2 = l ,
ac+bd = 0. By taking account of (4.2) [and (5.2), Iwe see easily
g(R(fΊ,fί)fϊ,fi)=g(R(fufύfi,fύ. Hence we get the first equation of (5.1).
Since τ—2(Knn+K2Ul+2K2m

Jr2Kl22{), by the first equation of (4.2), we get
the third equation of (5.1). The last equation of (5.1) is nothing but the last
equation of (4.2). This completes the proof.

Theorem A is a generalization of Theorem 3.1.

6. Anti-self-dual Hermitian surfaces.

In this section, we shall prove Theorem B. Let M=(Λf, /, g) be a Hermi-
tian surface. We shall make use of the same notational conventions as in §5.
First, we prepare the following result by A. Gray ([4]).
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PROPOSITION. Let M be a Hermitian manifold. Then we have

(6.1) RQV, X, Y, Z)+R(JW, JX, JY, JZ)-R(JW, JX, Y, Z)

-R(JW, X, JY, Z)-R{JW, X, Y, JZ)-R(W, JX, JY, Z)

-RQV, JX, Y, JZ)-R{W, X, JY, JZ)

= 0

for any W, X, Y, Z<=3C(M), where R(W, X, Y, Z)=g(RQV, X)Y, Z).

LEMMA 6.1. Let (M, /, g) be a Hermitian surface. Then we have

Proof. Putting W=Y=e± and X-Z-ez, we get ReCFΓ1212)=O (Re(/fm2)
denotes the real part of Km^. Similarly, putting W—Y—elf X—e3 and Z—eA,
we get Im(/Γ1212)=0 (Im(iίΓ1212) denotes the imaginary part of K12l2). Thus finally
K1212=0. Q. E. D.

By Proposition 4.2 and Lemma 6.1, we have immediately

PROPOSITION 6.2. A Hermitian surface M—{M, J, g) is anti-self-dual if and
only if

(6.2) r = 3 r * , Ki

for any basis {fA} of T%M of the form (2.1) at each point p^M.

It is well known that the Kahler form Ω is integrable in the following
sense ([10]),

(6.3) dΩ=ωΛΩ with ω=δΩ°J.

The 1-form ω appeared in (6.3) is called the Lee form of (/, g). The Lee form
ω satisfies

(6.4) Σ(Vβ<α>)(/β<)=0

where {et} is any orthonormal basis of TVM at each J e M .
Next, we shall consider the second condition of (6.2). Taking account of

the formula by K. Sekigawa ([8]), we have the following

PROPOSITION. Let (M, J, g) be a Hermitian surface. Then we have

(6.5) 2{g(R(W, X)JY, Z)+g(R(W, X)Y, JZ)}

=g(X, Z){(Vwω)(JY)+jω(JY)ω(W)-jΩ(W, Y)\\ω\ή
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-g(W, Z){(7xω)(JY)+jω(JY)ω(X)-jΩ(X, Y)\\ω\ή

-g(X, Y){^wω)UZ)+j<o(JZ)ω(W)-^Ω(W, Z)\\ω\ή

+g(W, Y)\c7xω)(JZ)+jω(JZ)ω(X)-±-Ω(X, Z)\\a>\ή

+Ω{X, Z)\{lwω){Y)+^ω{W)a>{Y))

-Ω(W, Z){(lxω)(Y)+~ω(X)ω(Y)\

-Ω(X,

+Ω(W,

for W, X, Y, Z<Ξ2£(M).

LEMMA 6.3. K1-n2+K2u2—0 if and only if dω is an anti-self-dual 2-fortn.

Proof. Taking account of (2.2) and (2.3), we see easily that
if and only if

l2H m S 34i 4 3423 ,

(6.6)
-ΪM213 ^1224~f~-tV3413 -^3424 — v) .

But, from the above proposition, we may see that (6.6) holds if and only if

(

(

By (6.4) and (6.7), we may easily show that the 2-form dω is anti-self-dual.
Q. E. D.

From Proposition 6.2 and Lemma 6.3, we have

PROPOSITION 6.4. A Hermitian surface M=(M, /, g) is anti-self-dual if and
only if

(6.8) r = 3 r * , dω is an anti-self-dual 2-form.

If the Lee form ω of (/, g) is closed (i. e. dω—Q), then a 4-dimensional
Hermitian manifold (M, /, g) is a locally conformal Kdhler manifold. We are
now in a crucial position to prove Theorem B.

We assume that M is an anti-self-dual compact Hermitian surface. Then,
from (6.7), we have
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(dω, dω)=\ dωΛ*(dω)=\ dωΛ(—dω)= — \ d(ωΛdώ)=0.
J M J M J M

So, (dω, dώ)=0. Hence dω=0.

Conversely, if M is a locally conformal Kahler manifold with τ=3r*, then

dω is anti-self-dual 2-form. So, from Proposition 6.4, M is anti-self-dual. This

completes the proof of Theorem B.
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