T. YAMANOSHITA
KODAI MATH. J.
10 (1987), 127—142

ON THE SPACES OF SELF HOMOTOPY EQUIVALENCES
FOR FIBRE SPACES

TSUNEYO YAMANOSHITA

Introduction.

This paper contains a detailed account of the results announced in [21]%.

Let X be a connected CW complex with non-degenerate base point x,. In
the following, by a CW complex we mean a connected CW complex with non-
degenerate base point, unless otherwise stated. Denote by G(X) the space of
self homotopy equivalences of X and G,(X) the space of self homotopy equi-
valences of (X, x,). In [19, 207, the author studied G(X) and G,(X) when X
are certain product CW complexes. The main theme of this paper is to study
Go(X) when X is a fibre space of a Hurewicz fibration: F5 X% B, We call a
Hurewicz fibration simply a fibration.

The first main result is the following :

THEOREM 1.5. Let E and B be CW complexes and let p: E—~B be a fibra-
tion with fibre F. For a gwen n>1, 1f F 1s (n—1)-connected and =,(B)=0 for
every i=n, then we have the following fibration:

14
g(E mod F) e Go(E) — B’ ’

where B’ is a space with the same weak homotopy type as Go(B)X Go(F) and
G(E mod F) is the space of self fibre homotopy equivalences of E leaving the fibre
F fixed.

For seeking the image of p in Theorem 1.5 we provide the following theo-
rem by using Allaud’s theory on the classification of fibre spaces [1].

THEOREM 3.1. Let F be a CW complex (not necessary connected). And let

&, 9): FSELB and &, 1): FS E'L B be two fibrations over CW complexes B
and B’ respectively. For given elements g of map,(B, B’) and h of G(F) there
exists a fibration map g:E — E’ such that the following diagram s semi-com-
mutative :
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t A continuation of this paper was published as [22, 23], in which this paper is re-
ferred to as “On the spaces of self homotopy equivalences for fibre spaces I”.
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p

F E B
z‘l ) pl
E

4 7Bl

(the square on the left is homotopy commutative as maps to the fibre p'~*(bg) and
the square on the right is commutative) if and only if we have

Xw(h)]-Lk]=[k"]-L2],

where maps k: (B, by)—(Bw, bx), B’ :(B’, bj)—(Bx, bx) are corresponding maps to
the fibrations (¢, 7) and (&, ") respectively and X(h) is a self homotopy equivalence
0f (B, bw).

J. Siegel [12] studied the space BG,(E) where E is a CW complex of stable
2-stage Postnikov system. With respect to a CW complex E of general 2-stage
Postnikov system, we have

THEOREM 3.4. For given 1<m<mn, let

d P
F=K(r', n) — E —> K(x, m)=B

be a fibration with a corresponding map k: (B, by)—(Bw, bs). Then there exists a
map k’: (B, by)—(BL, bl) such that [Bj-k’]1=[k]. And we have

Go(E) =~ Rx H™B, n)x TL KH™ (B, n'), i),
w 1=1
where R is the subgroup of Aut (z)XAut (n’)=e(B)X e(F) consisting of ([g], [h])
with
hi(CR' D=g*([k’]).

Here [k'] is regarded as an element of H"*X B, n’), g* and hy are the automor-
phisms of H™*(B, n’) induced by g and h respectively.

As is easily seen, a corollary of this is the following theorem proved by
W. Shih [10] and Y. Nomura [9].

COROLLARY 3.5. Under the same hypothesis as Theorem 3.4, there exiSts the
following exact sequence

1— H*B, n’)—> ¢(E)—> R —>1,

where e(E) is the group of homotopy classes of self homotopy equivalences of
(E, e,) and R is the same group as the group stated in Theorem 3.4.
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§1. The function spaces and fibrations.

Throughout this paper, we shall work within the category of compactly
generated Hausdorff spaces [15]. Let X and Y be spaces with non-degenerate
base points. In the sequel by a base point we mean a non-degenerate base
point. Then map (X, Y) will denote the space of maps of X to Y with the
topology obtained by retopologizing the compact open topology and map,(X, Y)
will be the subspace of map (X, Y) of maps of X to Y preserving base points.
Moreover, when % is a map of X to Y, we denote by map (X, Y ; k) the path
connected component of 2 in map (X, V), and map,(X, Y ; &) is defined similarly.

In the following we simply call a Hurewicz fibration p: E—B a fibration
p: E—B and write a fibration p: E—B with typical fibre F by a fibration

i p
F—FE-—B,

where 7 is a homotopy equivalence of F to the fibre p~%(b,) over a base point

b, of B.
Let p: E—B be a fibration. And let 7: A—X be a closed cofibration. Then

we have a fibration
p#: mapy(A, E) —> mapy(4, B),

where p, is induced by the projection p: (E, e,)—(B, b,). Also we have a

fibration
i* : mapy(X, B) —> map,(4, B),

where /# is induced by the inclusion 7: (A4, x,)—(X, x,). We denote by
mapy(X, B)X'map,(4, E) the fibred product of the fibration /% and p.. Then
we define a map p: map,(X, E)—map,(X, B)X'map,(4, E) by

o(f)=(ps(f), P*(F))=(pf, fi).
Then we have the following theorem [13, 16, 17].

THEOREM 1.1. Let 7: A—X be a closed cofibration preserving base points.
And let p: E—B be a fibration preserving base points. Then a map

p: mapy(X, E) —> mapy(X, B) X 'mapy(4, E)
is a fibration.

Moreover we have the following lemmas which will be used later.

LEMMA 1.2. Let p: E-B be a fibration with fibre F and let f: X—B be a
map. Assume that B is weakly contractible, then the fibre space f*E of induced
fibration by f has the same weak homotopy type as XX F.

Proof. We may assume without loss of generality that both X and E are
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path connected.
Let :: F»E and j: F>f*E be the inclusion maps, and let p,: f*E—X and
ps: f*E—E be the projections. Then we have the following commutative

diagram

7a(F) —j*—>7rn(f*E) LN 7a(X)

A

p

TolF) —2% 5 2 (E) ———% > 7,(B).

Since n,(B) is trivial for every n, ix: n,(F)—>n,(E) is an isomorphism for every
n. Therefore jy: w,(F)—>n,(f*E) is a monomorphism for every n and
Dot wa(f*E)—n,(E) is an epimorphism. Using these facts, we can easily see
that the map (p;, p2): f*E—XXE induces isomorphisms of the corresponding
homotopy groups. That is, f*E is weakly homotopy equivalent to XXZE.
Obviously XX F is weakly homotopy equivalent to XX E. Thus f*E has the
same weak homotopy type as XX F.

LEMMA 1.3. For given n>1, let X be an (n—1)-connected CW complex and
Y be a path connected space with n,(Y)=0 for every i=n. Then map,(X, Y) s
weakly contractible.

Proof. From the hypothesis we see that mapy(X, Y) is path connected.
Let f:(S%, *x)—(mapy(X, Y), ¢) be a map where ¢ denotes the constant map.
Then we have its associated map f:(S?, *) X (X, xo)— (Y, ¥,) and the map
F (X, x0)—(29(Y), ¢’) associated with f where ¢’ is the constant map. Obviously
f is homotopic to the constant map. This implies that f is homotopically
trivial.

Let £ and B be CW complexes, and let p: E—B be a fibration with fibre
F. Then, we see that F has the homotopy type of a CW complex (not neces-
sary connected) [11, 14]. Moreover the inclusion ;: F=p~Y(b,)—E is a closed
cofibration by the theorem of A. Strgm [17]. In Theorem 1.1, putting X=E,
A=F, we have the following fibration

p: mapy(E, E) —> mapy(E, B)X'map,(F, E).
About the fibred product map,(E, B)X’map,(F, E), we have

LEMMA 1.4. Let E and B be CW complexes and let p: E—B be a fibration
with fibre F. For a given n>1, if F is (n—1)-connected and =,(B)=0 for every
i=n, then the fibred product mapy(E, B)X’'map,(F, E) has the same weak homo-
topy type as map,(B, B)Xmap,(F, F).

Proof. First, we shall show that the fibred product map,(E, B) X ‘map,(F, E)
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has the same weak homotopy type as map,(E, B)Xmap,(F, F). Second, we
shall show that map,(E, B) has the same weak homotopy type as map,(B, B).

Let p,: mapy(F, E)—map,(F, B) be a fibration defined by p.(f)=p-f. By
Lemma 1.3 map,(F, B) is weakly contractible. Consequently we have a fibration

»
mapy(F, F) —> map,(F, E) —> map,(F, B),

and so map,(F, F) is weakly homotopy equivalent to map,(F, E).

On the other hand, let :*: map,(E, B)—map,(F, B) be a fibration defined by
1*(f)=f<i where i: F>FE is the inclusion, then the fibred product map,(E, B)Xx’
map,(F, E) is the fibre space (:¥)* map,(F, E) of induced fibration by :#¥. Using
Lemma 1.2, we have

map,(E, B)X'map(F, E) >~ map,(E, B)Xmap,(F, F).
w

Next we shall show

map,(E, B) =~ map,(B, B).
w

Now, by our hypothesis we may assume that E is a subcomplex of B and
the n-skeleton of B is contained in £. Then we have a fibration p*: map,(B, B)
—map,(E, B) which is a map induced by the inclusion p: E—B.

Let f: S*X(E, ¢,)—(B, b,) be a map such that f|*XE=p. Since n;(B)=0
for every j=mn, by using obstruction theory f can be extended to a map
f’:S*X(B, by)—(B, b,) such that f’|*x B=idz. This implies that

(p¥)x : my(mapy(B, B), 1dg) —> m;(mapy(E, B), p)

is surjective for every 7>0. Similarly, we can see that (p*)s is injective for
every :>0. Hence

p*: mapy(B, B;1dp) —> map(E, B; p)

is a weak homotopy equivalence. Also, we see that p*: map,(B, B)—map,(E, B)
induces a bijective correspondence of the path connected components of
map,(B, B) onto the path connected components of map,(E, B).

Furthermore, by the similar argument we see that p* is a weak homotopy
equivalence for each path connected component of map,(B, B). We have

map,(E, B) >~ map,(B, B).
w

Thus our proof is completed.

Let X be a CW complex. Then we denote by G(X) and G,(X) the space
of self homotopy equivalences of X and the space of self homotopy equivalences
of (X, x,), respectively.

Under the same hypothesis as Lemma 1.4, we have
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THEOREM 1.5. Let E and B be CW complexes and let p: E—B be a fibra-
tion with fibre F. For a given n>1, if F is (n—1)-connected and =,(B)=0 for
every i=n, then we have the following fibration:

0
G(E mod F) —> G((E) —> B’,

where B’ is a subspace of map,(E, B)X'map,(F, E) with the same weak homotopy
type as Go(B)XGo(F) and G(E mod F) is the space of self fibre homotopy equi-
valences of E leaving the fibre F fixed.

Proof. Let f be an element of G,(E). Then by the above argument there
exists a map g: (B, by)—(B, b,) such that pof=~gep rel ¢,, Consequently the
following commutative diagram holds,

T, (E) —-—L—)z,(E)

P
7 (B) —E* s z(B)

On the other hand, by our assumption we see that py: x;,(E)—=;(B) is an iso-
morphism for every j<n. Since f is a self homotopy equivalence of (E, ¢),
fx: i (E)=m,(E) is an automorphism for every j. This implies that g.: 7i(B)
—x{B) is an automorphism for every j<n. Since B is a CW complex, by the
theorem of J. H.C. Whitehead we obtain that g is a self homotopy equivalence
of (B, b,). Thus g belongs to Gy(B).

On the other hand, there exists a self map f’ of (E, ¢,) such that f'=~f
rel ¢, and pof’'=g-p, because p: E—~B is a fibration and p-f is homotopic to
gep relative to e, Put f’|F=h, then we have the following commutative
diagram with exact rows,

m(B)— 4 snF) g npy_ Px o

lg* lh* | lf; |

7B —d >ty — s B — P B

Note that by our assumption for every j=n, ix: n;(F)—r,E) is an isomorphism
and 7B)=m;;(B)=0 and f%: z,(E)—r,E) is an automorphism for every j,
thus Ay : w(F)—n,(F) is an automorphism for every j=n. Therefore s is a
self homotopy equivalence of (F, ¢,).

From the argument of Lemma 1.4, there is a subspace B’ of map,(E, B)X’
mapy(F, E) which has the same weak homotopy type as Go(B)XGoF)
(Cmap,(B, B)xmap,(F, F)). Obviously we see from the definition of p that a
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typical fibre p~(p, 7) is just ¢(E mod F). Finally we have a fibration:

GE mod F) —> Go(E) —> B’ 2 GoB)XGi(F).

§2. Fibration map theory.

Here we give a brief summary on a fibration map theory for fibrations
which corresponds to the bundle map theory for principal bundles [3, 4, 5, 6].

Let p: E—»B and p’: E'—B’ be fibrations with CW complexes B and B’
Let f: E-E’ and f:B—B’ be maps such that p’of=f-p and F carries each
fibre of E into a fibre of E’ by a homotopy equivalence. Then we call f a
fibration map.

Let ¢*(E, E’) be the space of fibration maps of £ to E’ and @: ¢*(E, E’)
—map (B, B’) be a map defined by @(f)=f for each fibration map fiE—E’
and its induced map f: B—B’. Then we have a fibration

@ ¢%E, E'")—> map (B, B’).

Moreover, let B, be a subcomplex of B and put p~(Bo)=E, Let 1: E,~E be
the inclusion then i#: ¢*(E, E’)—G*(E,, E’) is a fibration. Let @: E,—E’ be a
fixed fibration map which is extendable to a fibration map of E to E’ and in-
duces a map a: By—B. Denote by G%(E, E’) a fibre (1*)-%&). Then we have
a fibration @ : GX(E, E’)—map,(B, B’), where map,(B, B’) denotes the space of
maps from B to B’ whose restriction on B, is the map a. Furthermore, we
denote by &(FE) the space of self fibre homotopy equivalences of E. Then every
fibore @-%(h) over h in the fibration @ : ¢%(E, E')—map (B, B’) has the same

T ¥
homotopy type as G(E). Also we have a fibration: ¢(E mod EQ—»Q’(E)L—»Q(EO),
where G(E mod E,) denotes the typical fibre (f“)“(z’dEo).

Now, let p: E—~B be a fibration with fibre F where B and F are CW com-
plexes. Then there exists a universal fibration p.: Fw—B. with fibre F, where
B.. may be regarded as a classifying space BG(F) ([1], [7]). About this uni-
versal fibration we have the following Gottlieb’s theorem which corresponds to
Theorem (5.6) in [5].

THEOREM 2.1. Let k: E»E. be a fibration map inducing a classifying map

k: B—B. f0~r the fibration: FSES B . Then the path connected component
g;@‘c;(E, Ew; k) in G% .(E, Ex) containing k 1s weakly contractible.

Immediately we have the following

COROLLARY 2.2. G(Emod E,) has the same weak homotopy type as the loop
space 2 map,,i(B, B«; k), where i denotes the inclusion of B, into B.
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Remark 2.3. The fibration map theory stated above may be said that it is
a replica of the bundle map theory initiated by I. M. James [6] and developed
by D.H. Gottlieb [4, 5]. It seems that our theory has been known among ex-
perts but not appeared in the literatures. Note that the work of P. Booth, P.
Heath, C. Morgan and R. Piccinini [2] is studying the same subject with a
different approach.

Now, it should be noticed that for a CW complex B if

(1) B is a homotopy associative H-space, or

(2) B is a suspension of a CW complex,
then 2 map,(B, B; k) has the same homotopy type as map,(B, £B.). Thus,
furthermore if F has the homotopy type of a CW complex, then we have

G(E mod F) ;17_ map,(B, 2B..) % mapy(B, G(F)).

Especially when F is an Eilenberg-MacLane complex K(x, n) (n>1) we have
the following

THEOREM 2.4. Let p: E—B be a fibration with fibre F=K(z, n) (n>1) such
that B is a CW complex. Assume B is simply connected, then G(E mod F) has
the same weak homotopy type as

mapy(B, K(r, n)) = H™(B, =)x 1L KH"*(B, x), 1).
w 1=1

Proof. Let SG(F) be the path connected component of idr in G(F). Since
G(F) is a grouplike topological monoid and has the same weak homotopy type
as K(zm, n)XxAut(x), where Aut(z) denotes the group of automorphisms of =,
then we have the following fibration [7]:

Bj A
BSG(F) —> BG(F) — K(Aut (n), 1).

Here Bj may be regarded as the map between classifying spaces which is in-
duced by the inclusion j: SG(F)—G(F).

Because B is a simply connected CW complex, we can easily see that
mapy(B, K(Aut (x), 1)) is weakly contractible. Thus we have the following
fibration :

(B«
mapy(B, BSG(F); k') ——> mapy(B, BG(F); k)
Ay
—> mapO(B; K(AUt (ﬂ.'), 1)) »

where [Bj-k’]=[k]. Consequently we have
mapy(B, BSG(F); k’)%mapo(B, BG(F); k).

Note that BSG(F)=K(x, n+1) is a homotopy associative H-space, then we have
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by Corollary 2.2
G¢(E mod F) _";_«. 2 map,(B, BG(F); k)

_';_ 2 map,(B, BSG(F); k)
;\JHT 2 map,(B, BSG(F); ¢)
= map,(B, 2BSG(F))
=~ mapy(B, K(z, n))

w

(for the last weak homotopy equivalence, see [7]),

where ¢ is the constant map of B to BSG(F). By the theorem of J. C. Moore
[8] it holds that

mapy(B, K(z, n)) o~ H(B, 7)x TL K(H**(B, 1), i).
w 1=1

Thus our proof is completed.

§3. Applications.

In Theorem 1.5, we have essentially the following fibration :

G(E mod F) —> Gy(E) —> Gy(B)X Go(F) .

Hereafter we shall investigate the image of p.
For this purpose we shall recall Allaud’s theory on the classification of

fibre spaces [1, 7]. Let B be a space with base point b,. Then we write (&, 7)
the following fibration :

i
F—FE—B,

where i: F—p-1(b,) is a homotopy equivalence and the fibres are of the same
homotopy type. Let (£, ¢’) be another fibration:

z'/ ’
F'—>E' —>B.

Define a map of (&, 7) to (&, ¢/) as a triple
g:F’%F,) f~:E—_-)E/) f:(B,bo)—_»(B,,bé)

such that in the following diagram :



136 TSUNEYO YAMANOSHITA

i

F > E L4
) . B p

FI

—_—
>
’

I

BI

L 4

the square on the left is homotopy commutative as maps to the fibre p’~*(bg)
and the square on the right is commutative. In the sequel the commutativity
of this kind of diagram will be called briefly as semi-commutativity.

Now, let F be a CW complex (not necessary connected). Suppose given
two fibrations (&, 7) and (¢/, i/) over CW complexes B and B’ with the same
fibre F

b

7
F— F —B,

z‘/ ’

F— E' —> B’,

there exists a map (h, f, g) of (£, 7) to (¢, ¢') such that & is a self homotopy

equivalence of F.
We denote the induced fibration (g*&’, ;) as follows:

7 T,
(g*¢',11): F—> g*E’ —> B.

Let f/: E—g*E’ be a fibre homotopy equivalence given by f’(e)=(p(e), f(e))
for e E. Then we have the following semi-commutative diagram :

F L L E P _,.B
h f’
;': il rg*E, T > B
F i > E’ . > B’
This implies that the fibration
joh? P

(&, ich"y: F——>FE—B

is equivalent to the fibration (g*¢&’, 7,).
On the other hand, by the main theorem of G. Allaud [1] there exists a

map Ag(h): (B, by)—(B«, b=) corresponding to the fibration (£, 7°A~!). Obviously
the homotopy class [Xz(h)] is only dependent on the homotopy class [~]. Denote
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by (£«, iw) the universal fibration :
Do

F—>E.->B.,

we have also a self map X.(h) of (B, b.) corresponding to the fibration
lwo bt Do

(Ewy toh )t F——> Foy —> B
About map X.(h), we can get
Xe(h’ o h)]=[X(h) ] [X(R)] (B, W' EG(F))

by using the following semi-commutative diagram :

pt=hT g b= B.
lim(h) lx.,,(h)
F e h E. — 2= B.
Jli,,(h') J(xm(h')
F b E. —P 5 B..

Consider the following semi-commutative diagram:

F foh! E b B
3 k
Zes(h) Ye(h)

F te . B—2" S B

where k: (B, by)—(Bw, b) is a map corresponding to the fibration (£, 7). This
implies that the map Xo(h)ck: (B, by)—(Be, b.) is a corresponding map to the
fibration (£, 7eh~?). When %’: (B’, b)—(Be, b.) is a map corresponding to the
fibration (¢’, 7), clearly we get a map k’°g: (B, b,)—(Bw, b) corresponding to
the fibration (g*£’, 7,) which is equivalent to the fibration (§, 7°A~!). Consequently
by the main theorem of G. Allaud again we have

X(R)]-[R]=[k"]-[£].
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One can reverse the above argument. Thus we can obtain the following

THEOREM 3.1. Let F be a CW complex (not necessary connected). And let

&, 179): FSE i B and (&',7): Fl—> E’p—'> B’ be two fibrations over CW complexes
B and B’ respectively. For given elements g of map,(B, B’) and h of G(F) there
exists a fibration map g: E—E’ such that the following diagram is semi-com-

mutative :

F : > E P B
F NG e —> B

(the square on the left is homotopy commutative as maps to the fibre p'~'(bg) and
the square on the right is commutative) if and only if it holds that

(Xe(h)]-[Rk]=[k"]-[£],

where maps k:(B, by)—(Bew, bx), k’:(B’, by)—(B«, bx) are corresponding ones to
the fibrations (&, 1) and (&', i) respectively and X~(h) is a self homotopy equiva-
lence of (B, bs).

If a fibre F is simply connected, then this theorem yields the following
result.

THEOREM 3.2. Under the same hypothesis as in Theorem 1.5, the image of
0 : G(E)=Go(B)XGy(F) is just the union of the path connected components in
Gy B)X Gy(F) each of which contains (g, h) satisfying

[(Xs(h)]-[R1=[R]-[g],
where k. (B, by)—(Bw, bw) s a map corresponding to the fibration: F L ESB.

About the map X.(h), when a fibre F is a complex K(x, n) (n>1), we have
the following

PROPOSITION 3.3. Let F be K(z, n) (n>1) and let

im poo
F—> Eo —> Bo=BG(F)

be the universal fibration with typical fibre F. Then for a given homotopy equi-
valence h: F-F we have

(X=(h)eBj]=[Bj-h'],
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where j is the inclusion of SG(F) to G(F), Bj is the map of (BSG(F), bs) to
(BG(F), bs) and h’ is a self map of (BSG(F), b%) with [h’]=[h]< Aut (z’).

Proof. Let EL denote the fibre space (Bj)*E. of the induced fibration by
Bj: (B, bk)—(Bx, bo), where Bl is the classifying space BSG(F). First we
shall show that E. is contractible.

Now, since F is K(z, n) (n>1), the boundary homomorphism 0 : 7,.(Bw)
—m;(F) in the homotopy sequence of the universal fibration is an isomorphism
if /=2 and a monomorphism if /=1 ([1]). S0, 0w: m,4;(Be)—m;(F) is an iso-
morphism for every i=1. Let us consider the homotopy sequence of the induced
fibration p%: EL—B%. Let 0, be the corresponding boundary homomorphism,
then we have a commutative diagram :

.
(B Gide o B

ol 0
mi(F)

Consequently we see that . : m,.,(BL)—n(F) is an isomorphism for every i=1.
This implies that =n,(E%) is trivial for every /=0.

On the other hand, B, is a CW complex and each fibre of the fibration
pé: EL—Bj has the same homotopy type as F which is a CW complex. By
the theorem of Stasheff [11, 14] EL has the same homotopy type as a CW com-
plex. Therefore EJ is contractible.

Now, we have the following semi-commutative diagram:

iGoh™ Po

F > EL » B,
h' h’
4 N ! A
F b LB, —P B
By Bj
; P -] A
F T Ew b > B.

This implies
[xE{x,(h)] =[Bj-h']

and [A]=[h’]J=Aut (z’) when we regard the homotopy classes [4] and [4"] as
element of Aut(z’). On the other hand, we have [Xg (h)]=[X«(h)>Bj] because

Bj: (B%, bl.)—(Bx, bs) is the corresponding map of the fibration
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’

o b
(6, %) F—> Ei, —> Bs,.
Thus we have [Bjeh’]=[Xu(h)°Bj].

Now, using Proposition 3.3 combined with Theorem 1.5, 2.4 and 3.2, we
obtain the following

THEOREM 3.4. For given 1<m<n, let

d P
F=K(r’, n) — E —> K(x, m)=B

be a fibration with a corresponding map k: (B, by)—(Be, be). Then there exists
a map k’: (B, by)—(BL, by) such that [Bj-k’]J=[k]. And we have

Go(E) ~ Rx H™(B, =')x TI K(H*(B, '), i),
w =1
where R is the subgroup of Aut(m)XAut(n’)=e(B)Xe(F) consisting of ([g], [h])

with
h«(LR'D=g*[k']).

Here [k'] is regarded as an element of H"*(B, n’), g* and hy are the automor-
phisms of H"(B, n’) induced by g and h respectively.

Proof. Since B is a simply connected CW complex, there exists a map
k' : (B, by)—(B&%, bl) such that [Bj-k’]=[F].
Moreover, note that the following equalities hold [18, 19]:

G(B)%Aut (m)X K(z, m), Go(B) Qw-/_Aut (),
G(F) >~ Aut (z")XK(z’, n), GoF)=>~=Aut(z’).
w w

By Theorem 1.5, 2.4 and 3.2 our proof is completed if we see that [X.(h)ek]=
[keg] is equivalent to
[h'ek']=[k'-g].

By Proposition 3.3 we have
[Xei(h)o k]=[Xee h)° Bj k']
=[Bjeh' k']
=[k-g]
=[Bj-k’-g].

Since the correspondence (Bj)yx between based homotopy classes: [ B, BL],—
[B, B-], is bijective, we conclude that [X.(h)ek]=[k-g] is equivalent to
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Lh'ek’]=[k"-g].

Now, we must note the work of J. Siegel [12] where he studied the space
BG(E) under the same situation as the above theorem.

Moreover, note that the map p : Go(E)—=Go(B)X Go(F) defined in Theorem 1.5
induces the homomorphism p4 of ¢(E) into e(B)Xe(F), then we can easily see
that the image of p4 is just R in Theorem 3.4 and the kernel of py4 may be
regarded as H™(B, n’). Thus as a corollary of Theorem 3.4 we have the fol-
lowing theorem proved by W. Shih [10] and Y. Nomura [9].

COROLLARY 3.5. Under the same hypothesis as Theorem 3.4, there exists the
following exact sequence

1— HYB, n’") —>¢(E)—> R —>1,

where R is the same group as the group stated in Theorem 3.4.
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