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GLOBAL PROPERTIES OF THE GAUSS IMAGE

OF FLAT SURFACES IN R4

BY KAZUYUKI ENOMOTO

Let M be a surface of zero Gaussian curvature in i?4 which has flat normal
connection. Let G2Λ denote the Grassmann manifold consisting of oriented
2-dimensional linear subspaces of R4. The Gauss map G:M—>G2>4 is defined by
assigning each point of M to the tangent plane of M at the point. The image
of M by G is called the Gauss image of M.

In [2] we studied local properties of the Gauss image of M; if we identify
G2,4 with S2XS2, then the Gauss image of M i s locally the Riemannian product
of two curves γx and γ2, where γλ lies in the first factor of S2xS2 and γ2 lies
in the second factor.

In this paper we study some global properties of the Gauss image of M
when M is compact. If G is regular at every point of M, the Gauss image is
a finite covering of 7*1X7*2, where γx (resp. γ2) is a closed curve in the first
(resp. second) factor of G2>4. Then we show that the total curvatures of γx

and γ2 are both zero (Theorem 1). In particular, if γt is simple, it divides the
factor of G2>4 (=S2(1/V2)) into two regions of the same area.

In § 3, we give a method to construct a flat torus whose Gauss image is
prescribed. In Theorem 2, we show that if γt (/=1, 2) is a closed curve in
S2(l/V2) whose total curvature is zero and if the total curvature of any subarc
of γt is less than π/2, then there exists a flat torus whose Gauss image is a
finite covering of 7ΊX7V

The author would like to thank Joel Weiner for his helpful comments on
this paper.

§1. Local Properties.

In this section, we recall some basic facts on the geometry of the Grassmann
manifold G2> 4 and flat surfaces in i?4. See [2] for details. Let G2> 4 denote the
Grassmann manifold of oriented 2-dimensional linear subspaces of R\ If P^G2>ά,
then there exists a positively oriented orthonormal basis {elf e2, e3, e4} of i?4

such that P=eίΛe2. By differentiating eι/\e2> we see that the tangent space of
G2Λ at P, TPG2>4, is spanned by etAea (i=l, 2, a=3, 4). It is known that G2 ) 4

equipped with the standard invariant metric is isometric to S2(l/V2)xS2(l/V2)
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([3]). We identify G2Λ with S2XS2 and denote the first factor by £\ and the
second by S2. {etAea i=l, 2, a=3, 4} becomes an orthonormal basis of TPG2Λ

with respect to this metric, and TPSX is spanned by {e1Ae3—e2Aei, e1Ae4+e2Aes}
and TPS2 is spanned by {exAe3Λ-e2Ae^ exAe^—e2Aez}.

Let M be an oriented surface in Rά. The Gauss map G: M->G2,4 is defined
as G{p) — TPM, where TPM is the tangent plane of M at p. Let {elf e2, e3, e4}
be a positively oriented orthonormal frame field of 7?4 which is defined on an
open set of M and satisfies TpM=e1(p)Ae2(p). Let ωAB (1£Λ, B<A) be the
connection form of the standard covariant differentiation of i?4, i.e., o)AB—
(deA, eB}, where <, > is the standard inner product of R\ The differential of
the Gauss map is given by

(1.1)

for any X(ΞTPM.

LEMMA 1.1. ([2]) // the Gaussian curvature of M is identically zero and the
normal connection of M is flat, then there exists a local orthonormal frame field
{elf e2y e3, e4} on M such that e1(p)Λe2(p) = TpM for any p^M, ωu(X)=ω23(X)—0
for any X^TPM and ω13(e2)=ω2i(e1)—0.

Let λ—ω13{e^) and μ=(02i(e2). Then (1.1) is written as

(1.2) dG(X) = -λ<X, e1>etAez+μ<X, *»>0iΛe4.

Hence G is regular at p M if and only if λμφO. Moreover, if λμφO on M,
then there is no umbilical point on M and it follows from ReckziegeΓs theorem
([5]) that each eA (l^Λ^i) becomes a C°° vector field, and λ and μ become
C°° functions on M. Applying Codazzi equations, we obtain the following
equalities:

(1.3) eλμ—μω21{e2)—^

(1.4) e2λ-λω12(βl)=:0

(1.5) λω21(e2)—μω34(£i)=0

(1.6) μω^i

In the following, we assume that λμφQ on M. Then there exists a local
coordinate system (ξu ξ2) on M which satisfies

d/dξ1=l/V2(l/λe1-l/μe2)
(1.7)

Let <7i (resp. σ2) be an integral curve of l/Λ/2(l/λe1—l/μe2) (resp.
+l/μe2)). Let γι = G(σι) (f=l, 2). Then we have
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PROPOSITION 1. ([2]) γτ lies in St for each z—1, 2. Locally, G{M) is the
Riemannian product of γλ and γ2.

Let κt denote the geodesic curvature of y% {i—l, 2) in 5 t=S 2(l/V2). By
Proposition 4.1 in [2], we have

(1.8)

Examples, (i) Let d and C2 be plane curves. Then the Riemannian
product CiXC2 is a flat surface in i?4 with flat normal connection. For this
surface we have κx=0 and κ2=0. Thus the Gauss image is locally the product
of two great circles. Conversely, if the Gauss image of a flat surface in R* is
totally geodesic, then it is locally the Riemannian product of two plane curves.
This follows from the Chen-Yamaguchi classification theorem for surfaces in
iv?4 with totally geodesic Gauss image ([1]).

(ii) Let teiOO, z2(t)) be a curve parameterized by arc-length in C2—R\ Suppose
I - 2 Ί | 2 + U 2 | 2 Ξ 1 SO that this curve is contained in S3aR*. In addition, (zlf z2) is
required to satisfy zίzΊ+zίΈi=O. Let M be the surface in R4 defined by
(ί, 0)-»(0l^i(f)> 0ι^2θO). Then M i s a flat surface with flat normal connection.
For this surface we have either /CIΞΞO or κ2=0. (M is called a Hopf torus. Some
descriptions of the geometry of Hopf tori are given in [4].)

§2. Global Properties.

Let M be a compact, oriented surface in i?4 which has zero Gaussian
curvature and flat normal connection at every point. We assume that the
Gauss map G: M->G2,4=51X52 is regular at every point. Then it follows from
Proposition 1 that there exist immersed closed curves fiCSi and γ2dS2 such
that the Gauss image G(M) is a finite covering of the Riemannian product of
γx and γ2.

Combining (1.8) with (1.3), (1.4) and (1.7), we obtain

(2.1)

for any
Since the Gaussian curvature is identically zero, the universal covering M

of M is isometric to R2 equipped with the standard flat metric. Let π: M->M
be the projection. Since M is compact, M is isometric to R2/Γ, where Γ is a
properly discontinuous subgroup of the isometry group of R2. Let (xu x2) be a
Cartesian coordinate system on M. Suppose that Γ is generated by (x1} x2)->
(* i+β, x2) and (xlf x2)->(xi+b, x2+c) for some real numbers a, b and c. Let
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f%—dπ{d/dxι) (/=1, 2). Then {flt f2} is a globally defined C°° parallel ortho-
normal frame field of TM.

There exists a global C°° orthonormal frame field {e1} e2} on M such that
e1=dπ(e1) and e2—dπ(e2) satisfy the conditions in Lemma 1.1. Let λ—λ°π and
μ—μ°π. Then I and μ are non-zero C°° functions on M. Let X1=l/y/2(l/λ§1

—l/μe2) and X2=l/V2(l/ί£i+l//z£2). Then we have [^, X 2 ]=0 everywhere
on M. Hence there exists a global coordinate system (ζlf ξ2) on M such that

ξ^Xx and d/dξ2=X*
We define a C°° function a on M by

x /ι~\-sm ad/dx2

(2.2)
£2——sin ad/dxx+cos ad/dx2.

Then

(2.3) π*ω12=(d2lf e2>

= da.

For a curve p n a two dimensional oriented Riemannian manifold the total

integral of the signed geodesic curvature tt along γ, \ K, is called the total

curvature of γ. We denote it by τ(γ).
Let a1={(#1, f 2 ) : - ° ° < £ i < ° ° , I2=O} and σ , - ! ^ , f 2): &=(), -oo<f 2 <oo}.

CΓI and σ2 are curves on M and G°π maps 5 t onto a closed curve ^ in Sz for
/ = 1 , 2. Since G is regular everywhere on M and M is compact, G(M) is a
finite covering of γιXγ2. Let & be the degree of G as a map from M onto
YiXϊ2- There exists a closed curve ax on M such that σx is mapped onto σ%

by 7r and G(σt) is a ^-fold covering of γt.

LEMMA 2.1. For i=l, 2, we have

Proof. Let σi be a subarc of σt which is mapped bijectively onto a% by π.
Then we have τ{σf

ι)—τ{σι).
On the other hand, by (2.1) and (2.3), we have

da=s=F-™- α E D

LEMMA 2.2. Let σ be a smooth closed curve in a flat torus M—R2/Γ. Let
σ be a complete curve in the universal covering M=R2 of M whose image by the
projection π : M-^M is σ.

If the total curvature of σ is not zero, then σ has a self-intersection.
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Proof. Let s be an arc-length parameter of a and let L be the total length
of a. Let s also denote an arc-length parameter of σ. For any s and any
integer m we have π°σ(s+mL)=π°σ(s). Suppose that Γ is generated by
(xlf x2)-*(xi+a, x2) and {xx, x2)^*(xi+b, x2+c). Since π°σ(s)=π°σ(s+L), if
σ(s)—(xu x2), there exist integers p and q such that flr(

Let A (S) ( 0 ^ s < L ) be the signed geodesic curvature of a. We extend K to
a function defined on (—00, 00) by setting κ{s)=ιc(s') if s = s' (modL) and
s 'e[0, L). Then κ(s) gives the signed geodesic curvature of σ. We define a
function F(s) for s e ( - 0 0 , 00) by

so that the total curvature of {σ(s): s^s^Sz} is given by F(si)—F(s2). In
particular, for any s, we have F(s+L)—F(s)=τ(σ).

Let Λ1=min{F(s):O£s^L} and Λ2=max{F(s): Q<s^L}. Suppose τ(σ) =
Then for any Sj and s2 (Si<s2) we have

where m is the integer such that m^s2—s1<mJ

rl. Therefore, there exist
numbers Sλ and S2 such that

(2.4) |F(s 2 )-F( S l ) l>2τr

for any s x <Si and s 2 >S 2 .
Since {σ(s):S1<s<S2} is bounded, there exists a circle C in M which

contains {σ(s):S1<s<S2} inside. If σ(s)=(xlf x2), we have or(s+nL) =
(xx+npa+nqh, x2+nqc). We see from this that the whole σ is not bounded
and there exist numbers S 3 < S ! and S 4 > S 2 such that cr(S3) and d(S4) lie outside
C. Then <; must intersect C at some 5(TO and σ(T2), where S 3 < T 1 < 5 1 and
S 2 < T 2 < S 4 .

If σ does not have a self-intersection, then {σ^'.T^s^Tz} divides the
domain bounded by C into two simply connected subdomains. By the Gauss-
Bonnet theorem, the total curvature of {σ(s):T1^s^T2} is smaller than 2π.
Thus we obtain \F{T2)-F{T1)\ <2π, which contradicts (2.4). Hence σ must
have a self-intersection. Q. E. D.

THEOREM 1. Let M be a compact, oriented surface in i?4 which has zero
Gaussian curvature and flat normal connection. Suppose that the Gauss map G is
regular at every point of M. Then there exist closed curves γiZlSx and γ2dS2

such that the Gauss image G(M) is a finite covering of the Riemannian product
of 7Ί and γ2 and the total curvature of each γt is zero for 2=1, 2.

Proof. Since (ξu ξ2) defines a global coordinate system on M, σt —
{(li, l2) * l i Ξ 0} does not have a self-intersection. Since σι—π°σι is closed, we
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use Lemma 2.2 to see that τ(σι)—0. Now we have τ(γι)=0 by Lemma 2.1.
Q. E. D.

COROLLARY. // γt is a simple closed curve in Slf γτ divides Sτ into two
domains of the same area.

Proof. Since the total curvature of γt is zero, the Gauss-Bonnet theorem
implies the corollary.

Remark. If M is the product of two plane curves C1XC2> then G(M) is a
double covering of the product of two great circles. If M is a Hopf torus,
then G(M) is a double covering of the product of a great circle in one of Sx

and S2 and a closed curve in the other.

§ 3. Flat Tori with Prescribed Gauss Images.

In this section, we prove the following theorem. Again, we identify G2,4

with 5iX5 2, where Si and S2 are isometric to a round 2-sρhere of radius 1/V2.

THEOREM 2. Let yx be a regular closed curve in Sτ (i=l, 2). Suppose that
the total curvature of y% is zero and the total curvature of any subarc of γt is
less than π/2. Then there exists a compact immersed surface in i?4 whose Gauss
image is a finite covering of the Riemannian product of γx and γ2.

Remark. Local existence of a surface in RA with prescribed Gauss image
is studied by J. Weiner ([6]).

Let γi(ξi) be a closed curve on Sτ which is parameterized by arc-length.
Let l% be the total length of γt. We assume that fi(£<) is defined for all ξt so
that yMi-\-li)—y^i) for any ξt. We denote the signed geodesic curvature of
γt by κ%. Then our conditions for γt are written as

(3.1) \ κ,{ξt)dξt=O

(3.2) | k *«(&)#.

where γ't is any subarc of γt.
We define a map P: R2-+G2Λ by P(ξu f2)=(7'1(fi), r*G*))^S^S^G^*. Since

=7'<(ίί) ^ o r a n y integer m, we have

(3.3) P{ξi+mJu

for any integers mu m2 and any ξu ξ2.
Let {eΛ(ξi, ξ2) ^4=1, 2, 3, 4} be a set of i?4-valued functions which are

defined on R2 and satisfy the following conditions
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(3.4) <fiA£i, f2), eB(ξu ξ2)>=δAB for all A, B=l, - , 4

(3.5) P(ξuξύ=e1(ξl9ξt)Aet(ξuξt)

(3.6) {e1} e2i e3, eA} is positively oriented in i?4

for all (ξ1} ξ2) in R\

Let ωAB be a 1-form on i?2 which is defined by ωAB=(deA, eB}

LEMMA 3.1.

) = — ωu{d/dζ2), ω24(d/dζ2)=ωls(d/dξ2).

Proof. Differentiating e1/\e2, we have

d(e1Λe2)=ώ23e1Λe3+ώ2άe1Λeά—ώιze2/\ez—ωue2Aeέ.

Since d{β1Ae2){d/dξ^) is tangent to fi in Si, d(e1Λe2)(d/dξ1) is a linear combi-
nation of e1/\e3—e2/\e4c and ^ Λ ^ + ^ Λ ^ s . This yields the first two equations.
Similarly, the last two equations follow from the fact that d{e1Ae2){d/dξ2) is
tangent to S2. Q.E.D.

Set
^!=cos ^^!+sin θe2, ^2=— sin /

(3.7)
^ ^ + i 4 ^ £ 4 = —sin

Let ωAB—{deA) eB}. Then we have the following lemma by an easy computation.

LEMMA 3.2.

We need the following lemma to prove Lemma 3.4. The proof is also easy.

LEMMA 3.3. Let f(ξl9 ζ2) and g(ξu ξ2) be C°° functions on R\ If p+g2

never vanishes on R2, then there exists a C°° function a{ξu ξ2) defined on R2 such
that

f(ξu ξ2)cosa(ξu ξ2)+g(ξu ξ2)sma(ξlf ξ2)=0

for all (ξu ξ2) in R\

LEMMA 3.4. There exist C°° maps eA: R2->R* (A=l, •••, 4) which satisfy the
following conditions:
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(3.8) <eA(ξi, £»), eB(ξu ξ2)>=δAB for all A, B=l, - , 4

(3.9) P(ξu ξt)=e1(ξu ξ2)f\e2{ξu ξύ

(3.10) {eu e2, es, eA} is positively oriented in Rά

(3.11) ωu=0.

Proof. Since d{e1/\e2){d/dξi)Φ^) (ω13(d/dξι))2+ωu(d/dξi))2Φθ by Lemma 3.1.
Hence, by Lemma 3.3, there exist C°° functions α*(fi, ξ2) defined on R2 such that

—ωls(d/dξ i) sin αi+άJi4(3/3£i) cos ax=0
(3.12)

(d/dξ) sin a2-\-ωu(d/dξ 2) cos α 2

Ξ 0 .

Set 0 = ( a ! + a 2 ) / 2 and ^ = ( α 1 - α 2 ) / 2 . Then { e ^ , f 2 ) : Λ = l , •••, 4} defined
by (3.7) is a set of C°° maps from R2 to R4 which satisfies the conditions (3.8)-
(3.11). Q.E.D.

Such a special set of vectors as {eA: A=l, ••• , 4} in Lemma 3.4 is not
unique but very limited as we see in the following lemma

LEMMA 3.5. Let {eA: A=l, •••, 4} be a set of Revalued functions defined
on R2 which satisfies the conditions in Lemma 3.4. Let {eA: A=l, •••, 4} be any
other set of Rά-valued functions satisfying (3.8)-(3.11). Then {e[, e2, e$, e[) must
be one of the followings:

( i ) {eu e2, ez, eA} ( ii ) {e1} e2, -ez, -eά}

(Hi) {e2, —eu e4, -ez) ( iv ) {e2, —elf —e4, e,}

( v ) {-eu -e2, eSf e4} ( v i ) {—elt—e2,—e9,—eA}

(vii) {—e2, eu e4, -ez) (viii) {-e2, βlf -e4} ez]

Proof. We may write

e[—cos 0 ^ + s i n Θe2, e'2——sin 0 ^

, e[—~ sin θe

Then, by Lemma 3.2, we see that sin(#-f-0)=:O and sin(0—φ)=0. Hence θ—φ
=mπ, θ-\-φ—nπ for some integers m, n. Q.E.D.

LEMMA 3.6. There exists a C°° function β(ξlf ξ2) defined on R2 which satisfies

Proof. Let {eA: A=l, •••, 4} be a set of i?4-valued functions given in
Lemma 3.4. By Lemma 3.1, the condition <y14Ξθ implies <y23=0. Using the
structure equation, we obtain
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Since ωu is a globally defined 1-form on R2, there exists a function β on R2

such that dβ=ωi4k. Q.E.D.

LEMMA 3.7. Lβf {e^(£i, £2): -4=1, •••, 4} 60 a set of Revalued functions
satisfying the conditions (3.8)-(3.11) in Lemma 3.4. Let *;*(&) be the signed
geodesic curvature of γx. Then we have

Proof. By Lemma 3.1, we have d(e1Ae2)(d/dξ1)=ω2i(d/dζ1)(eίAe±+e2Ae3).
Since & is an arc-length parameter of γu \\d(e1Ae2)(d/dξ1)\\=l. This implies
o>2*Φ/dξi) = ±l/<s/2. Changing parameter from & to — & if necessary, we may
assume that

(3.13)

Using Lemma 3.1 again, we have

(3.14) ω1,O/3f1)

A similar argument shows that

(3.15) ω2i(d/dξ 2)=ω1t(d/dξt)=1/V2.

T h u s if w e set vi — d{e1/\e2){d/dζi), t h e n 1 ^ = — ( 4 3 ) , 2
l / V 2 ( ^ i Λ ^ 4 — e 2 A e 3 ) . Note t h a t i;̂  is a unit t a n g e n t vector of ?v Let Z) be
t h e Riemannian connect ion on G 2 ) 4 associated w i t h t h e s t a n d a r d invar iant metr ic .
Using Lemma 3.1 in [2], we obtain Dv1=l/Λ/2(ω12-{-ω34)(e1Ae3—e2Ae4) and
Dv2=l/V2(ω12—ω34)(e1Ae3+e2Ae4). This gives

^i, l/V2(e1Ae3-e2Aei)>

=ω12(d/dξ1)+ωu(d/dξ1)
(3.16)

On the other hand, since z;* is tangent to Slf we have ^a/a^^i^O and
This gives

—ω12{d/dζ 2 ) — ωM(d/dζ 2 ) .

(3.17)

Combining (3.16) and (3.17), we obtain
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ιcί=2ωsi(d/dξ1)=2dβ/dξ1

* 2 = -2ωM(d/dξ2)=-2dβ/dξ2. Q. E. D.

By Lemma 3.7, the total curvature τ{γλ) of γx is given by

τ(γ1)=\ξl+h2dβ/dξ1dξ1=2(β(ξ1+l1, ξt)-β(ξl9 &)),

where (ζlf ξ2) is any point in i?2. Similarly, r(r2)=-2( i8(f1, ^ - f - ϋ - β ^ , &)).
Thus we have the following lemma.

LEMMA 3.8. Γ ( J Ί ) = 0 // and only if βfa+li, £2)=j8(£i, £2). τ(^2)=0 // <md
only if β(ξl9 ξ*+l*)=β(ξi, &).

We define a C°° map x of /?2 into 5 3 by x(ξ1} ξ2) = -cos(β(ξlf ξ2))e8(ξi, f2)
+sin(/?(£i, ί2))β4(fi, f2), where j8(fi, ξ2) is the function on R2 in Lemma 3.6 and
{es, eά} is a set of i?4-valued functions defined on R2 which is given in Lemma
3.4. Since r i(£i+u=ri(f i) , P(fi+/i, ξύ=P(£u ξύ. Hence, by Lemma 3.5, we
have only four possibilities for {e3(ζi+li, £2), ^(fi+^i, ί2)} as follows:

ίβ.(fi+/i, &), ^( ί i+/i , f2)} = {^(fi, f2), ^(fi, f2)} (a)

or - {-^( f i , f 2 ) , - ^ ( f i , &)} (b)

or ={β4(f1,e2), - ^ ( f i , « } (c)

or = { - e 4 ( e i , « , ^3(fi,ί2)} (d)

Note that, by continuity, if any of (a)-(d) holds for some (ξlf ξ2), it must
hold for all (flf &).

If we have (b), then {eBfo+2lu ξ2), e^+2llf « } = {β,(fi, £2), ^( ί i , « } .
If we have (c) or (d), then {e^+ih, f2), ^ ( ^ + 4 / ! , f2)} = { 8̂(fi, f«), e,(ξl9 ξ2)}.
Summarizing these, we see that

(3.18) Mξi+mJu ξt), eA(ξ1+m1ll9 ξ2)} = {e,(ξlf ξ2), e,(ξu ξ2)}

holds for any (ξu ξ2), where mx is 1, 2 or 4 and constant for all (ζlf ζ2).
Similarly, it can be shown that

(3.19) {*,(&, f 2 +m 2 / 2 ), e,(ξl9 ξt+mjt)} = {ez(ξu f2), eA{ξ1} ξ2)}

holds for any (ξu ξ2), where m2 is 1, 2 or 4 and constant for all (ξlt ξ2).
If the total curvature of γt is zero for z=l, 2, we have

β{ζχ+h, ξύ=β{ξu ξύ
(3.20)

β(ξi,ξχ+lύ=β(£ι,ξύ,
by Lemma 3.8.
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Using (3.18), (3.19) and (3.20), we see that

(3.21)

and

(3.22) x(ξ1}

(3.21) and (3.22) show that x defines a C°° map from a torus R2/Γ into S3,
where Γ is a subgroup of Isom(7?2) which is generated by (ξu ξz)-*(ξi+mxlu ξ2)
and (ξu &)-»(&,

LEMMA 3.9. Let x be the C°° map from a torus into S3 which is constructed
above. Then x is regular at (ξlt ξ2) if and only if β(ξx, ξ2)Φkπ/2 for any integer k.

Proof. The differential of x is given by dx=d(—cosβes+sinβe4) =
sin β dβes—cos β(ωne1+ωB2e2+a)3ie4)+cos β dβeά+sin βiω^e^ω^e^ i-ω^es).

Since a)28(9/3£i)=a>i4(9/9?i)=0 by Lemma 3.4 and Lemma 3.1, — ω24(9/9fi) =
ωls(d/dξ1)=l/V2 and ωu{d/dξ2)=ωlz{d/dξ2)=l/^2 by (3.13), (3.14) and (3.15), and
dβ—ωM by Lemma 3.6, we have

(3.23) dx{d/dξ1)=l/Λ/2(cos βe^s'm βe2)

and

(3.24)

From this, we see that dx(d/dξλ) and dx{d/dξ2) are linearly independent if and
only if sinβcosβ^O at (&, ξ2). Q.E.D.

LEMMA 3.10. Suppose the condition (3.2) holds for any subarc γ[ of γx for
i=l, 2. Then a C°° function β(ξu <f2) in Lemma 3.6 can be chosen in such a way

that 0<β(ξ1} ? 2 ) < | - for all (flf ξ2) in R\

Proof. By Lemma 3.7, we have

and

if2 for any ζlf ξ'2, ζ
f{.

Since the total curvature of γ% is zero, the condition (3.2) implies that we
have

^ and \?2tc2(ζ2)dξ <τ



GLOBAL PROPERTIES OF THE GAUSS IMAGE 283

for any ξ'u ξ'{, ξ't, ξζ.
Let Q={(ξu ξύ .O^ξ^U.O^ξt^l,} and let β1=ΏUn{β(.ξ1,ξt):(ξ1,ξύeQ}

and βΐ=max{β(ξ1, ξ2): {ξu ξt)eQ}. Then, by the periodicity (3.20), we see that
j51=min{jS(f1, £,): (£„ | 2 )e i? 2 } and βt=ma.x{β(.ξu f 2): (&, £ 2)etf 2}. Suppose that
β(S'u ξί)=βι and i3(ίί', &')=&. Then

β*-βi=β{&, ξί)-β(ξ'ι, ίί)

We define a new function £(&,&) by β(ξ1} ξ2)=β(ξl9 ξύ-^iβi+βύ+j.

Since β differs from β by a constant, β also satisfies dβ=ωsi. It is easy to

check that 0<β<γ. Q.E.D.

Proof of Theorem 2. By Lemma 3.9 and Lemma 3.10, a C°° map x becomes
an immersion of a torus into S3 in R4 if the condition (3.2) is satisfied. (3.23)
and (3.24) show that the tangent plane of the image of x at each point is
e1Ae2=P(ξu £2). Hence the Gauss image of x is locally the product of γx and
TV Q.E.D.

Remark 1. Let M be the image of x in i?4. Since dω12=ωnΛa)32+a)uΛωA2
=0, the Gaussian curvature of M is identically zero.

Since M lies in S3, the normal connection of M as a surface in i?4 is flat.

Remark 2. From the way of construction of M we see that the Gauss
image of M is a &-fold covering of γiXγ2, where k=l, 2 or 4.
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