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GENERAL FINSLER CONNECTIONS ON
A FINSLER VECTOR BUNDLE

By AUREL BEJANCU AND TOMINOSUKE OTSUKI

§1. Introduction.

In the present paper, we shall describe a fundamental concept of general
Finsler connections combining vectorial Finsler connections introduced by the
first author for Finsler vector bundles [2] with general connections introduced
by the second author for differentiable manifolds [7] and [8] and treat some
special examples.

§2. General Finsler connections on a Finsler vector bundle.

Let M be a real differentiable manifold of dimension n. Denote by TM the
tangent bundle over M and by x the canonical projection of TM to M. Also,
denote by dr: TN\M—TM the differential of = and define the vertical subbundle
VTM of TTM as the kernel of dr. A complementary distribution N to VTM
in TTM is called a non-linear connection on TM (see M. Matsumoto [4] p. 55).
Of course, the fibres of vector bundles VTM and N are of the same dimension n.
In this section we have the following range of indices: ¢, j, &, --- =1, 2, ---, n;
a, b, c, =12 -, p.

In order to get a local feature of the notion of non-linear connection we
consider a canonical chart (U, ¢, R*") on TM, where U is an open set of TM
and ¢:U—R* is a diffeomorphism of U on ¢(U). For each zeU denote by
(x, -+, x™; !, .-+, y™) its coordinates in this chart. We take another local chart
(¢, U’, R*™) on TM such that UNU’#¢. Then the non-linear connection N is
given by n? differentable functions N?, on each U satisfying

_0x¥ y ox? 0*x* )
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at all points of UNU’, where N*; are the corresponding functions on U’. We
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) 0 a
(22) —EF_W_—N%W’

is a local field of frames on the distribution N.

Now let nz: E~TM be a vector bundle over TM with standard fibre R?
and I'(E) be the module of all differentiable cross-sections of E. Then we call
E a Finsler vector bundle on M. A justification of the above name is the simple
fact that all cross-sections of E are depending on both, point and direction on M.
The vertical subbundle VTM and the non-linear connection N defined above are
certainly Finsler vector bundles. Further, we consider a vector bundle morphism
P:E—E and a general connection V¥ (Otsuki connection) on E with respect to P
or a general connection with P as its component of the first order (see T. Otsuki
[8] and [9]). Then by a recent work of N. Abe [1], a general connection on
TM is a mapping V:[(TTM)XI'(E)—~I'(E) satisfying

(2.3) v;x.'.yS’——vas—f-VyS and
(2.4 Vx(fS+S)=(Xf)PS+/VxS+VxS’,

for any S, S’el(E), X, Yel(TTM) and differentiable function f on TM.

We have now all the elements in order to introduce a new concept in Finsler
geometry. We say that the triplet (N, P, V) is defining a general Finsler con-
nection on the Finsler vector bundle E. If in particular, P is the identity
morphism Iz on E, the general connection on E is just a linear connection on E
and we obtain the concept of vectorial Finsler connection on E (see A. Bejancu
[2D.

Since as it is well-known in Finsler geometry, local computations are always
welcome, we give further the local alternative of the definition of a general
Finsler connection on E. In order to do this we consider a vectorial chart
(@, U, RP) on the vector bundle E, where € is an open set of TM and @ : 75!
—YUXR? is a diffeomorphism. Let (@/, U’, R?) be another vectorial chart such
that UNU’#¢. Denote by {S,} (resp. So:) the local basis of differentiable
sections of £ on U (resp. U’). Then there exist p? real differentiable functions

¢, defined on UNU’ and satisfying

(2.5) Se=G%S,.

On the other hand, the addapted field of frames {~5—i—t—, %} and {-(S—fr, %}
on U and U’ respectively satisfy Y

o ox* & | 0 _ 0x* 0
ox¥v T ox" ox’ dyY — ax¥ ay*

(2.6)

Next, we define on each domain UCTM and zz%(VU) the local chart of TM
and the local vectorial chart of E, the differentiable functions F,°, and C,°, by

(27) V&/&z%SaZFabtsb; Valaylsa':cabzsb-
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Thus, given a general Finsler connection on £ we have the quadruplet of dif-
ferentiable functions (N?,, F,%, C.b, P¢) on each open set UCTM. Conversely,
suppose on each domain UCTM there exists a quadruplet of differentiable func-
tions (N?,, F.b, C.b, P?) satisfying (2.1) and

{P‘fi =G} PGS

2.8) P =g CY (Ga-preCert),
Ica”"i,:%‘i—,c <aa Pi+G3.Ca)

in each point of UNU’, where (N, Fo" s, Co” s, Pg') is the quadruplet on

U’ and (G ) is the inverse matrix of (G%). Then it is routine to show by

means of (2.1) and (2.8) the existence of a general Finsler connection on E.
Thus we have

THEOREM 2.1. Let E be a Finsler vector bundle on M. Then the existence
of a general Finsler connection on E is equivalent to the existence of a quadruplet
of differentiable functions (N¢,, F°,, C.b., P2) on each domain U of TM satisfying
(2.1) and (2.8).

Let GFC=(N, P, V) be a general Finsler connection on the Finsler vector
bundle E. Then the curvature tensor £ of ¥ is given by (see N. Abe [1])

(2.9) ﬁ(X, YW=V VePV -V xPV—PNx.y1PV)
—(xIg)VyV4+NylgVNxV,

for any X, YeI'(TTM) and VeIl(E). Taking into account that in Finsler
geometry people is accustomed to three l~ocal curvature tensors we define the
local components Ra”,,, P,,l‘U and S;%, of R by

(2.10)
ﬁ(ﬁi—?’ g’—,)sﬁsabws,,.

Then we denote the covariant components A,°, X%, of the general Finsler con-
nection V, the components I,%, J,°, of VI; with respect to 6/0x* and d/dy*
respectively and the components of the torsion tensor of N as follows:

b
Aabz:Fabi_—gxp—:; IabzchbiP;—PgAacu
b
(2.11) xathCabi_—g%; ]abz=ccbiP£_Ptc,xacz»
Re, = ON_ 0N,
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Thus by using (2.9)-(2.11) we obtain (after a long computation) the local com-
ponents of curvature tensor field B given by

o0F¢ o0F,¢ . ¢
L SEL)PEPIH(FA S = P F )P

+I i.A —ICDJAO, t—I—R z;CcdkP de

2.12) Ra",j_:(

oF,¢ ¢
(2.13) Pat=(Gt = LD PEPLH (Pt .C = C PP
+chzxa. j_jc 14Lla z"l" aé\r C dkP de
0 ¢
(2.14) S, “_..( ac;]i _ aC.* J) P24 (C, 2 Cdbj—ccdjcdbi)Plg

+]c ixa j""]c jxa.c'u

It is easy to check that for the particular case P=Iy from (2.12)-(2.14) we ob-
tain the local components of the curvature tensor of a vectorial Finsler connec-
tion on E (see A. Bejancu [2]).

§3. General Finsler connections induced by vectorial Finsler connections.

Let wg: E-TM and znp: F»TM be two Finsler vector bundles on M.
Suppose VFC=(N, V) is a vectorial Finsler connection on E. Then we consider
the Whitney sum G=E@F and denote by P the projection morphism from G
to E. Then we can define a general connection V on the whole G with respect
to P by the following formula

3.1) VeV=VxPV  for XeI(TTM) and Vel(G).

It is easy to verify that (3.1) defines a general connection on G. Thus, starting
from the vectorial Finsler connection VFC=(N,V) on E we obtain on each
Whitney sum G of E with any other Finsler vector bundle F, a general Finsler
connection GFC=(N, P, V) where V is given by (3.1). We call GFC the induced
general Finsler connection by the vectorial Finsler connection VFC. Denote by R
and R the curvature tensors of V and V respectively. Then the following
theorem seems to us very important.

THEOREM 3.1. The restriction of the curvature tensor of GFC to E is just
the curvature tensor VFC, that is, we have

3.2) RX,Y)WW=R(X,Y)V  for any X,YeI(TTM), VeIl(E).

Proof. First by a result of N. Abe [1] and (3.1) we have
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(3.3) (VeI (VyV)=Vx(PVyV)—P({xV5V)
=Vx(PVyPV)—P(NxPVyPV) for any X,YelI(TTM)
and Vel(E).
But PV=V and PVyV=V,V since VyV&Il'(E). Hence by (3.3) we get
(3.4) (VxIp)(VyV)=0.
Thus, taking account of (3.4) in (2.9) we get our assertion.

Now, let F*=(M, F(x, y)) be a Finsler space, where M is an n-dimensional
differentiable manifold and F(x, y) is the fundamental function of F* (see M.
Matsumoto [4]). Denote by g,;(x, ¥) the fundamental tensor field of F*, that
is we have

1 0*F?
3.5) &, y)—gw-

Suppose g.;(x, ) is positive definite, that is, it defines a Riemannian metric on
the vectorial bundle VTM. Next we consider a Finsler connection FC on F?*
which in fact is just a vectorial Finsler connection FC=(N, V) on VTM, (see A.
Bejancu [2], [3]). The existence of a non linear connection N on TM implies
TTM=N®@VTM. Hence by the above construction we get a general Finsler
connection VGFC=(N, v, V), V is given by (3.1) and v is the projection morphism
of TTM to VTM. We call VGFC the wvertical general Finsler connection on
TTM.
Now we define the isomorphism of vector bundles
0 1)

3.6) L:N-VTM by L(X):Xla—yl, where X=X TR

It is easy to check that L does not depend on the local coordinates (x*, %) on
TM. Then we define a linear connection V* on the vector bundle N by

3.7 V¥U=L-*NxLU) for any Xel(TTM), U<I(N).

Next, denote by V* the general connection induced by V* on TTM. Hence we
have

(3.8) VA Y=V%rY  for any X, YeI(TTM|,

where h is the projection morphism of TTM to N. Thus we obtain another
general Finsler connection HGFC=(N, h, V*), whose curvature R* restricted to
N is just the curvature tensor R* of V*, We call HGFC the horizontal general

Finsler connection on TTM.
As it is well-known, a Finsler connection FC=(N?,, F,%, C,*;) on F™ has

five torsions T,%;, R%, P*;, S%;, and C,*, given by

3.9) T]lk: ]le'—FkZ];
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oN? ON?
(3.10) Rij=—5"— 5x;k ;

ON‘
(3.11) Py = —ay—k’—sz ;
3.12) S*=C*—Cs",;

0 , 0

Va/ayia—yj ”—‘CJ "—ay—” .

On the other hand, for any general connection on TTM we can define its tor-
sion tensor field (see T. Otsuki [7] and H. Nemoto [6]). Then we have

THEOREM 3.2. The torsion tensors of the horizontal and vertical general
Finsler connections on TTM guwe all the torsions of the initial Finsler connection
on F™.

Proof. First, we denote by T the torsion tensor field of the general con-
nection V. Thus we have

(3.13) TX, Y)=VyY -V X—uv([X,Y]) for any X,Yel(TTM).

Locally, we obtain

0 0\ o 0
(35 35) ="
Next, we denote by T* the torsion tensor field of V*. Then by using a similar
formula to (3.13) we get

i b 5 0 B\ ., b
615 (5o )T TG ) Ol

¥ 9 _0 \_
T (ay,, ayl)-o.
Thus our assertion follows from (3.14) and (3.15).

Therefore, starting with a Finsler connection on F™ we obtain two general
Finsler connections on TTM mentioned above. Now, we consider a general
Finsler connection GFC=(N, v, V) on TTM with respect to the projection
morphism v of TTM to VTM. Then we define a linear connection V on VTM
by

(3.16) VxV=0VxV  for any XeI(TTM), vVel(VTM),

and obtain a Finsler connection FC=(N, V) on F*. However, the vertical general
Finsler connection induced by FC does not coincide in general with the initial



GENERAL FINSLER CONNECTIONS ON A BUNDLE 149
GFC. With respect to this problem, by (3.1) and (3.16) we easily obtain

THEOREM 3.3. The vertical general Finsler connection induced by FC coincides
with the initial general Finsler connection GFC 1f and only if we have:
(i) the distribution VTM 1s parallel with respect to N, i.e., we have

VxVel(VTM)  for any XeI(TTM) and Vel(VTM),
(ii) each section of N is parallel with respect to V, i.e., we have
VxH=0  for any XeI(TTM) and HeI(N).

Remark 3.1. From the above study we can conclude that Finsler connec-
tions on a Finsler space are too particular geometrical objects. The set of
Finsler connections on F” is in a one to one correspondence with the set of
general Finsler connections on TTM satisfying the very strong conditions of
Theorem 3.3. This explains (in a way) why in many cases more conditions
imposed to a Finsler connection imply the Riemannian case.

In particular we can consider the Cartan connection, Berwald connection,
Rund connection, etc., and investigate properties of horizontal and vertical
general Finsler connections induced by them on TTM. It is not the purpose of
the present paper to perform such a study. However, we note a property for
the Cartan connection.

By means of the Riemannian metric g on VTM we define a Riemannian
metric on the vector bundle TT M similar to the Sasaki one and denote it also

by g, that is
ds*=g,j(x, y)dx'dx'+g.,(x, ¥)dy0y’,

where dy*=dy*+N%(x, y)dx’. Then the vertical and horizontal general Finsler
connections on F™ corresponding to the Cartan connection satisfy

(3.17) Vxg=0; V*yg=0 for any XeI(TTM)
and
(3.18) TWY, vZ)=T*hY, hZ)=0 for any Y, ZeIl(TTM).

Thus it is possible to get more results on geometry of F™ via both general
Finsler connections induced by Cartan connection. By this method we can per-
form invariant computations which certainly in Finsler geometry are welcome.

Remark 3.2. If we consider the general connection V-+V* on TTM, it be-
comes affine, because v+h=I7yry and its torsion tensor coincides with the ones
of the initial Finsler connection on F™ as easily seen from (3.13)-(3.15).
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§4. General Finsler connections on a Finsler space.

In the previous sections we started with a vectorial Finsler connection (or in
particular a Finsler connection) on a certain Finsler vector bundle and obtained
general Finsler connections on larger vector bundles. It is the purpose of this
section to study general Finsler connections on a Finsler space F®, that is,
general Finsler connections on VTM.

Let GFC=(N?,, F,%, C,%, P%) be a general Finsler connection on VTM.
Then we call GFC a general Finsler connection on the Finsler space F™. Since
in this particular case we have

Cr=22,
by (2.1) and (2.8) we get
v =B B 5T ),
@ 7
4.1) P§::%P}%’ ,
B = GG g vt gy P)
B I

Remark 4.1. If in particular, P is the identity morphism on VTM, from
(4.1) we get just the transformation law for the coefficients of an usual Finsler
connection on F™ (see R. Miron [5]).

Remark 4.2. From (4.1) it follows that Pi(x, ) and C,":(x, y) are Finsler
tensor fields on F'™.

From (2.12)-(2.14) we obtain the components of the curvature tensors of a
general Finsler connection on F" given by

OF 2 OF !
“.2) R un= (52— 25 ) PR P (Fyty Fn—Fyu Fd )P
+IkaAiph'—IplhAipk_Rshkcpqspgpé;
4.3) Pon= an LA 5Cp n)PpP F(FpCin—F 1 C ) PP
oON*
'l‘Ikaxzph_fp hAzpk+ a . Cpqu Pq,
3,5 3C,
@4 Sutun=( 52— G2V PIPIH(CCn—CyaC P

S e )
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where 4,*, and X,*, are obtained from (2.11), that is we have
oP? oP?

S BOh T

(4.5) A;’k:FJzk'—'

Next we shall obtain the components of torsion tensor of the general Finsler
connection GFC in a similar way as for the components of the torsion of a
Finsler connection in Theorem 3.2. Thus, starting from a general Finsler con-
nection GFC=(N, P,V) on VTM we construct a general connection GFC*=
(N, L-*<P-L, V*) on N by

(4.6) VsU=L"'NxLU) for any XeI(TTM) and UeI(N),

where L is the isomorphism given by (3.6). Then we define the general con-
nections V and V* on TTM by

4.7 VY =YY and
(4.8) V¥,V =V%hY

for any X, Yel(TTM). 1t is easy to see that V and V* are general connec-
tions with respect to Pov and L-!-P-L-h respectively. We denote by 7 and
T the torsions of ¥ and V* respectively and by using similar formulas as (3.13)
we obtain five tensor fields:
ON” ON? oN?
) Z— o J k. L — 2 kB__ k.
R ”_( ox?  ox’ >P"’ Pt 0y’ PimF5ts

Tzkj:Flkj"“F]kl; Sk,,jzclkj—cjk, and Ctk],

which we call the torsions of the general Finsler connection GFC. As stated
in Remark 3.2, these tensors constitutes also the torsion of the general connec-
tion V4+V* on TTM.

Now we consider a Finsler tensor field T%(x, y) on F™ and look for its
covariant differentiation. By a procedure performed by 7. Otsuki in [7] we
can define the (h)-covariant derivative of T},

oTF,
ox?®

—TH A PRPPi—TH A" PiPL P

(4.8) TH,s=PpP§

PiPR-+TI4F," PiPLPY+TEFy PLPLPT

and its (v)-covariant derivative by
o
dy*
—TPaX, PP P—T X ™ PP} PY.

4.9) o= PhPY T PLPE+THAC,  P{PIPT -+ THC, PSPIPE

Certainly, the (h)- and (v)-differentiation can be performed for an arbitrary
Finsler tensor field with formulas which look like (4.8) and (4.9) for more indices.
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