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GLOBAL PROPERTIES OF THE GAUSS IMAGE
OF FLAT SURFACES IN R!

By Kazuyukr ENOMOTO

Let M be a surface of zero Gaussian curvature in R* which has flat normal
connection. Let G, , denote the Grassmann manifold consisting of oriented
2-dimensional linear subspaces of R*. The Gauss map G: M—G,  is defined by
assigning each point of M to the tangent plane of M at the point. The image
of M by G is called the Gauss image of M.

In [2] we studied local properties of the Gauss image of M ; if we identify
G, 4 with S*xS?, then the Gauss image of M is locally the Riemannian product
of two curves 7, and y,, where 7, lies in the first factor of S*XS* and 7, lies
in the second factor.

In this paper we study some global properties of the Gauss image of M
when M is compact. If G is regular at every point of M, the Gauss image is
a finite covering of y,X7y., where 7, (resp. 7;) is a closed curve in the first
(resp. second) factor of G, ., Then we show that the total curvatures of 7,
and 7, are both zero (Theorem 1). In particular, if y, is simple, it divides the
factor of G, , (=S*1/4/2)) into two regions of the same area.

In §3, we give a method to construct a flat torus whose Gauss image is
prescribed. In Theorem 2, we show that if y, /=1, 2) is a closed curve in
S%(1/4/2) whose total curvature is zero and if the total curvature of any subarc
of 7. is less than z/2, then there exists a flat torus whose Gauss image is a
finite covering of 7, X7..

The author would like to thank Joel Weiner for his helpful comments on
this paper.

§1. Local Properties.

In this section, we recall some basic facts on the geometry of the Grassmann
manifold G, , and flat surfaces in R*. See [2] for details. Let G, , denote the
Grassmann manifold of oriented 2-dimensional linear subspaces of R*. If PG, ,,
then there exists a positively oriented orthonormal basis {ey, e,, ¢;, e} of R*
such that P=e;Ae,. By differentiating e;Ae,, we see that the tangent space of
G, s at P, TpG, ,, is spanned by e,Ae, (1=1, 2, a=3, 4). It is known that G, ,
equipped with the standard invariant metric is isometric to S*(1/4/2)XS%*1/4/2)
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([3]). We identify G, , with S*XS? and denote the first factor by S; and the
second by S,. {e,Ae.; i=1, 2, a=3, 4} becomes an orthonormal basis of T:G,,,
with respect to this metric, and TpS; is spanned by {e;Ae;—e,Ae,, e;ANes+e,Nest
and TpS, is spanned by {e;Ae;+e,Ne,, e;Ne,—e,Ne,}.

Let M be an oriented surface in R*. The Gauss map G: M—G,, , is defined
as G(p)=T,M, where T,M is the tangent plane of M at p. Let {e, ¢,, 5, ¢4}
be a positively oriented orthonormal frame field of R* which is defined on an
open set of M and satisfies T,M=e,(p)Aes(p). Let wsp (1A, B<4) be the
connection form of the standard covariant differentiation of R*, i.e., w =
{dey, epy, where {,)> is the standard inner product of R‘ The differential of
the Gauss map is given by

1.1 AG(X)=—w(X)es Nes—01(X)ea N eyt wy5(X)es A ey +wa(X)ey Ney
for any XeT,M.

LEMMA 1.1. ([2]) If the Gaussian curvature of M is identically zero and the
normal connection of M is flat, then there exists a local orthonormal frame fleld
{e1, e, €3, e} on M such that e,(p)Nex(p)=T,M for any peM, 0:4(X)=wg(X)=0
for any XeT,M and w,s(es)=ws.(e,)=0.

Let A=wy(e;) and p=w,4(e;). Then (1.1) is written as
(1.2) dG(X)=—XX, epesNes+pulX, eve Ne,.

Hence G is regular at p M if and only if Ap+#0. Moreover, if Ap¢+#0 on M,
then there is no umbilical point on M and it follows from Reckziegel’s theorem
([5]) that each ¢, (1<A=<4) becomes a C> vector field, and 1 and g become
C> functions on M. Applying Codazzi equations, we obtain the following
equalities :

1.3) et — Pz (e) =0
(1.4) e,A—Aw1(e)=0

(1.5) Away(es) — pws4(e) =0
(1.6) po15(e))+ Aws4(e2)=0.

In the following, we assume that A¢+#0 on M. Then there exists a local
coordinate system (&, &) on M which satisfies

0/06,=1/~/2(1/4e;—1/pre,)
0/08,=1/~/2(1/2e,+1/pe,).

Let ¢, (resp. ¢;) be an integral curve of 1/4/2(1/e;—1/pe;) (resp. 1/4/2(1/2e,
+1/pe,)). Let y.=G(o,) (=1, 2). Then we have

(1.7
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ProOPOSITION 1. ([2]) 7. lies in S, for each i=1,2. Locally, G(M) is the
Riemannian product of v, and 7,.

Let £, denote the geodesic curvature of 7, (=1, 2) in S,=S%1/+/2). By
Proposition 4.1 in [2], we have

1 1

kEi=+/2(e;—+e,—
(1.8) ( ‘l‘ f>
x2=¢2<e1;—e27>

Examples. (i) Let C, and C, be plane curves. Then the Riemannian

product C;XC, is a flat surface in R* with flat normal connection. For this
surface we have k,=0 and k,=0. Thus the Gauss image is locally the product
of two great circles. Conversely, if the Gauss image of a flat surface in R* is
totally geodesic, then it is locally the Riemannian product of two plane curves.
This follows from the Chen-Yamaguchi classification theorem for surfaces in
R* with totally geodesic Gauss image ([1]).
(i) Let (2:1(t), z,(t)) be a curve parameterized by arc-length in C*=R*. Suppose
|z;12+]2.12=1 so that this curve is contained in S*C R* In addition, (z;, z,) is
required to satisfy zjz;+z2;z,=0. Let M be the surface in R* defined by
(t, P)—(e*?z:(t), e**z,(#)). Then M is a flat surface with flat normal connection.
For this surface we have either x,=0 or £,=0. (M is called a Hopf torus. Some
descriptions of the geometry of Hopf tori are given in [4].)

§2. Global Properties.

Let M be a compact, oriented surface in R* which has zero Gaussian
curvature and flat normal connection at every point. We assume that the
Gauss map G: M—G, ,=S;XS; is regular at every point. Then it follows from
Proposition 1 that there exist immersed closed curves 7;CS; and 7,CS, such
that the Gauss image G(M) is a finite covering of the Riemannian product of
71 and 7,.

Combining (1.8) with (1.3), (1.4) and (1.7), we obtain

£ (G(P)= ’—20)12(6/851(]9))

2.1)
£:(G(P)) :2(012(6/352(17)) ’

for any peM.

Since the Gaussian curvature is identically zero, the universal covering M
of M is isometric to R? equipped with the standard flat metric. Let x: M—M
be the projection. Since M is compact, M is isometric to R?/I", where I is a
properly discontinuous subgroup of the isometry group of R% Let (x,, x,) be a
Cartesian coordinate system on M. Suppose that I' is generated by (x;, x,)—
(x,+a, x,) and (x,, x,)—(x;+b, x,4c¢) for some real numbers @, b and ¢. Let
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fo=dr(@/0x,) ¢=1,2). Then {f;, f.} is a globally defined C*= parallel ortho-
normal frame field of TM.

There exists a global C* orthonormal frame field {&,, &;} on M such that
e;=dn(2,) and e,=dn(&,) satisfy the conditions in Lemma 1.1 Let A=2em and
A=ptom. Then A and f are non-zero C> functions on M Let Xl—l/VZ(l/Xel
—1/pé,) and Xg—l/\/Z(l/lel—I—l/,ué‘z) Then we have [Xl, XZJ 0 everywhere
on M. NHence there gx1sts a global coordinate system (&, ;) on M such that
0/08,=X, and 0/0,=X,.

We define a C* function @ on M by

2,=cos a0/0x,-+sin ad/0x,

(2.2)
Z,=—sin @d/0x,+cos ad/0x,.
Then
2.3) n*w;,=<dé,, &y
=da.

For a curve 7 in a two dimensional oriented Riemannian manifold the total
integral of the signed geodesic curvature & along 7, S/c, is called the total
T

curvature of y. We denote it by z(p).

Let &1:{(51, 52)3 —‘°°§<§1<°°y 5250} and 5‘22{(51, éz) : “::150, "‘O°<§2<°°}-
4, and &, are curves on M and Ger maps &, onto a closed curve 7, in S, for
i=1, 2. Since G is regular everywhere on M and M is compact, G(M) is a
finite covering of 7;X7.. Let k2 be the degree of G as a map from M onto
71X7.. There exists a closed curve ¢, on M such that &, is mapped onto o,
by = and G(g,) is a k-fold covering of 7,.

LEMMA 2.1. For i=1, 2, we have

o(a,)= (_;)tk ().

Proof. Let &, be a subarc of &, which is mapped bijectively onto ¢, by =.
Then we have 7(¢;)=7(a.).
On the other hand, by (2.1) and (2.3), we have

=], = EO2[ da="0200, Q.E.D.

LEMMA 2.2. Let ¢ be a smooth closed curve in a flat torus M=R*/I". Let
d be a complete curve in the universal covering M=R? of M whose image by the
projection w: M—M is a.

If the total curvature of ¢ is not zero, then G has a self-intersection.
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Proof. Let s be an arc-length parameter of ¢ and let L be the total length
of ¢. Let s also denote an arc-length parameter of §. For any s and any
integer m we have meg(s+mL)=n-g(s). Suppose that [ is generated by
(%1, x9)—(x1+a, x,) and (xy, x)—(x:+b, x,+c¢). Since mwed(s)=nod(s+L), if
(s)=(x,, x,), there exist integers p and ¢ such that G(s+ L)=(x,+ pa+qgb,
x:+qc).

Let x(s) (0<s< L) be the signed geodesic curvature of ¢. We extend & to
a function defined on (—oo, ©) by setting x(s)=«k(s’) if s=s’ (mod L) and
s’€[0, L). Then «(s) gives the signed geodesic curvature of 4. We define a
function F(s) for se(—oo, c0) by

F(s):S:x(t)dt

so that the total curvature of {G(s):s;<s<s,} is given by F(s;)—F(s;). In
particular, for any s, we have F(s+L)—F(s)=z(a).

Let A,=min{F(s):0<s<L} and A,=max{F(s):0<s<L}. Suppose t(c)=
A+0. Then for any s, and s, (s;<s,) we have

mA+ A, SF(ss)—F(s)SmA+4,,

where m is the integer such that m<s,—s;<m+1. Therefore, there exist
numbers S; and S, such that

2.4 | F(so)—F(s1)| >2x

for any s;<S; and s,>S,.

Since {d(s):S;<s<S,} is bounded, there exists a circle C in M which
contains {&(s):S,;<s<S,} inside. If &(s)=(x,, x,), we have g§(s+nl)=
(x1+npa+ngb, x,+ngc). We see from this that the whole & is not bounded
and there exist numbers S;<S; and S,>S, such that 4(S,) and &(S,) lie outside
C. Then ¢ must intersect C at some ¢(7;) and (7,), where S,<T,<S; and
S < T,<S,.

If ¢ does not have a self-intersection, then {&(s):T\<s<T,} divides the
domain bounded by C into two simply connected subdomains. By the Gauss-
Bonnet theorem, the total curvature of {o(s): T,<s<T,} is smaller than 2r.
Thus we obtain |F(T,)—F(T,)|<2mx, which contradicts (2.4). Hence  must
have a self-intersection. Q.E.D.

THEOREM 1. Let M be a compact, oriented surface in R* which has zero
Gaussian curvature and flat normal connection. Suppose that the Gauss map G is
regular at every point of M. Then there exist closed curves y,CS; and 7,CS.
such that the Gauss image G(M) is a finite covering of the Riemannian product

of 11 and 1, and the total curvature of each v, is zero for i=1, 2.

Proof. Since (&, &) defines a global coordinate system on M, &,=
{(&y, &) : £;=0} does not have a self-intersection. Since ¢,==r-d, is closed, we
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use Lemma 2.2 to see that 7(s,)=0. Now we have 7(y,)=0 by Lemma 2.1.
Q.E.D.

COROLLARY. If 7, is a simple closed curve in S,, 7, divides S, into two
domains of the same area.

Proof. Since the total curvature of y, is zero, the Gauss-Bonnet theorem
implies the corollary.

Remark. 1f M is the product of two plane curves C,;XC,, then G(M) is a
double covering of the product of two great circles. If M is a Hopf torus,
then G(M) is a double covering of the product of a great circle in one of S;
and S, and a closed curve in the other.

§3. Flat Tori with Prescribed Gauss Images.

In this section, we prove the following theorem. Again, we identify G,
with S;XS,, where S; and S, are isometric to a round 2-sphere of radius 1/4/2.

THEOREM 2. Let 7, be a regular closed curve in S, ({=1, 2). Suppose that
the total curvature of 7y, is zero and the total curvature of any subarc of 7, is
less than w/2. Then there exists a compact immersed surface in R* whose Gauss
image is a finite covering of the Riemannian product of y, and 7.

Remark. Local existence of a surface in R* with prescribed Gauss image
is studied by J. Weiner ([6]).

Let 74(&:;) be a closed curve on S, which is parameterized by arc-length.
Let /, be the total length of y,. We assume that y;(&;) is defined for all & so
that 7:(&+10.)=y:&:) for any &. We denote the signed geodesic curvature of
7. by £,. Then our conditions for y, are written as

3.1 [, renazi=0

(3.2) HT% M(Ei)d&‘ < '721,

where 7, is any subarc of ..
We define a map P: R*—>G, 4 by P&, &)=(71(&1), 7:(62))ES:1XS:=G,, .. Since
ri€i+ml)=r:(&;) for any integer m, we have

3.3) P +miyly, E4+muls)=P(§,, &)

for any integers m,, m, and any &;, &,.
Let {24(&), &): A=1,2,3,4} be a set of R*valued functions which are

defined on R? and satisfy the following conditions;
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3.4 K84y, &2), €5(€1, £2)>=045 for all A, B=1, -, 4
(35) P(Sl: 52)———51(51, &2)/\52(51, 52)
(3.6) {é,, é,, &,, 2,} is positively oriented in R*

for all (&, &) in R:
Let @45 be a 1-form on R? which is defined by @,s=<{dé,, @5)

LEMMA 3.1.
523(6/351)2514(8/851) s 0—124(0/651): —513(3/851)
523(6/382):_&514(6/352) ) 524(6/652)-——513(6/852) .

Proof. Differentiating &;/A\&,, we have
d(@1N8)=09381 N3+ @481 NC4s— 01385 /\C3— 01485 /\ 8.

Since d(2,/A\&,)(0/0¢,) is tangent to 7, in Sy, d(2;A\&,)(0/0¢,) is a linear combi-
nation of Z,Ae,—é,Aée, and &,A\é,+&,/\&,. This yields the first two equations.
Similarly, the last two equations follow from the fact that d(é,A&,)(0/0&,) is
tangent to S,. Q.E.D.

Set
e,=cos fz,+sinfz,, e,=—sinfé,+cosfe,

G e;=cos @2;+sin ¢pé,, e,=—sin$z;+cosgpe,.
Let w,s={dey, ezy. Then we have the following lemma by an easy computation.
LEMMA 3.2.
014(0/06:)=—@,5(0/3§,) sin(0 + ) +@,,(0/9¢,) cos(6 + )
@14(0/02)=:5(0/05,) sin(0 — $)+@,,(0/0,) cos(§ — ) .

We need the following lemma to prove Lemma 3.4. The proof is also easy.
LEMMA 3.3. Let f(&, &) and g(&,, &) be C= functions on R: If f%+g*

never vanishes on R%, then there exists a C* function a(&,, &) defined on R*® such
that

f(&5, &) cosaléy, &)+ g6, &) sinaléy, £,)=0
for all (&4, &) in R%

LEMMA 3.4, There exist C* maps ey: R*>R* (A=1, ---, 4) which satisfy the
following conditions:
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3.8 Ces(&s, &2, ep(€y, §2)0=04p for all A, B=1, -+, 4
(3.9) P, &)=ei61, &) Nes(§y, &)

(3.10) {ey, ey, €5, .} is positively oriented in R*

B.11) ,=0.

Proof. Since d(e;/N\e;)(0/08,)%0, (@,5(0/0€,))*+®,,(0/0€;))?#0 by Lemma 3.1.
Hence, by Lemma 3.3, there exist C* functions a;(&;, &) defined on R? such that

—@,3(0/0¢,) sin a;+@,4(0/0&,) cos a; =0

(3.12)
@15(0/0&,) sin a,+@,,(0/08,) cos a,=0.

Set =(a;+a,)/2 and ¢=(a;—a,)/2. Then {e(&,, &): A=1, -, 4} defined
by (3.7) is a set of C* maps from R? to R* which satisfies the conditions (3.8)-
(3.11). Q.E.D.

Such a special set of vectors as {e,: A=1, -+, 4} in Lemma 3.4 is not
unique but very limited as we see in the following lemma;

LEMMA 3.5. Let {ey: A=1, ---, 4} be a set of R'-valued functions defined
on R* which satisfies the conditions in Lemma 3.4. Let {e,: A=1, .-+, 4} be any
other set of R*-walued functions satisfying (3.8)-(3.11). Then {ei, e, e}, ei} must
be one of the followings:

(1) Aey, e, e, ey} (1) A{ey, ez, —e;3, —ey}
(ili) {es, —e1, s, —es}  (iv) {es, —e1, —ey, s}
(V) {—ey, —e,, ey, e4f (vi) {—ei, —e,, —e5, —e,}
(Vil) {—e2) €1, €y, ——23} (Vill) {—ezy €1, —¢€y, 83}

Proof. We may write
ej=cosfe,+sinfe,, e;=-—sinfe,+cos fe,
e;=cos ge;-sin ge,, ej;=—sin fe;+cos fe,.

Then, by Lemma 3.2, we see that sin(f4¢)=0 and sin(§ —¢)=0. Hence 6—¢
=mz, §+d=nn for some integers m, n. Q.E.D.

LEMMA 3.6. There exists a C* function B(&, &) defined on R* which satisfies
d,3=(¢)34.

Proof. Let {ey : A=1, .-, 4} be a set of Rvalued functions given in
Lemma 3.4. By Lemma 3.1, the condition ;=0 implies w,;=0. Using the
structure equation, we obtain
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AW =05 N\ 014+ 05 A5, =0.

Since @, is a globally defined 1-form on R? there exists a function 8 on R*
such that df=w,. Q.E.D.

LEMMA 3.7. Let {es(&, &): A=1, ---, 4} be a set of R*-valued functions
satisfying the conditions (3.8)-(3.11) in Lemma 3.4. Let k(&) be the signed
geodesic curvature of y.. Then we have

£y =—2(—1)'w,,(0/0&:)=—2(—1)'0B /9.

Proof. By Lemma 3.1, we have d(e;/Ae;)(0/08,)=w;4(0/0,)(e;Ney+e.N\e;).
Since &, is an arc-length parameter of 7,, ||d(e;/A\es)(0/0&,)||=1. This implies
054(0/08,)==+1/4/2. Changing parameter from &, to —&, if necessary, we may
assume that

(3.13) ©54(0/08)=—1/~/2.
Using Lemma 3.1 again, we have
3.14) ©15(0/08)=1//2.

A similar argument shows that
(3.15) ©24(0/06:) =w,3(0/08:)=1/~/2.

Thus if we set wv;=d(e;Ne,)(3/08;), then v,=—1/4/2(e;N\e+e,Ne,), V=
1/4/2(e;Nes—e:Ne;). Note that v; is a unit tangent vector of y,. Let D be
the Riemannian connection on G, , associaNted with the standard invariant metric.
Using Lemma 3.1 in [2], we obtain Dv,=1//2(w,+®;)(e;Ne;—e,Ne,) and
ﬁvg-——1/\/2(0)12—(034)(@1/\e3+e2/\e4). This gives
’C1:<ﬁa/a$17}1, 1/+/2(esNes—es/Ney))

=w12(a/a€1)+a)34(a/a$1)
£ =Dssae02, 1/v/2(es Aes+e, Nel)>

=0,5(0/085) —w34(0/05) .

(3.16)

On the other hand, since »; is tangent to S,, we have ﬁa/afzvlzo and ﬁa,aele:O.
This gives

015(0/082)+44(0/082)=0
15(0/0€:) —,4(0/08,)=0.
Combining (3.16) and (3.17), we obtain

(3.17)



GLOBAL PROPERTIES OF THE GAUSS IMAGE 281
Ky :20)34(6/651) :23,8/351
ky=—2w4,(0/0¢;)=—20p/0&.. Q.E.D.

By Lemma 3.7, the total curvature z(y;) of 7, is given by

1ty

wr)={"20B/0EdE =2+, 6B £,

where (§;, §.) is any point in R® Similarly, z(y,)=—2(8(&:, &:+1:)— B¢, &2)).
Thus we have the following lemma.

LEMMA 3.8. 7(y)=0 if and only if B+, &)=BE1, &). T(r)=0 if and
only if .3(51, Ez‘l‘lz):ﬂ(fn &)

We define a C* map x of R® into S® by x(&;, &.)=—cos(B(&,, &2))es&s, &2)
+sin(B(&,, &2))es&s, &), where B(Ey, &;) is the function on R? in Lemma 3.6 and
{es, .} is a set of R*-valued functions defined on R* which is given in Lemma
3.4. Since 7.5, +0)=71:(&)), P&+, §)=P&,, &). Hence, by Lemma 3.5, we
have only four possibilities for {es;(&;,4/1, &2), es&i+11, &)} as follows:

{es(1t1s, &2, eubrtly, E={es(§s, §2), eul§s, 2)} (2)
or ={—es&y, &), —eu&y, §2)} (b)
or ={e &y, &), —es6y, 62)} ©
or ={—eié,, &), ey, £2)} @

Note that, by continuity, if any of (a)-(d) holds for some (&, &), it must
hold for all (&, &,).

If we have (b), then {e;(§,+2,, &.), (814211, &)} ={es(&y, §2), eu(§y, 62)}.

If we have (c) or (d), then {e;(§:44/y, &2), es14-411, &)} ={es(&,, &), eu(&y, €2}

Summarizing these, we see that

(3.18) {es(€1+muly, &), es(Ertmuly, &)} ={es(&y, &2), €u(éy, )}

holds for any (&;, &), where m, is 1, 2 or 4 and constant for all (&, &,).
Similarly, it can be shown that

(3.19) {es(€1, Eatmaly), ey(&y, Eatmul)} ={es(&y, &), es(y, €2)}

holds for any (&,, &), where m, is 1, 2 or 4 and constant for all (&, &,).
If the total curvature of y; is zero for /=1, 2, we have

B+, E)=P(Es, &)

(3.20)
,8(51, 52‘!‘12):,8(51, 52) ’

by Lemma 3.8.
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Using (3.18), (3.19) and (3.20), we see that

(3.21) x(tmily, §)=x(&1, &)
and
(3.22) x(&1, Extmals)=x(61, &)

(3.21) and (3.22) show that x defines a C* map from a torus R%/I" into S?,
where I is a subgroup of Isom(R? which is generated by (&, &)—(&1+muly, &)
and (&, &) (&1, &otmals).

LEMMA 3.9. Let x be the C> map from a torus into S* which is constructed
above. Then x is regular at (&, &) if and only if B(&,, &)+ kn/2 for any integer k.

Proof. The differential of x is given by dx=d(—cosBe;+sinfe,)=
sin ,B d,@eg—cos ,B(wslel+wszez+w34e4)+cos }9 d,Be4+Sin [3((04131‘]‘(04232"‘(04393)-

Since ®,3(0/0£;)=w,4(0/0&;)=0 by Lemma 3.4 and Lemma 3.1, —,,(0/0&)=
@13(0/061)=1/+/2 and ,,(0/0&;)=w;(0/3&,)=1/+/2 by (3.13), (3.14) and (3.15), and
dB=w; by Lemma 3.6, we have

(3.23) dx(0/0&,)=1/+/2(cos Be;+sin Be,)
and
(3.24) dx(d/0,)=1/+/2(cos fe;—sin fes).

From this, we see that dx(d/0¢,) and dx(0/0¢,) are linearly independent if and
only if sin BcosB+0 at (§;, ). Q.E.D.

LeMMA 3.10. Suppose the condition (3.2) holds for any subarc y; of y. for
i=1,2. Then a C* function B, &) in Lemma 3.6 can be chosen in such a way

that 0< B(&,, &)<% for all (&, &) in R~

Proof. By Lemma 3.7, we have

B, &) —BEl, eo=—7 [ rids, for any &, &1, &
and

B, 80—BE, E)= [T rmeade, for any &, 81, &1,

Since the total curvature of y, is zero, the condition (3.2) implies that we
have

T
<7

<12r_ and

DG [i ez,
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for any §&j, &, &, &7.

Let Q={(¢1, £2):0=<6,=/, 0=6.</;} and let B,=min{B¢;, &): (&, &)EQ}
and B,=max{B&,, &): (&, &)= Q}. Then, by the periodicity (3.20), we see that
Bi=min{B(&,, &) : (&, &) R*} and B,=max{B(,, &): (&, &) R*}. Suppose that
B(&1, &)=P, and B!, &)=PB,. Then

B.—B1=PB(EY, §1)— B, &2)
=pE7, &) —BEL, &+ BEL &)—B(EL €2)

— s [Feedet o [Erede

< 1

'S: m(E)dEs

AN

A
NIERE S

. = = 1
We define a new function ;8(51, &) by By, 52):.3(51, 52)—5‘(.31"“,32)4‘%.
Since B differs from B by a constant, § also satisfies df=w,;. It is easy to

check that 0< <% Q.E.D.

Proof of Theorem 2. By Lemma 3.9 and Lemma 3.10, a C* map x becomes
an immersion of a torus into S® in R* if the condition (3.2) is satisfied. (3.23)
and (3.24) show that the tangent plane of the image of x at each point is
e;Ne,=P(§,, &). Hence the Gauss image of x is locally the product of y; and
72 Q.E.D.

Remark 1. Let M be the image of x in R* Since dw; ;=W ; AW+ 01\ W,
=0, the Gaussian curvature of M is identically zero.
Since M lies in S® the normal connection of M as a surface in R* is flat.

Remark 2. From the way of construction of M we see that the Gauss
image of M is a k-fold covering of y,X7., where k=1, 2 or 4.
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