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RIEMANN SURFACES
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Hurwitz [3] proved that a Riemann surface of genus g has at most 84(g—1)
automorphisms. If the surface is hyperelliptic this bound may be very much
shortened.

In this paper we obtain all surfaces of genus g>3 with more than 8(g—1)
automorphisms, and their corresponding automorphism groups. As a consequence
of these results, all hyperelliptic Riemann surfaces with more than 8(g—1) auto-
morphisms appear to be symmetric.

The surfaces of low genus were studied by Wiman [12] and A. and L
Kuribayashi [4, 5].

The methods of our study of Riemann surfaces involve the representation
of compact Riemann surfaces as quotient spaces of Fuchsian groups [6]. A
Fuchsian group is a discrete subgroup of the group of orientable isometries of
the hyperbolic plane D. If the quotient space D/I", I" being a Fuchsian group,
is compact, then I has the following presentation:

@1, by, o, ag, by, xy, -, X | a1biaT'bT - agbgaztbyx, - xe=xT=1).

Then we call (g, [m,, ---, m,]) the signature of I” and g is the genus of D/I"
The numbers m, are called proper periods. When X is a surface of genus g,
it may be expressed as D/I", I' having signature (g, [—]).

If G is a group of automorphisms of the Riemann surface D/I", then G may
be written as I//I", where I'” is another Fuchsian group. A Fuchsian group
K with signature (g, [my, ---, m,]) has associated an area

Area [K1=2x(2g—2+ ;1 (1—-7;117))=zn|K|,

and the order of G=I"/I"is |G|=|I"{/|I"].
Let now D/I" be a Riemann surface of genus g, and G=I"/I" its group of
automorphisms. If |G|>8(g—1), then |F’|<§_§—:—%=%. We list the Fuch-

sian groups I with |I"| <%—.
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iy (0, 2,3, m]) m=7
i) 0, [2 4,m) m=5
iii) (0, [2, 5, m]) 55m<19
iv) (0,[2,6,m]) 6=m=ll
v) 0,[2,7,m]) 7=m=9
vi) (0, [3, 3, m]) 4=m=ll
vii) (0, [3, 4, 4])
viii) (0, [3, 4, 5])
ix) (0, [2, 2,2, 3]).

A Riemann surface X is hyperelliptic if it admits an involution ¢ such that
X/¢ has genus 0. In terms of Fuchsian groups the surface D/I” is hyper-

elliptic if and only if there exists a unique Fuchsian group I"; such that |I",: |
2g8+2

=2, and the signature of I, is (0, [2, --++- ,2]) [9]. Furthermore, the element
I'y/I' is central in the automorphism group of D/I", and so when G=I""/I is
the automorphism group of the surface we have the following relations:

rqr,qr.

THEOREM. Let X be a hyperelliptic Riemann surface of genus g and G its
automorphism group. If g>3 and |G| >8(g—1), then one of the following holds:

Genus of X Presentation of G Order of G
{a, bl a*=b*=(ab)™=1, ab*=b*a) 4m=28(g+1)

{a, bl at=b*=(ab)™=1, b*=(ab)™'%) 2m=8g

5 {a, bl a*=b*=(ab)"’=1, (ab)*=(ba)*> 120

9 {a, bl a*=b°=(ab)*=1, (ab)’=(ba)*) 120

6 {a, bl a®*=bt=(ab)*=1, b*=(ab)*) 48

15 {a, b|a®*=b*=(ab)"*=1, b*=(ab)*> 120
5 {a, bl a*=b*=(ab)*=1, ab*=b%a) 48

14 {a, bla*=b*=(ab)*=1, ab*=b*a) 120

Besides, in each case the surface is unique up to conformal equivalence.

Proof. Let X=D/I', with genus g. Since X is hyperelliptic, there exists

an automorphism ¢ of X, of order 2, and hence a Fuchsian group I'; with
2g+2

signature (0, [2, ------ , 2]) such that |I';: I'|=2. If G=I"/I"is the automorphism
group of D/I', then I'QI",<{I”. So there exists an epimorphism @#,:7"—G,=
G/{¢> whose kernel is isomorphic to [

We look for the existence of this epimorphism #,, according to the signa-
ture of I, i)—ix) above.

1) Let I have signature i). Let m be odd. We have 6,: I"—G, with
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kernel I, The order of G, is |[|/|["|= (m‘_g_g)%m = Gmnii—él).

Cor. 2] since m is odd, the proper periods of the kernel of 6, are produced by
the image of x,. Hence #,(x,) is 1, and the number of proper periods in ker 4,

is IGJZ%B. We have —GmT(‘?_%lZ:Zg+2, and g:—zz_:—;,

Now, if m is even, the proper periods of ker #, may be obtained from x,
and x,. Then its number is

6m(g—1)
@ m—6

From [8,

impossible.

6m(g—1)
(m—6)(m/2)’

a (resp., B) being 1 when 6,(x,) (resp., 8,(xs)) is 1 (resp., an element of order
m/2) and being 0 when @,(x,) (resp., 6,(x5) is an element of order 2 (resp.,
order m) [8, Cor. 2]. So
6 —1 6 —1
m(g )+ﬂ m(g—1)
m—6 (m—6)(m/2)
and this holds only for a=0, 8=1, g=2 or 5. Thus the unique case in our
scope is a=0, =1, m=10, g=5.

+8

=242

4m(g—1) and we
—

4
distinguish again m odd and m even. By the same argument above, we con-
sider the number of proper periods of ker 6, :

Let m be odd. Then

2) Let I'” have signature ii). Now the order of G, is

4m(g—1) | ,2m(g—=1)
- +8 m—4 =2g+2

and in no case we obtain an integer value of g.
When m is even.

4dm(g—1) 2m(g—1) 8(g—1) _
— +8 m—4 +7 m—4 =2g+2.
The possibilities that appear now are:
m—2

() a=0, g=1, =0, g=—75—,
a=1, B=0, y=0, m=12, g=2,
a=0, B=0, r=1, m=6, g=3,

(*) a=0, B=1, r=l, &=

For our purposes we will deal only with the starred cases.



HYPERELLIPTIC RIEMANN SURFACES 177

3) Let I'” have signature iii). The order of G, is l?gmﬁ(‘f;%

If m is odd,

10m(g—1) . .
10 =2g+2, impossible.

If m is even,
20(g—1)

10m(g—1)
« 3m—10

3m—10 =2g+2

+B

and it holds just for a=0, f=1, m=6, g=9.

4) Let I have signature iv). Then the order of G, is ﬁn—(g_;i and the
number of proper periods of ker @, is, when m is odd,

3m(g—1)
« m—3

+B

m(g—1)
- =2g+2

-3
and then a=1, B=1, m=9, g=2, what is out of our scope.
If m is even,

m(g—1) , _6(g—1)
m—3 T m—3

a 3m(g—1)

m—3 =2g+2

+B

and then we have
, r=1, m=8, g=2,

r=1, m=6, g=3,

Il
== o

*) a=0, r=1, m=8, g=6,

il
=

*) a=0, r=1, m=10, g=15,

"O)'%'Tlo'mto

1, r=1, m=12, g=2,

from which the starred cases are the interesting ones.
1dm(g—1)

m. If m=7o0r9

5) Let I'” have signature v). The order of G, is

we have
1dm(g—1) . .
Em_1d =2g+72, impossible.
If m=8§,
28(g—1)
26

a 112(g—1)

%6 =2g+2, imgossible.

+8

3m(g—1)

3 The kernel of

6) When /7 has signature vi), the order of G, is
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6, has proper periods only when m is even, and their number is

6m(g—1)

3 =2g+2

holding only when m=4, g=2, out of our hypothesis.

7) Let I have signature vii). The order of G, is 6(g—1) and the number
of proper periods of ker #, is a3(g—1), with a=1 or 2; if a=1, g=5, and if
a=2, g=2.

, . . 60(g—1)

8) If I has signature viii), the order of G, is 13 and the number

of proper periods is

30(g—1)
13 et
holding for g=14.

9) If I has signature ix), the order of G, is 6(g—1) and there are a6(g—1)
proper periods, 1<=a=<3. When a=1, it is g=2 and the other cases are im-

possible.

Now we check that all these cases actually hold. Since G, is a group of
automorphisms of X/{¢), a surface of genus 0, by [1, §§4.3, 4.4], this group
must be one of the following: C,, D,, A, S; or As. (In what follows we use
for finite groups the notation of [1]). In each of the cases we construct the
epimorphism 6§ satisfying #0=48,, where = : G—=G,=G/<{¢) is the canonical pro-
jection. Since ker # has no proper periods, @(x,) must have order m,. We
study separately the eight possibilities.

L I7:(0, [2, 3, 10]), g=5, |G:|=60, a=0, f=1. Then the signature of
Iy is (0, [29%]) (where 2> means that there exist p proper periods equal to
two), and 6,: I'"—G, is defined [9] by

0.(x)=x, 0.(x:)=1y, 0, (x5)=(xy)™".

satisfying x*=y*=(xy)’*=1. Hence G,=A;. Now the epimorphism §:7"—G
with kernel I” is given by

0(x)=a, 0(x2)=b, 0(xy)=(ab)™*,

with a*=b*=(ab)*=1. Since n#0=46,, (ab)® is a central element and so (ab)’=
(ba)’. This group is just the group

(R, S|R*=8*=(RS)*=(R*S)*=1)

described in [11, p. 46]. For, call a=RS, b=S. Then S*=b=1; (RS)*=a2=1;
since ab=S"'R-'S, the order of R is the one of ab, i.e., 10; finally (R-‘S)*=
((ba)*b)?=(ab)*=1. By the definition of the epimorphism, D/ker § is a Rie-
mann surface of genus g, and its hyperellipticity comes from the automorphism
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(ab)®.
IL I:(0, [2, 4, m]), m even, g=(m—2)/2, |G,|=4(g+1)=2m, a=0, p=1,
y=0. The signature of I, is (0, [2#£*®]) and §,: ["—G, is defined by

0.(x)=x, 0.(x)=y, 0.(x5)=(xy)",

x*=y*=(xy)™=1, and obviously G,=D,. The epimorphism 6:[’'—G with
kernel I is given by

O(x)=a, O(x)=b,  6(x*)=(ab)™,

with a*=b'=(ab)™=1. Since nf=80,, b® is a central element and so ab’>=b%a.
This group has order 8(g+1) and has presentation

(T, U|T*=UE+>=(TU=(T-U)*=1)

(see [7, Th. 4]). Effectively, we call b=T, a=TU, and the presentation fol-
lows at once. Now D/ker § is a Riemann surface of genus g and b* gives the
hyperellipticity.

L. I7:(0, [2, 4, m]), m a multiple of 4, g=m/4, |G,|=4g=m, a=0, f=1,
r=1. [I', is again (0, [2#%+®»]) and 6, is given by

O(x)=x, O(x)=y,  Oy(xs)=(xy)™"
satisfying x*=3%*=(xy)™?2=1, and G, is Dpj,- Now @:[’—G is defined by
O(x)=a, O(x))=b,  O(x5)=(ab)™*,

a*=b‘=(ab)™=1, and by unicity of the central element, b*=(ab)™%. Consider
the group C,=<{y|y™=1), C;=(x|x*=1), and C,X4C, with ¢: C,—Aut (Cp),
o()=Id, ¢(x)=¢, ¢(y)=y™*®-1 In this situation e=(x, 1), ab=(1, y) and G
is s0 C,XC,. D/ker @ is a Riemann surface of genus g and b*=(ab)™'* gives

the hyperellipticity.
Iv. I':(0,[2,5,6]), g=9, |G,|=60, a=0, f=1. The signature of I, is
0, [2¢9]) and @, is defined by

0,(x)=x, O:(x))=y, O,(x)=(xy)".
satisfying x®*=1y°=(xy)*=1, G, being so A;. Now @ is given by
0(x))=a, 0(x2)=b, 0(xs)=(ab)™*,

with a*=b°=(ab)’=1, and (ab)®*=(ba)’. By [1, p. 76] G is the quotient of the
group 2[6]5 by adding the relation “the central element has order two”. X is
a hyperelliptic surface and ¢=(ab)

V. I":(0, [2,6,8]), g=6, |G,|=24, a=0, =1, y=1. The signature of
I’ is (0, [29%]) and 4, is defined by

O(x)=x, Oi(x)=y, O(xy)=(xy)".
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with x?=y*=(xy)*=1. So G, is S,., Now the epimorphism @ is given by

0(x)=a, 0(x,)=D0, 0(xy)=(ab)™*.

satisfying a®=b*=(ab)®*=1, and, as above, b*=(ab)’. G is the group (3, 4|2;2)
=S,XC,; [1, p. 72], X is a hyperelliptic surface and ¢=>b’=(ab)".

VL I:(0, [2, 6, 10]), g=15, |G,|=60, a=0, =1, y=1. [I'; has signature
(0, [2¢27]) and the epimorphism @, is defined by

0,(x)=x, O:(x)=p,  O.(x5)=(xy)",
with x?=1y3=(xy)*=1, and G, is A;. The epimorphism @ is given by
0(x)=a, 0(x2)=b, 0(x3)=(ab)™

with a?=b*=(ab)*=1 and b*=(ab)®. G is the group <3.5(2; 2)= A;XC,[1, p. 72].
X is a hyperelliptic surface and ¢=>0'=(ab)".
VIL I7:(0,[3,4,4)), g=5, |G,|=24, a=1. In this case the signature of

Iy is (0, [29%]). The epimorphism #, is defined by
O\(x)=x, Oix)=y,  Oilx)=(xy)",
with x*=3y%=(xy)*=1, and G, is S,. The epimorphism @ is given by
0(x.)=a, 0(x5)=0, O(xy)=(ab)™?,

with a®*=b*=(ab)*=1, and ab®=b%*a. G 1is the quotient of the group 3[4]4
({1, p. 76]) by adding the relation “the central element has order two”. X is a
hyperelliptic surface and ¢=>b"
VIIL I7:(0,[3,4,5]), g=14, |G,1=60. I’ has signature (0, [2¢]) and 6,
is given by
0:(x)=x, O:(x)=yp, O, xs)=(xy)",

satisfying x*=y?=(xy)’=1. We have G,=A; and 6§ is defined by
0(x)=a, 0(xz)=b, 0(x;)=(ab)™*,

with a*=b'=(ab)’*=1 and ab®’=b*a. G is the quotient of the group 3[4]5
([1, p. 76]) by adding the relation “the central element has order two”. X is a
hyperelliptic surface and ¢=>b"

Observe that in all cases I-VIII [ is a triangle group and so its Teich-
miiller space has dimension 0. Besides, the epimorphism @ is unique modulo
Aut (I'") and Aut (G). Hence, using [2, §3], the surface D/ker @ is unique in
each case, up to conformal equivalence.

COROLLARY. If X 1s a hyperelliptic Riemann surface of genus g>3 with
|Aut (X)| >8(g—1), .then X is symmetric.
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Proof.

Cases I and III come from [10, note in p. 24 and th. 4, resp.], and case Il
from [11, p. 46]. In cases IV-VIII, since a—a~!, b—b~! is an automorphism of
the group, it follows from [10, th. 2] that X is symmetric.

The authors wish to thank the referee for his helpful suggestions.
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