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Introduction.

Let D be a domain in the complex Euclidean space Cn, and 3((D) denote
the space of all holomorphic self-maps of D. Hol(D, Cn), the space of all
holomorphic maps / : D - > C n , is endued with the compact open topology and
3C(D) is given the induced topology. For a map f^JC(D), we denote the ?n-th
iterate of / by / m , that is fx=f, / m = / β / m " 1 , m=2, 3, •••.

Let Γ(f) be the closure of the sequence {fm} in Hoi (A Cn) with respect to
the compact open topology. Then Γ(f) is an abelian topological semigroup and
contained in Hoi (D, D).

Let Γ'(f) denote the set of all subsequential limits of {fm\. If / is a
holomorphic retraction of D, Γ{f)=Γf{f) = {f).

We denote the fixed point set of / in D by Fix(/). The purpose of this
paper is to investigate the relation between Γ(f) and Fix(/). When D is the
unit disc U in C, the following results are classical

THEOREM I (A. Denjoy [2], J. Wolff [19]). Let f be a map in M{U).
(1) // Fix(/) is non-empty, then either {fm} converges to a constant map p*

(p^U) or f is an analytic automorphism of U.
(2) // Fix(/) is empty, then there exists a boundary point q such that {fm\

converges to the constant map q*.
(For a point p in Cn, p* denotes the constant map of which value is p).

This theorem implies that for a holomorphic self-map / of the unit disc U,
Γ(f) is contained in JC(U) if and only if Fix(/) is nonempty. Also this theorem
has been extended to the case of the unit hyperball Bn in Cn {n>2).

THEOREM II (Y. Kubota [6], B. MacCluer [9]). Let f be a map in Sί{Bn)
with Fix (f)Φφ, then Γ{f) contains a holomorphic retraction of Bn. (φ denotes the
empty set.)

THEOREM III (B. MacCluer [9]). For f^M(Bn) withFix(f)=φ, there exists
a boundary point q such that {fm} uniformly converges to the constant map q*.
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Firstly we shall extend Theorem II to the case of bounded convex domains
in Cn.

THEOREM A (see Theorem 3.1). Let D be a bounded convex domain in Cn

and a map f belong to JC(D). If Fix (f)Φφ, then Γ(f) contains a uniqueholo mo-
rphic retraction R: D—>A, where A is a connected complex submanifold in D, and
any element g of Γ'(f) can be expressed as g=T°R where T is a biholomorphic
automorphism of A. Furthermore the dimension of A is dx+d (di=dimFix(/),
d^O, see section 3).

Secondly we consider the inverse problem of Theorem A. That is the
following problem; Let D be a bounded convex domain and f<=M(D). Does /
have a fixed point in D provided that Γ(f) contains a holomorphic retraction?
To solve this problem, we show a theorem with respect to the common fixed
point

THEOREM B (see Theorem 4.1). Assume that D is a bounded convex domain
in Cn. Let f and g be commutative elements of Sί{D) with fixed points. If dim

)ίgl or dim Fix(g)^l, then f and g have a common fixed point.

Finally, we have a partial answer to the above problem. Put M*(D) —
— {all holomorphic retractions of D}.

THEOREM C (see Theorem 5.1). Let D be as above and f<=M*(D). Assume
that Γ(f) contains a holomorphic retraction R:D->A. If dim A^l, then f has a
fixed point in D.

1. Complex geodesies.

Let D be a hyperbolic domain in Cn and TD, TD* denote the holomorphic
tangent bundle of D, 77)—(zero section) respectively. Then TD can be iden-
tified with DxCn.

For (p;v)^TD, CD(p;v) and KD(p;v) denote the Caratheodory metric (C-
metric, for short) of D and the Kobayashi metric (if-metric) of D respectively.
Their integrated metrics cD and kD are called the Caratheodory distance (C-
distance) and the Kobayashi distance (TίΓ-distance) respectively.

Let U be the unit disc in C with the Poincare metric Cu(t;v)=Ku(t;v) =
\v\/(l— \t\2). For two points zx and z2 in D, c%(zu z2)=sup{cu(f(z1), f{z2))', / e
Hol(D, U)} is called the classical Caratheodory distance of D. In general,

E. Vesentini [13, 14] introduced the complex geodesies

DEFINITION 1.1. Let F be a map in Hol(£/, D).

(1) //, for any points tlf t2 of U, c%{F{t1), F(t2))=Cu{tu ί2), then F {or its
image F(U)) is called a complex geodesic for c*.
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(2) //, for (p;v)tΞTD*, F satiesfies that F(0)=p, F\ϋ)=rυ for some r>0,
and CD(F(t); Ff(t))=Cu{t)l) for all ίe ί/ , then F is called a complex geodesic for
CD(p v).

Remarks. If C-distance of D is inner, then the complex geodesic for c% and
the one for CD(p v) coincide. There exists a (non-convex) pseudoconvex domain
where C-distance is not inner (see Vigue [15]). On the bounded convex domains,
two definitions are equivalent.

LEMMA 1.2. (1) A map F in Hol(/7, D) is a complex geodesic for c% if and
only if there exist two points tλ and t2 of U such that cί(F(ίi), F(t2))=Cu(tu t2).

(2) A map F in Hol(Z7, D) is a complex geodesic for CD(p;v) if and only if
F(0)=p, F'(0)=rv for some r>0 and there is a point tx of U such that CD(F(t1);
Ff(f1))=Cu(t1;l).

This lemma is due to E. Vesentini [14]. For a bounded convex domain Ώ,
L. Lempert [7, 8] has proved that the C-metric is equal to the ϋΓ-metric, hence
c%—cΏ—kΏf and there exist the complex geodesies in D (see Vigue [16, 17] and
Suzuki [12]).

THEOREM 1.3. Let D be a bounded convex domain in Cn.
(1) Given two distinct points x, y in D, there exists a complex geodesic through

x and y.
(2) For a given (p v) in TJD*, there is a complex geodesic F for CD(p v).

Here we remark the uniqueness of the complex geodesic on a strictly convex
domain.

LEMMA 1.4. // D is a bounded strictly convex domain, then the complex
geodesies in (1), (2) of the Theorem 1.3 are unique up to the analytic automo-
rphisms of U.

Proof. If D is a strongly convex domain with £6-boundary, then the com
plex geodesic coincides with the stationary map in the sence of Lempert [7]
We will use his idea. A complex geodesic F:U->D is a proper embedding and
can be extended continuously to the closure U of U. Denoting it again by F,
we have F(dU)(ZdD.

The case (1); Assume that there exist two distinct complex geodesies Fu

F2 in Hol(£/, D) which pass through two points x, y. There are Tj^Aut(U)
(7=1, 2) such that F 1 O T 1 ( 0 ) = F 8 T 2 (0) = Λ:. Let 3;=F1 T 1(s 1)=F 2 T2(s2) for points
5i and s2 in U. Since Fj is the isometry with respect to C-distances c%, cUf

cί(x, y)=ct(FjoTj{0), FjoTj(sj))=cσ(0, Sj),

hence we have Cu(0, Sj)=^(0, s2), i.e. |Si| = | s 2 | . Let s1=eίθs2. Setting r(t) —
eiθt on U and Tf(t) = T1'>r(t)) we have F1«»Tf(0)=F10^(0)=Λ:, F1 Tf(s2)=F1«>T1(s1)
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—y. Let G1=F1"Tf> G2—F2°T2 and s—s2, then Gλ and G2 are complex geodesies
in D such that G1(0) = G2(0) = xy G1(s)=G2(s)=y. Since D is convex, G(t)=
(Gyffj+G&yϊfi is a well-defined map from U to D, and G(0)=*, G(s)=y.
Hence, from Lemma 1.2 (1), G(t) is a complex geodesic passing through x and 3;.

If G^φGzit') for some boundary point V of 17, then G(f) is an interior
point of D since Z) is strictly convex. This contradicts that the complex
geodesic is a proper embedding. Thus we have Gi(ί)=G2(0 on dU. From the
Cauchy formula Gx(t)=G2(t) on £7. Therefore F1*T=F2 on ί/, where T=T*°7Y
is an automorphism of U.

For the case (2), we can do as above, so we shall omit the details.
q. e. d.

2. The fixed point set.

Let D be a bounded convex domain in Cn. For a map f^M(D), J. P. Vigue
[16, 17] investigated the structure of Fix(/). We arrange his results that we
shall use later.

THEOREM 2.1. Let D be a bounded convex domain in Cn and f
(1) For two distinct fixed points x and y of f, there exists a complex geodesic

F which passes x, y and F(t/)cFix(/). [16, Theorem 4.1]).
(2) // there is (p v) in T £ * such that f(p)=p, f'(P)v=v, then there exists

a complex geodesic for CD(p;v) which is contained in Fix(/). ([16, Theorem 4.2]).
(3) Fix(/) is a connected complex submanifold in D. ([16, Theorem 4.3]).
(4) At any point p of V=Fix(/), a vector v (Φΰ) belongs to TP{V) (the

holomorphic tangent space of V at p) if and only if f'{p)v—v. ([16, Proposition
4.4]).

(5) Let A be a complex submanifold of dimension 1 in D. A is a fixed point
set of a map f in M{D) if and only if there exists a complex geodesic F with
A=F(U). ([16, Proposition 7.3]).

Vigue proved (1), (2) of Theorem 2.1 by using Brouwer's fixed point theorem.
We remark that (1), (2) can be proved by using Lemma 1.4 and the Schwarz
lemma provided that the domain D is strictly convex.

PROPOSITION 2.2. Let D be a bounded strictly convex domain in Cn and
f€iJC(D).

(1) For any two distinct points zlf z2 of Fix(/), the complex geodesic F which
passes through zu z2 is contained in Fix(/).

(2) / / (p v) satisfies that f(ρ)=ρ, ff(ρ)v—vf then the complex geodesic F
for CD(p υ) is contained in Fix (/).

Proof. (1) From Theorem 1.3, there exists a unique complex geodesic
i?eHol(£7, D) which passes through zu z2. Set F(t3)-Zj (tj^U, / = 1 , 2) and
G=foR Then Ge=Hol(ί7, D) and G(tJ)=f(zj)=zJ. Hence we obtain;
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G(U))=c$(zu z»)=cί(F(ί1), F(U)) = cσ(tu U).

Lemma 1.2 (1) implies that G is also a complex geodesic which passes through
zu z2. Since D is strictly convex, from Lemma 1.4, there is an automorphism
T of ί/ such that G=F°T. Then F(tj)=zJ=G(tj)=FoT(tj), ; = 1 , 2. Since F is an
embedding of ί7 into D, we have T(tj)=tj, / = 1 , 2. The Schwarz lemma implies
that if a map S<^JC(U) has two fixed points in U, then S is the identity map of U.

Thus T is the identity map of 17, that is, F(t)=f°F(t) on E7. We have that
the complex geodesic F(U) is contained in Fix(/).

(2) We remark that CD=KD on TO. From Theorem 1.3, there exists a
complex geodesic F for CD(p;v), which satisfies F(0) = p and F'(0)=rv ( l/r=
Kdp v)). Set G = / ° F on ί7. Then GeHol(ί7, £), G(0)=f(p) = p and G'(0) =
f'{p)rv—rv. From Lemma 1.4 (2), there is an automorphism T of U such that
G=F°T because G is the complex geodesic for CD(p;v). From that F(T(0)) =
F(0)=p and F is an embedding, we get T(0)=0. Hence T(ί)=ζί, | ζ | = l . Since
rv=G/(0)=F/(0)T/(0)=rζv, ζ = l , i.e. T is the identity map of ί7. Thus we
have F(ί7)cFix(/). q.e.d.

3. The iterational limits of a holomorphic self-map.

Let D be a bounded convex domain in Cn and / be a holomorphic self-map
of D.

If Fix(/) is nonempty, then Γ(f) is contained in JC(D), and has only one
idempotent i.e. holomorphic retraction. Furthermore, if Γ(f) contains the
identity map, then / is an automorphism of D (cf. Wallace [18] or Shields [11]).

Let p be a point of Fix(/) and /'(/>) be the differential of / at p. If λv

(v=l, •••, n) are the eigenvalues of /'(/>), then U v | ^ l . Set car{v;^v=l} = d1,
car{ρ; | ^ v | = l , Λv=£l}=<i and car{v; | ^ | < l } = y , where car denotes the cardinal
number of the set.

THEOREM 3.1. Let D be a bounded convex domain in Cn, and f^JC(D) with
V=Fix(f)Φφ.

Then Γ(f) contains a unique holomorphic retraction R: D-*A, where A is a
connected complex submanifold in D and any element g of Γ'(f) can be expressed
as g=T°R where TeAutCA).

Furthermore the numbers dlf d and j do not depend on the choise of the point
p and dim A=d1+d=n— j .

Proof. Since D is taut, JC(D) is a normal family. We will use the method
of Bedford ([1, Theorem 1.1]) and Vigue's Theorem 2.1. Take an element g
of Γ'(f). Then g is in M(D) since Fix(/) is non-empty. There is a subsequence
{/m*} of {fm} such that \imfmv=g. Taking a subsequence if necessary, we
may assume that two sequences kv=mv+1—mv, lυ—kv—mv both tend to infinity.
Again taking the subsequences if necessary, we obtain two maps R> ΛeHol(Z), D),
where lim/*y=Zv? and \\m flv—h. Passing to the limit as v-»oo in the equation
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/m»+i=/*y/mp> we have g=R°g. Then #eHol(Z>, D)=JC(D) since g
Taking the limits of the equations /mv+iz=/mvo/^ a n d /**=fι»°fm», we have
g=£°jR and R=h°g. Set i4=Fix(#). Then, from Theorem 2.1 (3) A is a
connected submanifold in D and g(D)cAaR{D) since g—R°g. From g—Rog
and R — h^g, we see that J? and g have the same rank and the preimage 7?"1

(i4) is n-dimensional submanifold of D. Hence R(D)—A. It follows that R2=R
and that i? is a holomorphic retraction of D onto A The uniqueness of R
follows from the general theory of Wallace [18].

Setting T=g\A, we must show that T is an automorphism of A. We take
the limit of fk*>=fm*>ofh to obtain R=g°h. Because R{z)—z on A and R=g°h,
T{h{z)) — h{T{z))^z on A. This implies that T is one-to-one and T~1—h on A
as g=T°R.

We calculate the dimension of A. V=Fix(/) is a connected complex sub-
manifold in D and VczA. Thus the dimension of V is a constant s at all
points of V. A non-zero vector v belongs to the tangent space TP(V) if and
only if f'(p)v=v. i. e. v is a eigenvector associated to the eigenvalue 1 (Theorem
2.1 (4)). Thus άimTp(V)=d1. On the other hand, s=dim F=dim Tp(V) = dx

since V is non-singular. Put f'{p) in Jordan's canonical form;

Diagonal [1,
1 0

, 1, Ju - , Jd., ][,

where /„=

0 0

^ or 0 (if / degenerates). But we remark that /„=Diagonal [λv, •••, λv~\
because D is bounded (see [5, p75]). Hence we may assume that the Jordan's
canonical form of /'(/>) is Diagonal [1, •••, 1, λu •••, λd, J[, •••, /J]. It is clear
that lim(/p f e y=(0-matπx) as ^y-^oo where {kv\ is the above-mentioned sub-
sequense such that \imfk^—R. The eigenvalues of R'(p) are 1 and 0 since R
is the holomophic retraction. The eigenvalue 1 is di+d-fold. Thus rank p #—
dx+d—άimpA. Because A is a connected complex manifold, dλ + d is constant
over A q. e. d.

4. The common fixed point set.

A. L. Shield [11] showed that if S is a commuting subfamily of M(U)Γ\C(Π),
then the elements of 5 have a common fixed point in U (C(U) is the family of
functions that are continuous on Ό). D. J. Eustice [3] proved an analogous
result for the bidisc U2. We extend this to the case of a bounded convex
domain.

THEOREM 4.1. Let D be a bounded convex domain in Cn and /, g be maps
in M{D) such that f°g=g°f and both have fixed points in D. If d imFix(/)^ l
or dim Fix(g)<l, then f and g have a common fixed point.
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Proof. We may assume dimFix(g)^l . V=Fix(g) is a connected complex
submanifold in D. For any z<=V, g{z)=z, hence f(z)=f°g(z)=g°f(z). This
means f(z)^V i.e. / maps V into V.

If dim 7 = 0 , then V consists of only one point p in D, we see f(p)—p, i.e.
p^Fix(f).

Next we consider the case of d imV=l . From Vigue's Theorem 2.1 (5),
V=Fix(g) agrees with a complex geodesic F(U). Since F is an isometric em-
bedding, the inverse F'1 exists on V.

Setting h—f\V (the restriction of / to V), we have T=F~1*h°F is well-
defined on U and T<ΞM{U). Tm=F-1ohmoF. Since / has a fixed point in D,
Γ(f) is contained in H(D), thus Γ(T)(ZJC(U). From .the Den joy-Wolff's Theorem
I, T has a fixed point 5 in U i.e. T(s)=s. Hence h°F(s)=F(s). The point

is a fixed point of / because h=f\V. q.e.d.

5. The inverse problem.

Let D be a bounded convex domain in Cn. We showed that if f ( )
has a fixed point in D, then Γ(f) is in JC(D) and contains exactly one holomo-
rphic retraction. As mentioned in introduction, we consider the inverse pro-
blem to this.

PROBLEM I. Does / have a fixed point in D provided that Γ(f) contains a
holomorphic retraction?

PROBLEM II. When / is fixed point free, is the image g(D) contained in the
boundary of D for any g^Γ'(f)?

Problem I and II are in contraposition. We consider Problem I. If / is
itself a holomorphic retraction D->A, then i4=Fix(/). Thus the problem is
trivial. We may consider only a holomorphic self-map that is not a holomorphic
retraction. Set M*(D)=M(D) — {all holomorphic retractions of D}.

For Problem I, we have a partial answer.

THEOREM 5.1. Suppose that D is a bounded convex bomain in Cn, f^M*(D)
and Γ(f) contains a holomorphic retraction R:D->A. If dim Λ ̂ l, then f has a
fixed point in D.

Proof. Assume that a subsequence {/m*} converges to R. Since f°fmy—
fmvof, f°R=R°f, i.e. / and R are commutative. We remark that A=FΊx(R).

If A consists of a point in D, then the proof is trivial. Let dim A = l . Since
Γ(f\A) is contained in JC(A), as the proof of Theorem 4.1, Den joy-Wolff's
theorem I leads to that / 1 A has a fixed point in^4, thus / has a fixed point in
D. q. e.d.

Remark. It is desired that the restriction (dim A^l) in Theorem 5.1 can be
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removed. If R<sΓ(f) is a holomorphic retraction of D onto A, then R\A is
the identity map of A, hence f\A is an automorphism of A, that is, an isometry
with respect to the C-metric CA=CD\A (they equal to K-metήc) of A. The
remaining problem is following; When Γ(f\A) is contained in M(A), does f\A

have a fixed point?

Finally we consider the case of 2-dimensional Thullen domain. Let Ό—

{{zu z2)εΞC2; | 2 Ί | 2 + k 2 | 2 p < l } . (p^l, integer). Take a map / in JC(D). Sup-
pose that Γ(f) contains a holomorphic retraction R: D—>A, where A is a con-
nected complex submanifold in D. D is strictly convex. From Vigue's theorem
2.1, A is one of the following; (1) one point in D, (2) a complex geodesic F(U),

(3) D itself.

In the cases of (1) and (2), / has a fixed point by Theorem 5.1. In the case

(3), R is the identity map of D, thus / must be an automorphism of D. Then

/ = ( / i , Λ) is

(see, Ise [4]). From this form, we see Fix(/)=(Fix(/i), 0). If Fix(/)=0, then
(/m)i converges to a boundary point since (/m)i=/?, where /TO=((/m)i, (/m)2),
this is absurd. Thus / has a fixed point in all cases, provided that Γ(f) con-
tains a holomorphic retraction. Therefore, if / has no fixed point, any sub-
sequential limit g of {fm\ is a constant map which value is a boundary point.

Acknowledgement. The author is grateful to the referee for many valuable

comments.
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