GLOBAL PROPERTIES OF THE GAUSS IMAGE OF FLAT SURFACES IN *R⁴*

BY KAZUYUKI ENOMOTO

Let M be a surface of zero Gaussian curvature in $R⁴$ which has flat normal connection. Let *G2Λ* denote the Grassmann manifold consisting of oriented 2-dimensional linear subspaces of R^4 . The Gauss map $G: M \rightarrow G_{2,4}$ is defined by assigning each point of *M* to the tangent plane of *M* at the point. The image of *M* by *G* is called the Gauss image of *M.*

In $[2]$ we studied local properties of the Gauss image of M ; if we identify $G_{2,4}$ with $S^2 \times S^2$, then the Gauss image of M is locally the Riemannian product of two curves γ_1 and γ_2 , where γ_1 lies in the first factor of $S^2 \times S^2$ and γ_2 lies in the second factor.

In this paper we study some global properties of the Gauss image of *M* when *M* is compact. If *G* is regular at every point of *M,* the Gauss image is a finite covering of $\gamma_1 \times \gamma_2$, where γ_1 (resp. γ_2) is a closed curve in the first (resp. second) factor of $G_{2,4}$. Then we show that the total curvatures of γ_1 and *γ²* are both zero (Theorem 1). In particular, if *γ^t* is simple, it divides the factor of $G_{2,4} (=S^2(1/\sqrt{2}))$ into two regions of the same area.

In § 3, we give a method to construct a flat torus whose Gauss image is prescribed. In Theorem 2, we show that if γ_i ($i{=}1, 2$) is a closed curve in $S^2(1/\sqrt{2})$ whose total curvature is zero and if the total curvature of any subarc of γ_i is less than $\pi/2$, then there exists a flat torus whose Gauss image is a finite covering of $\gamma_1 \times \gamma_2$.

The author would like to thank Joel Weiner for his helpful comments on this paper.

§1. Local Properties.

In this section, we recall some basic facts on the geometry of the Grassmann manifold $G_{2,4}$ and flat surfaces in $R⁴$. See [2] for details. Let $G_{2,4}$ denote the Grassmann manifold of oriented 2-dimensional linear subspaces of R^4 . If $P \in G_{2,4}$, then there exists a positively oriented orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of R^4 such that $P = e_1 \wedge e_2$. By differentiating $e_1 \wedge e_2$, we see that the tangent space of *G*₂, a at *P*, $T_P G_{2,4}$, is spanned by $e_i \wedge e_\alpha$ (*i*=1, 2, α =3, 4). It is known that $G_{2,4}$ equipped with the standard invariant metric is isometric to $S^2(1/\sqrt{2})\times S^2(1/\sqrt{2})$

Received December 1, 1986.

([3]). We identify $G_{2,4}$ with $S^2 \times S^2$ and denote the first factor by S_1 and the second by S_2 . $\{e_i \wedge e_\alpha; i = 1, 2, \alpha = 3, 4\}$ becomes an orthonormal basis of $T_P G_{2,4}$ with respect to this metric, and $T_P S_1$ is spanned by $\{e_1 \wedge e_3 - e_2 \wedge e_4, e_1 \wedge e_4 + e_2 \wedge e_3\}$ and $T_P S_2$ is spanned by $\{e_1 \wedge e_3 + e_2 \wedge e_4, e_1 \wedge e_4 - e_2 \wedge e_3\}.$

Let M be an oriented surface in R^4 . The Gauss map $G:M{\rightarrow} G_{2,4}$ is defined as $G(p)=T_pM$, where T_pM is the tangent plane of M at p . Let $\{e_1,\,e_2,\,e_3,\,e_4\}$ be a positively oriented orthonormal frame field of $R⁴$ which is defined on an open set of *M* and satisfies $T_pM = e_1(p) \wedge e_2(p)$. Let ω_{AB} (1 \le A, B \le 4) be the connection form of the standard covariant differentiation of $R⁴$, i.e., $\omega_{AB} =$ $\langle de_A, e_B \rangle$, where \langle , \rangle is the standard inner product of R^4 . The differential of the Gauss map is given by

$$
(1.1) \qquad dG(X) = -\omega_{13}(X)e_2\wedge e_3 - \omega_{14}(X)e_2\wedge e_4 + \omega_{23}(X)e_1\wedge e_3 + \omega_{24}(X)e_1\wedge e_4
$$

for any $X \in T_pM$.

LEMMA 1.1. ([2]) If the Gaussian curvature of M is identically zero and the *normal connection of M is flat, then there exists a local orthonormal frame field* ${e_1, e_2, e_3, e_4}$ on M such that $e_1(p) \wedge e_2(p) = T_p M$ for any $p \in M$, $\omega_{14}(X) = \omega_{23}(X) = 0$ *for any* $X \in T_pM$ *and* $\omega_{13}(e_2) = \omega_{24}(e_1) = 0$.

Let $\lambda = \omega_{13}(e_1)$ and $\mu = \omega_{24}(e_2)$. Then (1.1) is written as

$$
(1.2) \t dG(X) = -\lambda \langle X, e_1 \rangle e_2 \wedge e_3 + \mu \langle X, e_2 \rangle e_1 \wedge e_4.
$$

Hence *G* is regular at p M if and only if $\lambda \mu \neq 0$. Moreover, if $\lambda \mu \neq 0$ on M, then there is no umbilical point on *M* and it follows from Reckziegel's theorem ([5]) that each e_A ($1 \le A \le 4$) becomes a C^∞ vector field, and *λ* and *μ* become C^{∞} functions on M. Applying Codazzi equations, we obtain the following equalities:

$$
(1.3) \t\t e_1\mu - \mu\omega_{21}(e_2) = 0
$$

$$
(1.4) \t\t\t e_2\lambda - \lambda \omega_{12}(e_1) = 0
$$

$$
\lambda \omega_{21}(e_2) - \mu \omega_{34}(e_1) = 0
$$

(1.6)
$$
\mu \omega_{12}(e_1) + \lambda \omega_{34}(e_2) = 0.
$$

In the following, we assume that $\lambda \mu \neq 0$ on *M*. Then there exists a local coordinate system *(ξ^u ξ²)* on *M* which satisfies

(1.7)
$$
\frac{\partial}{\partial \xi_1} = 1/\sqrt{2(1/\lambda e_1 - 1/\mu e_2)}
$$

$$
\frac{\partial}{\partial \xi_2} = 1/\sqrt{2(1/\lambda e_1 + 1/\mu e_2)}
$$

Let σ_1 (resp. σ_2) be an integral curve of $1/\sqrt{2(1/\lambda e_1-1/\mu e_2)}$ (resp. *+*1/ μ *e*₂)). Let $\gamma_i = G(\sigma_i)$ (*i*=1, 2). Then we have

PROPOSITION 1. ([2]) γ_i lies in S_i for each $i=1, 2$. Locally, $G(M)$ is the *Riemannian product of* $γ_1$ *and* $γ_2$.

Let κ_i denote the geodesic curvature of γ_i (*i*=1, 2) in $S_i = S^2(1/\sqrt{2})$. By Proposition 4.1 in [2], we have

$$
(1.8)
$$

$$
\kappa_1 = \sqrt{2} \left(e_1 \frac{1}{\mu} + e_2 \frac{1}{\lambda} \right)
$$

$$
\kappa_2 = \sqrt{2} \left(e_1 \frac{1}{\mu} - e_2 \frac{1}{\lambda} \right)
$$

Examples. (i) Let C_1 and C_2 be plane curves. Then the Riemannian product $C_1 \times C_2$ is a flat surface in $R⁴$ with flat normal connection. For this surface we have $\kappa_1 \equiv 0$ and $\kappa_2 \equiv 0$. Thus the Gauss image is locally the product of two great circles. Conversely, if the Gauss image of a flat surface in *R** is totally geodesic, then it is locally the Riemannian product of two plane curves. This follows from the Chen-Yamaguchi classification theorem for surfaces in $R⁴$ with totally geodesic Gauss image ([1]).

(ii) Let $(z_1(t), z_2(t))$ be a curve parameterized by arc-length in $C^2 = R^4$. Suppose $|z_1|^2 + |z_2|^2 \equiv 1$ so that this curve is contained in $S^3 \subset \mathbb{R}^4$. In addition, (z_1, z_2) is required to satisfy $z_1 \overline{z_1} + z_2 \overline{z_2} = 0$. Let M be the surface in R^4 defined by $(t, \phi) \rightarrow (e^{i\phi} z_1(t), e^{i\phi} z_2(t))$. Then M is a flat surface with flat normal connection. For this surface we have either $\kappa_1 \equiv 0$ or $\kappa_2 \equiv 0$. (*M* is called a Hopf torus. Some descriptions of the geometry of Hopf tori are given in [4].)

§2. Global Properties.

Let M be a compact, oriented surface in $R⁴$ which has zero Gaussian curvature and flat normal connection at every point. We assume that the Gauss map $G: M \rightarrow G_{2,4} = S_1 \times S_2$ is regular at every point. Then it follows from Proposition 1 that there exist immersed closed curves $\gamma_1 \subset S_1$ and $\gamma_2 \subset S_2$ such that the Gauss image *G(M)* is a finite covering of the Riemannian product of *x* and *γ² .*

Combining (1.8) with (1.3) , (1.4) and (1.7) , we obtain

(2.1)
$$
\kappa_1(G(p)) = -2\omega_{12}(\partial/\partial\xi_1(p))
$$

$$
\kappa_2(G(p)) = 2\omega_{12}(\partial/\partial\xi_2(p)),
$$

for any $p \in M$.

Since the Gaussian curvature is identically zero, the universal covering *M* of M is isometric to R^2 equipped with the standard flat metric. Let $\pi : \check{M} \rightarrow M$ be the projection. Since *M* is compact, *M* is isometric to *R² /Γ,* where *Γ* is a properly discontinuous subgroup of the isometry group of R^2 . Let (x_1, x_2) be a Cartesian coordinate system on *M*. Suppose that Γ is generated by $(x_1, x_2) \rightarrow$ (x_1+a, x_2) and $(x_1, x_2) \rightarrow (x_1+b, x_2+c)$ for some real numbers *a*, *b* and *c*. Let

 $f_i = d\pi(\partial/\partial x_i)$ (*i*=1, 2). Then $\{f_1, f_2\}$ is a globally defined C^{∞} parallel ortho normal frame field of *TM.*

There exists a global C^{∞} orthonormal frame field $\{\tilde{e}_1, \tilde{e}_2\}$ on \tilde{M} such that $e_1 = d\pi(\tilde{e}_1)$ and $e_2 = d\pi(\tilde{e}_2)$ satisfy the conditions in Lemma 1.1. Let $\tilde{\lambda} = \lambda \cdot \pi$ and $\tilde{\mu} = \mu \cdot \pi$. Then $\tilde{\lambda}$ and $\tilde{\mu}$ are non-zero C^{∞} functions on \tilde{M} . Let $\tilde{X}_1 = 1/\sqrt{2(1/\tilde{\lambda}\tilde{e}_1)}$ $-1/\tilde{\mu}\tilde{e}_2$) and $X_2=1/\sqrt{2(1/\tilde{\lambda}\tilde{e}_1+1/\tilde{\mu}\tilde{e}_2)}$. Then we have $[X_1, X_2]=0$ everywhere on *M.* Hence there exists a global coordinate system (ξ_1, ξ_2) on *M* such that $\partial/\partial \tilde{\xi}_1 = \tilde{X}_1$ and $\partial/\partial \tilde{\xi}_2 = \tilde{X}_2$.

We define a C^{∞} function α on \widetilde{M} by

(2.2)
\n
$$
\tilde{e}_1 = \cos \alpha \partial / \partial x_1 + \sin \alpha \partial / \partial x_2
$$
\n
$$
\tilde{e}_2 = -\sin \alpha \partial / \partial x_1 + \cos \alpha \partial / \partial x_2.
$$

Then

$$
\pi^*\omega_{12} = \langle d\tilde{e}_1, \tilde{e}_2 \rangle
$$

$$
= d\alpha.
$$

For a curve γ in a two dimensional oriented Riemannian manifold the total integral of the signed geodesic curvature κ along γ , χ , is called the *total curvature* of *γ.* We denote it by *τ(γ).*

Let $\tilde{\sigma}_1 = \{(\tilde{\xi}_1, \tilde{\xi}_2) : -\infty \leq \tilde{\xi}_1 \leq \infty, \ \tilde{\xi}_2 = 0\}$ and $\tilde{\sigma}_2 = \{(\tilde{\xi}_1, \tilde{\xi}_2) : \tilde{\xi}_1 = 0, \ -\infty \leq \tilde{\xi}_2 \leq \infty\}.$ $\tilde{\sigma}_1$ and $\tilde{\sigma}_2$ are curves on M and $G \circ \pi$ maps $\tilde{\sigma}_i$ onto a closed curve γ_i in S_i for $i=1, 2$. Since G is regular everywhere on M and M is compact, $G(M)$ is a finite covering of $\gamma_1\times\gamma_2$. Let k be the degree of G as a map from M onto *Y*₁ \times *γ*₂. There exists a closed curve σ , on *M* such that $\tilde{\sigma}$, is mapped onto σ , by π and $G(\sigma_i)$ is a *k*-fold covering of γ_i .

LEMMA 2.1. For $i=1, 2$, we have

$$
\tau(\sigma_i) = \frac{(-1)^i k}{2} \tau(\gamma_i).
$$

Proof. Let $\tilde{\sigma}'_i$ be a subarc of $\tilde{\sigma}_i$ which is mapped bijectively onto σ_i by π . Then we have $\tau(\tilde{\sigma}'_i) = \tau(\sigma_i)$.

On the other hand, by (2.1) and (2.3) , we have

$$
\tau(\gamma_i) = \int_{\gamma_i} \kappa_i = \frac{(-1)^i 2}{k} \int_{\tilde{\sigma}_i} d\alpha = \frac{(-1)^i 2}{k} \tau(\tilde{\sigma}_i').
$$
 Q. E. D.

LEMMA 2.2. *Let σ be a smooth closed curve in a flat torus M—R² /Γ. Let be a complete curve in the universal covering M=R² of M whose image by the projection* $\pi : \tilde{M} \rightarrow M$ is σ .

If the total curvature of σ is not zero, then σ has a self-intersection.

Proof. Let s be an arc-length parameter of *a* and let *L* be the total length of *a.* Let *s* also denote an arc-length parameter of *σ.* For any s and any integer *m* we have $\pi \cdot \tilde{\sigma}(s+mL) = \pi \cdot \tilde{\sigma}(s)$. Suppose that *Γ* is generated by $(x_1, x_2) \rightarrow (x_1 + a, x_2)$ and $(x_1, x_2) \rightarrow (x_1 + b, x_2 + c)$. Since $\pi \cdot \tilde{\sigma}(s) = \pi \cdot \tilde{\sigma}(s + L)$, if $\tilde{\sigma}(s) = (x_1, x_2)$, there exist integers p and q such that $\tilde{\sigma}(s)$ x_2+qc .

Let $\kappa(s)$ ($0 \le s \le L$) be the signed geodesic curvature of σ . We extend κ to a function defined on $(-\infty, \infty)$ by setting $\kappa(s) = \kappa(s')$ if $s \equiv s' \pmod{L}$ and $s' \in [0, L)$. Then $\kappa(s)$ gives the signed geodesic curvature of $\tilde{\sigma}$. We define a function $F(s)$ for $s \in (-\infty, \infty)$ by

$$
F(s) = \int_0^s \kappa(t) \, dt
$$

so that the total curvature of $\{\tilde{\sigma}(s): s_1 \leq s \leq s_2\}$ is given by $F(s_1) - F(s_2)$. In particular, for any s, we have $F(s+L) - F(s) = \tau(\sigma)$.

Let $\Lambda_1 = \min\{F(s): 0 \le s \le L\}$ and $\Lambda_2 = \max\{F(s): 0 \le s \le L\}$. Suppose $\tau(\sigma) =$ Then for any s_1 and s_2 ($s_1 < s_2$) we have

$$
mA + A_1 \leq F(s_2) - F(s_1) \leq mA + A_2
$$

where *m* is the integer such that $m \leq s_2 - s_1 < m+1$. Therefore, there exist numbers S_1 and S_2 such that

$$
(2.4) \t\t\t |F(s_2) - F(s_1)| > 2\pi
$$

for any $s_1 < S_1$ and $s_2 > S_2$.

Since $\{\tilde{\sigma}(s): S_1 < s < S_2\}$ is bounded, there exists a circle C in \tilde{M} which contains $\{\tilde{\sigma}(s): S_1 < s < S_2\}$ inside. If $\tilde{\sigma}(s) = (x_1, x_2)$, we have $\tilde{\sigma}(s+nL) =$ $(x_1 + npa + nqb, x_2 + nqc)$. We see from this that the whole $\tilde{\sigma}$ is not bounded and there exist numbers $S_3 < S_1$ and $S_4 > S_2$ such that $\tilde{\sigma}(S_3)$ and $\tilde{\sigma}(S_4)$ lie outside C. Then σ must intersect C at some $\tilde{\sigma}(T_1)$ and $\tilde{\sigma}(T_2)$, where $S_3 \leq T_1 \leq S_1$ and $S_{\rm z}$ $<$ $T_{\rm z}$ $<$ $S_{\rm 4}$.

If $\tilde{\sigma}$ does not have a self-intersection, then $\{\tilde{\sigma}(s): T_1 \leq s \leq T_s\}$ divides the domain bounded by C into two simply connected subdomains. By the Gauss-Bonnet theorem, the total curvature of $\{\sigma(s): T_1 \leq s \leq T_2\}$ is smaller than 2π . Thus we obtain $|F(T_2) - F(T_1)| < 2\pi$, which contradicts (2.4). Hence $\tilde{\sigma}$ must have a self-intersection. Q. E. D.

THEOREM 1. Let M be a compact, oriented surface in $R⁴$ which has zero *Gaussian curvature and flat normal connection. Suppose that the Gauss map G is regular at every point of M. Then there exist closed curves* $\gamma_1 \subset S_1$ and $\gamma_2 \subset S_2$ *such that the Gauss image G(M) is a finite covering of the Riemannian product of* γ_1 and γ_2 and the total curvature of each γ_i is zero for $i=1, 2$.

Proof. Since $(\tilde{\xi}_1, \tilde{\xi}_2)$ defines a global coordinate system on \tilde{M} , $\tilde{\sigma}_i$ $\{(\tilde{\xi}_1, \tilde{\xi}_2) : \tilde{\xi}_i \equiv 0\}$ does not have a self-intersection. Since $\sigma_i = \pi \cdot \tilde{\sigma}_i$ is closed, we

use Lemma 2.2 to see that $\tau(\sigma_i)=0$. Now we have $\tau(\gamma_i)=0$ by Lemma 2.1. Q. E. D.

COROLLARY. If $γ_i$ is a simple closed curve in S_i , $γ_i$ divides S_i into two *domains of the same area.*

Proof. Since the total curvature of γ_i is zero, the Gauss-Bonnet theorem implies the corollary.

Remark. If *M* is the product of two plane curves $C_1 \times C_2$, then $G(M)$ is a double covering of the product of two great circles. If *M* is a Hopf torus, then $G(M)$ is a double covering of the product of a great circle in one of $S₁$ and *S²* and a closed curve in the other.

§ 3. Flat Tori with Prescribed Gauss Images.

In this section, we prove the following theorem. Again, we identify $G_{2,4}$ with $S_1 \times S_2$, where S_1 and S_2 are isometric to a round 2-sphere of radius $1/\sqrt{2}$.

THEOREM 2. Let γ_i be a regular closed curve in S_i (i=1, 2). Suppose that *the total curvature of y% is zero and the total curvature of any subarc of γ^t is* less than π/2. Then there exists a compact immersed surface in R⁴ whose Gauss *image is a finite covering of the Riemannian product of* $γ$ *₁ and* $γ$ *₂.*

Remark. Local existence of a surface in $R⁴$ with prescribed Gauss image is studied by J. Weiner $([6])$.

Let $\gamma_i(\xi_i)$ be a closed curve on S_i which is parameterized by arc-length. Let l_i be the total length of γ_i . We assume that $\gamma_i(\xi_i)$ is defined for all ξ_i so that $\gamma_i(\xi_i+l_i)=\gamma_i(\xi_i)$ for any ξ_i . We denote the signed geodesic curvature of *t*_{*t*} by $κ_i$. Then our conditions for $γ_i$ are written as

$$
\int_{\gamma_i} \kappa_i(\xi_i) d\xi_i = 0
$$

$$
(3.2) \qquad \qquad \left| \int_{\gamma_i} \kappa_i(\xi_i) d\xi_i \right| < \frac{\pi}{2},
$$

where γ' is any subarc of γ' .

We define a map $P: R^2 \to G_{2,4}$ by $P(\xi_1, \xi_2) = (\gamma_1(\xi_1), \gamma_2(\xi_2)) \in S_1 \times S_2 = G_{2,4}$. Since $=\,\pmb{\gamma}_i(\pmb{\xi}_i)$ for any integer m , we have

(3.3)
$$
P(\xi_1 + m_1 l_1, \xi_2 + m_2 l_2) = P(\xi_1, \xi_2)
$$

for any integers m_1 , m_2 and any ξ_1 , ξ_2 .

Let $\{\bar{e}_A(\xi_1, \xi_2) : A = 1, 2, 3, 4\}$ be a set of R^4 -valued functions which are defined on R^2 and satisfy the following conditions

(3.4)
$$
\langle \bar{e}_A(\xi_1, \xi_2), \bar{e}_B(\xi_1, \xi_2) \rangle = \delta_{AB}
$$
 for all A, B=1, ..., 4

(3.5)
$$
P(\xi_1, \xi_2) = \bar{e}_1(\xi_1, \xi_2) \wedge \bar{e}_2(\xi_1, \xi_2)
$$

(3.6) $\{\bar{e}_1, \bar{e}_2, \bar{e}_3, \bar{e}_4\}$ is positively oriented in R^4

for all (ξ_1, ξ_2) in R^2 .

Let $\bar{\omega}_{AB}$ be a 1-form on R^2 which is defined by $\bar{\omega}_{AB} = \langle d\bar{e}_A, \bar{e}_B \rangle$

LEMMA 3.1.

$$
\begin{aligned}\n\overline{\omega}_{23}(\partial/\partial\xi_1) &= \overline{\omega}_{14}(\partial/\partial\xi_1) \,, \qquad \overline{\omega}_{24}(\partial/\partial\xi_1) = -\overline{\omega}_{13}(\partial/\partial\xi_1) \\
\overline{\omega}_{23}(\partial/\partial\xi_2) &= -\overline{\omega}_{14}(\partial/\partial\xi_2) \,, \quad \overline{\omega}_{24}(\partial/\partial\xi_2) = \overline{\omega}_{13}(\partial/\partial\xi_2) \,. \n\end{aligned}
$$

Proof. Differentiating $\bar{e}_1 \wedge \bar{e}_2$, we have

$$
d(\bar{e}_1\wedge \bar{e}_2)\!=\!\bar{\omega}_{23}\bar{e}_1\wedge \bar{e}_3\!+\!\bar{\omega}_{24}\bar{e}_1\wedge \bar{e}_4\!-\!\bar{\omega}_{13}\bar{e}_2\wedge \bar{e}_3\!-\!\bar{\omega}_{14}\bar{e}_2\wedge \bar{e}_4.
$$

Since $d(\bar{e}_1 \wedge \bar{e}_2)(\partial/\partial \xi_1)$ is tangent to γ_1 in S₁, $d(\bar{e}_1 \wedge \bar{e}_2)(\partial/\partial \xi_1)$ is a linear combi nation of $\bar{e}_1 \wedge \bar{e}_3 - \bar{e}_2 \wedge \bar{e}_4$ and $\bar{e}_1 \wedge \bar{e}_4 + \bar{e}_2 \wedge \bar{e}_3$. This yields the first two equations. Similarly, the last two equations follow from the fact that $d(\bar{e}_1 \wedge \bar{e}_2)(\partial/\partial \xi_2)$ is tangent to S_2 . Q.E.D.

Set

(3.7)
$$
e_1 = \cos \theta \bar{e}_1 + \sin \theta \bar{e}_2, \quad e_2 = -\sin \theta \bar{e}_1 + \cos \theta \bar{e}_2
$$

$$
e_3 = \cos \phi \bar{e}_3 + \sin \phi \bar{e}_4, \quad e_4 = -\sin \phi \bar{e}_3 + \cos \phi \bar{e}_4.
$$

Let $\omega_{AB} = \langle de_A, e_B \rangle$. Then we have the following lemma by an easy computation.

LEMMA 3.2.

$$
\omega_{14}(\partial/\partial\xi_1) = -\overline{\omega}_{13}(\partial/\partial\xi_1)\sin(\theta+\phi) + \overline{\omega}_{14}(\partial/\partial\xi_1)\cos(\theta+\phi)
$$

$$
\omega_{14}(\partial/\partial\xi_2) = \overline{\omega}_{13}(\partial/\partial\xi_2)\sin(\theta-\phi) + \overline{\omega}_{14}(\partial/\partial\xi_2)\cos(\theta-\phi).
$$

We need the following lemma to prove Lemma 3.4. The proof is also easy.

LEMMA 3.3. Let $f(\xi_1, \xi_2)$ and $g(\xi_1, \xi_2)$ be C^{∞} functions on R^2 . If $f^2 + g^2$ *never vanishes on* R^2 *, then there exists a* $C^∞$ *function* $α(ξ_1, ξ_2)$ *defined on* R^2 *such that*

$$
f(\xi_1, \xi_2) \cos \alpha(\xi_1, \xi_2) + g(\xi_1, \xi_2) \sin \alpha(\xi_1, \xi_2) = 0
$$

for all (ξ_1, ξ_2) *in* R^2 .

LEMMA 3.4. There exist C^{∞} maps $e_A: R^2 \rightarrow R^4$ ($A=1, \dots, 4$) which satisfy the *following conditions*:

GLOBAL PROPERTIES OF THE GAUSS IMAGE 279

 (3.8) $(\xi_1, \xi_2), e_B(\xi_1, \xi_2) \equiv \delta_{AB}$ *for all A, B*=1, \cdots , 4

(3.9)
$$
P(\xi_1, \xi_2) = e_1(\xi_1, \xi_2) \wedge e_2(\xi_1, \xi_2)
$$

$$
(3.10) \t\t \{e_1, e_2, e_3, e_4\} \t\t is positively oriented in R4
$$

 $\omega_{14} \equiv 0.$

Proof. Since $d(e_1 \wedge e_2)(\partial/\partial \xi_i) \neq 0$, $(\overline{\omega}_{13}(\partial/\partial \xi_i))^2 + \overline{\omega}_{14}(\partial/\partial \xi_i))^2 \neq 0$ by Lemma 3.1. Hence, by Lemma 3.3, there exist C^{∞} functions $\alpha_i(\xi_1, \xi_2)$ defined on R^2 such that

(3.12)
$$
-\overline{\omega}_{13}(\partial/\partial \xi_1) \sin \alpha_1 + \overline{\omega}_{14}(\partial/\partial \xi_1) \cos \alpha_1 \equiv 0
$$

$$
\overline{\omega}_{13}(\partial/\partial \xi_2) \sin \alpha_2 + \overline{\omega}_{14}(\partial/\partial \xi_2) \cos \alpha_2 \equiv 0.
$$

Set $\theta = (\alpha_1 + \alpha_2)/2$ and $\phi = (\alpha_1 - \alpha_2)/2$. Then $\{e_A(\xi_1, \xi_2): A = 1, \dots, 4\}$ defined by (3.7) is a set of C^{∞} maps from R^2 to R^4 which satisfies the conditions (3.8) (3.11). Q.E.D.

Such a special set of vectors as $\{e_A: A=1, \dots, 4\}$ in Lemma 3.4 is not unique but very limited as we see in the following lemma

LEMMA 3.5. Let $\{e_A: A=1, \cdots, 4\}$ be a set of R^4 -valued functions defined *on R² which satisfies the conditions in Lemma* 3.4. *Let {e^A : A=l,* •••, 4} *be any other set of R*⁴-valued functions satisfying $(3.8)-(3.11)$. Then $\{e'_1, e'_2, e'_3, e'_4\}$ must *be one of the followings:*

> (i) $\{e_1, e_2, e_3, e_4\}$ (ii) $\{e_1, e_2, -e_3, -e_4\}$ (iii) ${e_2, -e_1, e_4, -e_3}$ (iv) ${e_2, -e_1, -e_4, e_3}$ (v) $\{-e_1, -e_2, e_3, e_4\}$ (vi) $\{-e_1, -e_2, -e_3, -e_4\}$ $\{e_1, e_2, e_1, e_4, -e_3\}$ (viii) $\{-e_2, e_1, -e_4, e_3\}$

Proof. We may write

 $e'_1 = \cos \theta e_1 + \sin \theta e_2$, $e'_2 = -\sin \theta e_1$ $e'_3 = \cos \phi e_3 + \sin \phi e_4$, $e'_4 = -\sin \theta e_3 + \cos \theta e_4$.

Then, by Lemma 3.2, we see that $sin(\theta+\phi)=0$ and $sin(\theta-\phi)=0$. Hence $\theta-\phi$ $= m\pi$, $\theta + \phi = n\pi$ for some integers *m*, *n*. Q.E.D.

LEMMA 3.6. *There exists a C°° function β(ξlf ξ²) defined on R² which satisfies* $d\beta = \omega_{34}.$

Proof. Let $\{e_A: A=1, \dots, 4\}$ be a set of R^4 -valued functions given in Lemma 3.4. By Lemma 3.1, the condition $\omega_{14} \equiv 0$ implies $\omega_{23} \equiv 0$. Using the structure equation, we obtain

$$
d\omega_{34} = \omega_{31} \wedge \omega_{14} + \omega_{32} \wedge \omega_{24} = 0.
$$

Since ω_{34} is a globally defined 1-form on R^2 , there exists a function β on R^2 such that $d\beta = \omega_{34}$ *.* Q.E.D.

LEMMA 3.7. Let ${e_4(\xi_1, \xi_2): A=1, \cdots, 4}$ be a set of R⁴-valued functions *satisfying the conditions* (3.8)-(3.11) *in Lemma* 3.4. Let $\kappa_i(\xi_i)$ be the signed *geodesic curvature of γ^x . Then we have*

$$
\kappa_i \!=\! -2 (-1)^i \omega_{34} (\partial/\partial \xi_i) \!=\! -2 (-1)^i \partial \beta/\partial \xi_i \,.
$$

Proof. By Lemma 3.1, we have $d(e_1 \wedge e_2)(\partial/\partial \xi_1) = \omega_{24}(\partial/\partial \xi_1)(e_1 \wedge e_4 + e_2 \wedge e_3)$. Since ξ_1 is an arc-length parameter of γ_1 , $\|d(e_1\wedge e_2)(\partial/\partial \xi_1)\|=1$. This implies $\omega_{24}(\partial/\partial \xi_1) = \pm 1/\sqrt{2}$. Changing parameter from ξ_1 to $-\xi_1$ if necessary, we may assume that

$$
\omega_{24}(\partial/\partial \xi_1) = -1/\sqrt{2}.
$$

Using Lemma 3.1 again, we have

$$
\omega_{13}(\partial/\partial\xi_1)=1/\sqrt{2}.
$$

A similar argument shows that

$$
\omega_{24}(\partial/\partial \xi_2) = \omega_{13}(\partial/\partial \xi_2) = 1/\sqrt{2}.
$$

Thus if we set $v_i = d(e_1 \wedge e_2)(\partial/\partial \xi_i)$, then $v_i = -1/\sqrt{2(e_1 \wedge e_4 + e_2 \wedge e_3)}$, v_2 $1/\sqrt{2}(e_1\wedge e_4-e_2\wedge e_3)$. Note that v_i is a unit tangent vector of γ_i . Let \tilde{D} be the Riemannian connection on $G_{z,4}$ associated with the standard invariant metric. Using Lemma 3.1 in [2], we obtain $Dv_1 = 1/\sqrt{2(\omega_{12}+\omega_{34})(e_1 \wedge e_3-e_2 \wedge e_4)}$ and $\tilde{D}v_2=1/\sqrt{2(\omega_{12}-\omega_{34})(e_1\wedge e_3+e_2\wedge e_4)}$. This gives

(3.16)
\n
$$
\kappa_1 = \langle D_{\partial/\partial\xi_1}v_1, 1/\sqrt{2(e_1\wedge e_3 - e_2\wedge e_4)}\rangle
$$
\n
$$
= \omega_{12}(\partial/\partial\xi_1) + \omega_{34}(\partial/\partial\xi_1)
$$
\n
$$
\kappa_2 = \langle \tilde{D}_{\partial/\partial\xi_2}v_2, 1/\sqrt{2(e_1\wedge e_3 + e_2\wedge e_4)}\rangle
$$
\n
$$
= \omega_{12}(\partial/\partial\xi_2) - \omega_{34}(\partial/\partial\xi_2).
$$

On the other hand, since v_i is tangent to S_i , we have $\widetilde{D}_{\partial/\partial \xi} v_1 = 0$ and $\widetilde{D}_{\partial/\partial \xi} v_2 = 0$. This gives

$$
\omega_{12}(\partial/\partial \xi_2) + \omega_{34}(\partial/\partial \xi_2) = 0
$$

\n
$$
\omega_{12}(\partial/\partial \xi_1) - \omega_{34}(\partial/\partial \xi_1) = 0.
$$

Combining (3.16) and (3.17) , we obtain

GLOBAL PROPERTIES OF THE GAUSS IMAGE 281

$$
\kappa_1 = 2\omega_{34}(\partial/\partial\xi_1) = 2\partial\beta/\partial\xi_1
$$

$$
\kappa_2 = -2\omega_{34}(\partial/\partial\xi_2) = -2\partial\beta/\partial\xi_2.
$$
 Q. E. D.

By Lemma 3.7, the total curvature $\tau(\gamma_1)$ of γ_1 is given by

$$
\tau(\gamma_1) = \int_{\xi_1}^{\xi_1 + \iota_1} 2 \partial \beta / \partial \xi_1 d\xi_1 = 2(\beta(\xi_1 + \iota_1, \xi_2) - \beta(\xi_1, \xi_2)),
$$

where (ξ_1, ξ_2) is any point in R^2 . Similarly, $\tau(\gamma_2) = -2(\beta(\xi_1, \xi_2 + l_2) - \beta(\xi_1, \xi_2))$. Thus we have the following lemma.

LEMMA 3.8. $\tau(\gamma_1)=0$ if and only if $\beta(\xi_1+l_1, \xi_2)=\beta(\xi_1, \xi_2)$. $\tau(\gamma_2)=0$ if and *only if* $\beta(\xi_1, \xi_2 + l_2) = \beta(\xi_1, \xi_2)$.

We define a C^{∞} map *x* of R^2 into S^3 by $x(\xi_1, \xi_2) = -\cos(\beta(\xi_1, \xi_2))e_3(\xi_1, \xi_2)$ $+\sin(\beta(\xi_1, \xi_2))e_4(\xi_1, \xi_2)$, where $\beta(\xi_1, \xi_2)$ is the function on R^2 in Lemma 3.6 and ${e_3, e_4}$ is a set of R^4 -valued functions defined on R^2 which is given in Lemma 3.4. Since $\gamma_1(\xi_1+l_1)=\gamma_1(\xi_1), P(\xi_1+l_1,\xi_2)=P(\xi_1,\xi_2).$ Hence, by Lemma 3.5, we have only four possibilities for $\{e_3(\xi_1+l_1, \xi_2), e_4(\xi_1+l_1, \xi_2)\}\)$ as follows:

$$
\{e_3(\xi_1+l_1,\xi_2),\ e_4(\xi_1+l_1,\xi_2)\}=\{e_3(\xi_1,\xi_2),\ e_4(\xi_1,\xi_2)\}\tag{a}
$$

or
$$
=\{-e_3(\xi_1, \xi_2), -e_4(\xi_1, \xi_2)\}
$$
 (b)

or
$$
=\{e_4(\xi_1, \xi_2), -e_3(\xi_1, \xi_2)\}
$$
 (c)

$$
or = \{-e_4(\xi_1, \xi_2), e_3(\xi_1, \xi_2)\}\tag{d}
$$

Note that, by continuity, if any of (a)-(d) holds for some *(ξlf ξ²),* it must hold for all (ξ_1, ξ_2) .

If we have (b), then $\{e_3(\xi_1+2l_1, \xi_2), e_4(\xi_1+2l_1, \xi_2)\} = \{e_3(\xi_1, \xi_2), e_4(\xi_1, \xi_2)\}.$ If we have (c) or (d), then $\{e_3(\xi_1 + 4l_1, \xi_2), e_4(\xi_1 + 4l_1, \xi_2)\} = \{e_3(\xi_1, \xi_2), e_4(\xi_1, \xi_2)\}.$ Summarizing these, we see that

$$
(3.18) \qquad \{e_3(\xi_1+m_1l_1,\xi_2),\ e_4(\xi_1+m_1l_1,\xi_2)\}=\{e_3(\xi_1,\xi_2),\ e_4(\xi_1,\xi_2)\}\
$$

holds for any (ξ_1, ξ_2) , where m_1 is 1, 2 or 4 and constant for all (ξ_1, ξ_2) . Similarly, it can be shown that

$$
(3.19) \qquad \{e_3(\xi_1,\xi_2+m_2l_2),\ e_4(\xi_1,\xi_2+m_2l_2)\}=\{e_3(\xi_1,\xi_2),\ e_4(\xi_1,\xi_2)\}\
$$

holds for any (ξ_1, ξ_2) , where m_2 is 1, 2 or 4 and constant for all (ξ_1, ξ_2) . If the total curvature of γ_i is zero for $i{=}1,\,2,$ we have

(3.20)
$$
\beta(\xi_1 + l_1, \xi_2) = \beta(\xi_1, \xi_2)
$$

$$
\beta(\xi_1, \xi_2 + l_2) = \beta(\xi_1, \xi_2),
$$

by Lemma 3.8.

Using (3.18), (3.19) and (3.20), we see that

$$
(3.21) \t\t x(\xi_1 + m_1 l_1, \xi_2) = x(\xi_1, \xi_2)
$$

and

(3.22)
$$
x(\xi_1, \xi_2 + m_2 l_2) = x(\xi_1, \xi_2)
$$

(3.21) and (3.22) show that *x* defines a C^{∞} map from a torus R^2/Γ into S^3 , where *Γ* is a subgroup of Isom(R^2) which is generated by $(\xi_1, \xi_2) \rightarrow (\xi_1 + m_1 l_1, \xi_2)$ and $(\xi_1, \xi_2) \rightarrow (\xi_1,$

LEMMA 3.9. Let x be the C^{∞} map from a torus into S^3 which is constructed *above. Then x is regular at* (ξ_1, ξ_2) *if and only if* $\beta(\xi_1, \xi_2) \neq k\pi/2$ for any integer k.

Proof. The differential of *x* is given by *dx=d(—cosβes+sinβe⁴) =* $\sin \beta d\beta e_3 - \cos \beta (\omega_{31}e_1 + \omega_{32}e_2 + \omega_{34}e_4) + \cos \beta d\beta e_4 + \sin \beta (\omega_{41}e_1 + \omega_{42}e_2 + \omega_{43}e_3).$

Since $\omega_{23}(\partial/\partial \xi_i)=\omega_{14}(\partial/\partial \xi_i)=0$ by Lemma 3.4 and Lemma 3.1, $-\omega_{24}(\partial/\partial \xi_i)=$ $\omega_{13}(\partial/\partial \xi_1) = 1/\sqrt{2}$ and $\omega_{24}(\partial/\partial \xi_2) = \omega_{13}(\partial/\partial \xi_2) = 1/\sqrt{2}$ by (3.13), (3.14) and (3.15), and *dβ*=ω₃₄ by Lemma 3.6, we have

(3.23)
$$
dx(\partial/\partial \xi_1) = 1/\sqrt{2}(\cos \beta e_1 + \sin \beta e_2)
$$

and

$$
(3.24) \t\t dx(\partial/\partial \xi_2)=1/\sqrt{2}(\cos \beta e_1-\sin \beta e_2).
$$

From this, we see that $dx(\partial/\partial \xi_1)$ and $dx(\partial/\partial \xi_2)$ are linearly independent if and only if $\sin \beta \cos \beta \neq 0$ at (ξ_1, ξ_2) . Q.E.D.

LEMMA 3.10. Suppose the condition (3.2) holds for any subarc $γ'$ of $γ$ *_i* for *i*=1, 2. Then a C[∞] function $β(ξ₁, ξ₂)$ in Lemma 3.6 can be chosen in such a way *that* $0 < \beta(\xi_1, \xi_2) < \frac{1}{2}$ for all (ξ_1, ξ_2) in K^2 .

Proof. By Lemma 3.7, we have

$$
\beta(\xi_1'', \xi_2) - \beta(\xi_1', \xi_2) = -\frac{1}{2} \int_{\xi_1'}^{\xi_1'} \kappa_1(\xi_1) d\xi_1 \text{ for any } \xi_1', \xi_1'', \xi_2
$$

and

$$
\beta(\xi_1, \xi_2'') - \beta(\xi_1, \xi_2') = \frac{1}{2} \int_{\xi_2'}^{\xi_2'} k_2(\xi_2) d\xi_2 \quad \text{for any } \xi_1, \xi_2', \xi_2''.
$$

Since the total curvature of γ_i is zero, the condition (3.2) implies that we have

$$
\left|\int_{\xi_1'}^{\xi_1'} \kappa_1(\xi_1)d\xi_1\right| < \frac{\pi}{2} \quad \text{and} \quad \left|\int_{\xi_2'}^{\xi_2'} \kappa_2(\xi_2)d\xi_2\right| < \frac{\pi}{2}
$$

for any ξ'_1 , ξ''_1 , ξ'_2 , ξ''_2 .

Let $Q = \{(\xi_1, \xi_2): 0 \le \xi_1 \le l_1, 0 \le \xi_2 \le l_2\}$ and let $\beta_1 = \min{\{\beta(\xi_1, \xi_2): (\xi_1, \xi_2) \in Q\}}$ and $\beta_2 = \max{\{\beta(\xi_1, \xi_2) : (\xi_1, \xi_2) \in Q\}}$. Then, by the periodicity (3.20), we see that $\beta_1 = \min{\{\beta(\xi_1, \xi_2): (\xi_1, \xi_2) \in R^2\}}$ and $\beta_2 = \max{\{\beta(\xi_1, \xi_2): (\xi_1, \xi_2) \in R^2\}}$. Suppose that $\beta(\xi'_1, \xi'_2) = \beta_1$ and $\beta(\xi''_1, \xi''_2) = \beta_2$. Then

$$
\beta_{2} - \beta_{1} = \beta(\xi_{1}^{\prime\prime}, \xi_{2}^{\prime\prime}) - \beta(\xi_{1}^{\prime}, \xi_{2}^{\prime})
$$
\n
$$
= \beta(\xi_{1}^{\prime\prime}, \xi_{2}^{\prime\prime}) - \beta(\xi_{1}^{\prime}, \xi_{2}^{\prime\prime}) + \beta(\xi_{1}^{\prime}, \xi_{2}^{\prime\prime}) - \beta(\xi_{1}^{\prime}, \xi_{2}^{\prime})
$$
\n
$$
= -\frac{1}{2} \int_{\xi_{1}^{\prime}}^{\xi_{1}^{\prime}} \kappa_{1}(\xi_{1}) d\xi_{1} + \frac{1}{2} \int_{\xi_{2}^{\prime}}^{\xi_{2}^{\prime}} \kappa_{2}(\xi_{2}) d\xi_{2}
$$
\n
$$
\leq \frac{1}{2} \left| \int_{\xi_{1}^{\prime}}^{\xi_{1}^{\prime}} \kappa_{1}(\xi_{1}) d\xi_{1} \right| + \frac{1}{2} \left| \int_{\xi_{2}^{\prime}}^{\xi_{2}^{\prime}} \kappa_{2}(\xi_{2}) d\xi_{2} \right|
$$
\n
$$
< \frac{\pi}{2}.
$$

We define a new function $\bar{\beta}(\xi_1, \xi_2)$ by $\bar{\beta}(\xi_1, \xi_2) = \beta(\xi_1, \xi_2) - \frac{1}{2}(\beta_1 + \beta_2) + \frac{\pi}{4}$. Since $\bar{\beta}$ differs from β by a constant, $\bar{\beta}$ also satisfies $d\bar{\beta} = \omega_{34}$. It is easy to check that $0 < \bar{\beta} < \frac{\pi}{2}$. Q.E.D.

Proof of Theorem 2. By Lemma 3.9 and Lemma 3.10, a C^{∞} map x becomes an immersion of a torus into S^3 in R^4 if the condition (3.2) is satisfied. (3.23) and (3.24) show that the tangent plane of the image of x at each point is $e_1 \wedge e_2 = P(\xi_1, \xi_2)$. Hence the Gauss image of *x* is locally the product of γ_1 and γ_2 . Q.E.D.

Remark 1. Let *M* be the image of *x* in R^4 . Since $d\omega_{12} = \omega_{13} \wedge \omega_{32} + \omega_{14} \wedge \omega_{42}$ \equiv 0, the Gaussian curvature of *M* is identically zero.

Since *M* lies in S^3 , the normal connection of *M* as a surface in R^4 is flat.

Remark 2. From the way of construction of *M* we see that the Gauss image of *M* is a k-fold covering of $\gamma_1 \times \gamma_2$, where $k=1, 2$ or 4.

REFERENCES

- [1] B.Y. CHEN AND S. YAMAGUCHI, Classification of surfaces with totally geodesic Gauss image, Indiana Univ. Math. J. 32 (1983), 143-154.
- [2] K. ENOMOTO, The Gauss image of flat surfaces in $R⁴$, Kodai Math. J. 9 (1986), 19-32.
- [3] D.A. HOFFMAN AND R. OSSERMAN, The geometry of the generalized Gauss map, Memoirs of AMS Vol. 236 (1980).
- [4] U. PINKALL, Hopf tori in S^3 , Invent. Math. 81 (1985), 379-386.

- [5] H. RECKZIEGEL, Completeness of curvature surfaces of an isometric immersion, J. of Diff. Geom. 14 (1979), 7-20.
- [6] J. WEIMER, The Gauss map for surfaces in 4-space, Math. Ann. **269** (1984), 541 560.

FACULTY OF INDUSTRIAL SCIENCE AND TECHNOLOGY SCIENCE UNIVERSITY OF TOKYO OSHAMAMBE, HOKKAIDO, 049-35, JAPAN