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ON THE SPACES OF SELF HOMOTOPY EQUIVALENCES

FOR FIBRE SPACES

TSUNEYO YAMANOSHITA

Introduction.

This paper contains a detailed account of the results announced in [21] !.
Let I b e a connected CW complex with non-degenerate base point x0. In

the following, by a CW complex we mean a connected CW complex with non-
degenerate base point, unless otherwise stated. Denote by G(X) the space of
self homotopy equivalences of X and G0(X) the space of self homotopy equi-
valences of (X, x0). In [19, 20], the author studied G(X) and G0(X) when X
are certain product CW complexes. The main theme of this paper is to study
G0(X) when X is a fibre space of a Hurewicz fibration: F-^X-^B. We call a
Hurewicz fibration simply a fibration.

The first main result is the following:

THEOREM 1.5. Let E and B be CW complexes and let p: E-+B be a fibra-
tion with fibre F. For a given n>l, if F is (n —I)-connected and πi(B)—0 for
every i^n, then we have the following fibration:

p
Q(E mod F) — > G0(E) — > Bf,

where Bf is a space with the same weak homotopy type as G0(B)xG0(F) and
ύ(EmoάF) is the space of self fibre homotopy equivalences of E leaving the fibre
F fixed.

For seeking the image of p in Theorem 1.5 we provide the following theo-
rem by using Allaud's theory on the classification of fibre spaces [1].

THEOREM 3.1. Let F be a CW complex (not necessary connected). And let

(£, i): F-^E^B and (£', ϊ)\ F%-+Ef^>B' be two fibrations over CW complexes B
and Br respectively. For given elements g of mapo(£, Bf) and h of G{F) there
exists a fibration map g: E —> Ef such that the following diagram is semi-com-
mutative :
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f A continuation of this paper was published as [22, 23], in which this paper is re-

ferred to as "On the spaces of self homotopy equivalences for fibre spaces I".
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P

(the square on the left is homotopy commutative as maps to the fibre pf~\K) and
the square on the right is commutative) if and only if we have

where maps k: (B, b0)->(Boo, &«>), k'':(£?', b'0)-*(Boo, &») are corresponding maps to
the fibrations (£, i) and (£', i') respectively and XJjϊ) is a self homotopy equivalence
Of (Boo, boo).

J. Siegel [12] studied the space BGQ(E) where E is a CW complex of stable
2-stage Postnikov system. With respect to a CW complex E of general 2-stage
Postnikov system, we have

THEOREM 3.4, For given l<m<n, let

F=K(π', n) K(π, m)=B

be a fibration with a corresponding map k: (B, b0)->(Boo, boo). Then there exists a
map k'\ {B} b^iBLy bL) such that [B;βfe/]=[fe]. And we have

W

where R is the subgroup of Aut (ττ)xAut (π')=ε(B)xε(F) consisting of ([g], [A])
with

Here [&r] is regarded as an element of Hn+1(B, π')t g* and h* are the automor-
phisms of Hn+1(B, π') induced by g and h respectively.

As is easily seen, a corollary of this is the following theorem proved by
W. Shih [10] and Y. Nomura [9].

COROLLARY 3.5. Under the same hypothesis as Theorem 3.4, there exists the
following exact sequence

1 —•* Hn(B, π') —» e(JB) — * R —-> 1,

where ε(E) is the group of homotopy classes of self homotopy equivalences of
(E, e0) and R is the same group as the group stated in Theorem 3.4.
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§ 1. The function spaces and fibrations.

Throughout this paper, we shall work within the category of compactly
generated Hausdorff spaces [15]. Let X and Y be spaces with non-degenerate
base points. In the sequel by a base point we mean a non-degenerate base
point. Then map (X, Y) will denote the space of maps of X to Y with the
topology obtained by retopologizing the compact open topology and maρo(Z, Y)
will be the subspace of map (X, Y) of maps of X to Y preserving base points.
Moreover, when k is a map of X to Y, we denote by map (X, Y k) the path
connected component of k in map (X, Y), and mapo(X, Y k) is defined similarly.

In the following we simply call a Hurewicz fibration p: E->B a ίibration
p: E->B and write a fibration p: E->B with typical fibre F by a fibration

where i is a homotopy equivalence of F to the fibre p~\b0) over a base point
bo of B.

Let p: E-+B be a fibration. And let *: A-*X be a closed cofibration. Then
we have a fibration

4, £) — > maρo(-4, B),

where p$ is induced by the projection p:(E, eo)-^(B, bQ). Also we have a
fibration

ί * : mapo(X, 5) — > mapo(i4, B),

where i* is induced by the inclusion i: (A, xo)->(X, x0). We denote by
maρo(Z, B)x'maρo(A, E) the fibred product of the fibration i* and p#. Then
we define a map p: mapo(^ί, £)-^maρo(Z, £) x'mapoC^L, JE) by

Then we have the following theorem [13, 16, 17].

THEOREM 1.1. Let i:A-+X be a closed cofibration preserving base points.
And let p: E-+B be a fibration preserving base points. Then a map

p : mapo(Z, E) — > maρo(Z, 5)x/map0(^4, E)

is a fibration.

Moreover we have the following lemmas which will be used later.

LEMMA 1.2. Let p: E->B be a fibration with fibre F and let f: X-+B be a
map. Assume that B is weakly contractible, then the fibre space f*E of induced
fibration by f has the same weak homotopy type as XxF.

Proof. We may assume without loss of generality that both X and E are
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path connected.
Let i: F-*E and j : F-*f*E be the inclusion maps, and let px: / * £ - > Z and

p2: f*E->E be the projections. Then we have the following commutative
diagram

πn(F)

πn(F) ^*_> πn(E) ^-> πΛ(B).

Since πn(B) is trivial for every n, ί*: πn(F)->πn(E) is an isomorphism for every
n. Therefore /* : πn(F)->πn(f*E) is a monomorphism for every n and
£2* πn{f*E)-*πn(E) is an epimorphism. Using these facts, we can easily see
that the map (plf p2): f*E->Xx E induces isomorphisms of the corresponding
homotopy groups. That is, f*E is weakly homotopy equivalent to XxE.
Obviously XxF is weakly homotopy equivalent to XxE. Thus f*E has the
same weak homotopy type as XxF.

LEMMA 1.3. For given n > l , let X be an (n—l)-connected CW complex and
Y be a path connected space with ^ ( F ) = 0 for every i^n. Then maρo(^, Y) is
weakly contractible.

Proof. From the hypothesis we see that mapo(Z, Y) is path connected.
Let / : (Sj, *)->(maρo(Z, Y), c) be a map where c denotes the constant map.
Then we have its associated map / : (S 7, *)χ(X, xo)^(Y, y0) and the map
/ : (X, xQ)-*{Ωj{Y), c') associated with/where cr is the constant map. Obviously
/ is homotopic to the constant map. This implies that / is homotopically
trivial.

Let E and B be CW complexes, and let p: E-+B be a fibration with fibre
F. Then, we see that F has the homotopy type of a CW complex (not neces-
sary connected) [11, 14]. Moreover the inclusion i: F=p-\bQ)-*E is a closed
cofibration by the theorem of A. Str0m [17]. In Theorem 1.1, putting X—E,
A=F, we have the following fibration

p : mapo(£, E) — > mapo(£, 5)x /map 0(F, E).

About the fibred product mapo(£, 5)χ / map 0 (F, E), we have

LEMMA 1.4. Let E and B be CW complexes and let p: E->B be a fibration
with fibre F. For a given n>l, if F is (n—l)-connected and πi(B)=0 for every
i^n, then the fibred product mapo(£, jδ)x/map0(F, E) has the same weak homo-
topy type as mapo(£, £)xmapo(F, F).

Proof. First, we shall show that the fibred product maρo(£, 5)x /maρ0(F, E)
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has the same weak homotopy type as mapo(£, jB)χmapo(F, F). Second, we
shall show that maρo(£, B) has the same weak homotopy type as mapo(5, B).

Let p#: mapo(F, £)->mapo(F, B) be a fibration defined by p^{f)—p°f. By
Lemma 1.3 maρo(F, B) is weakly contractible. Consequently we have a fibration

Put
mapo(F, F) — > mapo(F, E) — > mapo(F, B),

and so mapo(F, F) is weakly homotopy equivalent to mapo(F, E).
On the other hand, let i*: maρo(£, £)—>mapo(F, B) be a fibration defined by

i*(f)=f°i where i: F-^E is the inclusion, then the fibred product maρo(£, B)x'
mapo(F, E) is the fibre space (/*)* mapo(F, E) of induced fibration by i*. Using
Lemma 1.2, we have

mapo(£, £)x'mapo(F, £ ) r ^ m a p o ( £ , 5)xmapo(F, F ) .
w

Next we shall show

Now, by our hypothesis we may assume that E is a subcomplex of B and
the 72-skeleton of B is contained in E. Then we have a fibration £ # : maρo(B, 5)
->mapo(£, 5) which is a map induced by the inclusion p: E-+B.

Let / : S*x(£, eo)-^(B, b0) be a map such that f\*xE=p. Since πj(B)=0
for every /Ξ^n, by using obstruction theory / can be extended to a map
/ ' : S*X(β, &o)->(5, W such that f'\*xB=idB. This implies that

(/>*)#: ^i(mapo(jB, 5), zί/5) — > π-i(mapo(^, 5), £)

is surjective for every z>0. Similarly, we can see that (p*)* is injective for
every f>0. Hence

/?# : mapo(£, B ιdB) — > mapo(^, B p)

is a weak homotopy equivalence. Also, we see that p**: maρo(/?, Z?)-^mapo(£, B)
induces a bijective correspondence of the path connected components of
mapo(B, B) onto the path connected components of mapo(£, B).

Furthermore, by the similar argument we see that p* is a weak homotopy
equivalence for each path connected component of mapo(£, B). We have

mapo(£, B) O^L maρo(i3, B).
w

Thus our proof is completed.
Let I be a CW complex. Then we denote by G(X) and G0(X) the space

of self homotopy equivalences of X and the space of self homotopy equivalences
of (Z, x0), respectively.

Under the same hypothesis as Lemma 1.4, we have
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THEOREM 1.5. Let E and B be CW complexes and let p: E-*B be a fibra-
tion with fibre F. For a given n>l, if F is {n—l)-connected and πt(B)=0 for
every i^n, then we have the following fibration:

G(E mod F) — > G0(E) -^> Bf,

where B' is a subspace of mapo(£, B) X 'mapo(F, E) with the same weak homotopy
type as G0(B)xG0(F) and Q(EmoάF) is the space of self fibre homotopy equi-
valences of E leaving the fibre F fixed.

Proof. Let / be an element of GQ{E). Then by the above argument there
exists a map g: (B, bo)-+(B, b0) such that p°f~g°p rel e0. Consequently the
following commutative diagram holds,

— >πJ(E)

On the other hand, by our assumption we see that p*: πj(E)->πj(B) is an iso-
morphism for every j<n. Since / is a self homotopy equivalence of (E, e0),
/ * : πj(E)-*πj(E) is an automorphism for every /. This implies that g*: π^B)
->πj(B) is an automorphism for every j<n. Since B is a CW complex, by the
theorem of J. H. C. Whitehead we obtain that g is a self homotopy equivalence
of (B, b0). Thus g belongs to G0(B).

On the other hand, there exists a self map f of (E, β0) such that f'^f
rel e0 and pof/:=gop, because p: E->B is a fibration and p°f is homotopic to
gop relative to e0. Put ff\F—h, then we have the following commutative
diagram with exact rows,

πJ+1(B) A > πj{F) ί±-+ π.(E) ί±—

A* /i \g*

— — > 7Cj(E) :

Note that by our assumption for every j^n, i*\ πj(F)-+πj(E) is an isomorphism
and πj(B)=πj+1(B)=0 and f'*:πj(E)->πj(E) is an automorphism for every /,
thus A*: πj(F)-+πj(F) is an automorphism for every j^n. Therefore A is a
self homotopy equivalence of (F, e0).

From the argument of Lemma 1.4, there is a subspace B/ of maρo(^, B)X'
mapo(F, E) which has the same weak homotopy type as G0{B)xG0(F)
(Cmapo(#, 5)xmapo(F, F)). Obviously we see from the definition of p that a
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typical fibre p~\p, i) is just G(E mod F). Finally we have a fibration:

G(E mod F) — > Go(E) ~^-> Bf ~ G0(B)xG0(F).

§ 2. Fibration map theory.

Here we give a brief summary on a fibration map theory for fibrations
which corresponds to the bundle map theory for principal bundles [3, 4, 5, 6].

Let p: E->B and p': Ef->B' be fibrations with CW complexes B and B'.
Let / : E-*Ef and / : B-*B' be maps such that p'°f=f°p and / carries each
fibre of E into a fibre of Ef by a homotopy equivalence. Then we call / a
fibration map.

Let S*(E, E') be the space of fibration maps of E to E' and Φ : £*(£, £')
-»maρ(5, 5 0 be a map defined by φ ( / ) = / for each fibration map / : £ - > £ '
and its induced map / : B-+B'. Then we have a fibration

Φ : £*(£, £ 0 — > map (5, 5 0 .

Moreover, let Bo be a subcomplex of B and put p~1(B0)=E0. Let z: E0->E be
the inclusion then ί* : ΰ*(E, E')-*Q*(Eo, Ef) is a fibration. Let ά : £ 0 - > £ ' be a
fixed fibration map which is extendable to a fibration map of E to Ef and in-
duces a map a: B0-*B. Denote by Q%{E, Ef) a fibre (i*)~\ά). Then we have
a fibration Φ : £^(£, £0->Hiapα(5, Bf), where maρΛ(5, 5 0 denotes the space of
maps from 5 to Bf whose restriction on 5 0 is the map a. Furthermore, we
denote by G(E) the space of self fibre homotopy equivalences of E. Then every
fibre Φ'\h) over h in the fibration Φ: Q*(E, E')->map(B, B') has the same

homotopy type as G(E). Also we have a fibration : £(£ mod E0)->ύ(E)—>G(EQ),
where G(EmoάEQ) denotes the typical fibre (ί*)~\idEo).

Now, let p: E->B be a fibration with fibre F where 5 and F are CW com-
plexes. Then there exists a universal fibration ρM: £«>—>5oo with fibre F, where
5co may be regarded as a classifying space BG(F) ([1], [7]). About this uni-
versal fibration we have the following Gottlieb's theorem which corresponds to
Theorem (5.6) in [5].

THEOREM 2.1. Let k: E—>Eoo be a fibration map inducing a classifying map
v

k : 5->5oo for the fibration: F-^E —• 5. Then the path connected component

G^o;(E, Eoo', k) in G^o~{E, £«>) containing k ts weakly contractible.

Immediately we have the following

COROLLARY 2.2. £ ( £ m o d £ 0 ) has the same weak homotopy type as the loop
space Ωmapkoi(B, B^; k), where i denotes the inclusion of Bo into B.
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Remark 2.3. The fibration map theory stated above may be said that it is
a replica of the bundle map theory initiated by I. M. James [6] and developed
by D. H. Gottlieb [4, 5]. It seems that our theory has been known among ex-
perts but not appeared in the literatures. Note that the work of P. Booth, P.
Heath, C. Morgan and R. Piccinini [2] is studying the same subject with a
different approach.

Now, it should be noticed that for a CW complex B if
(1) 5oo is a homotopy associative //-space, or
(2) B is a suspension of a CW complex,

then Ω mapo(5, Boo k) has the same homotopy type as mapo(£, ΩB<»). Thus,
furthermore if F has the homotopy type of a CW complex, then we have

G(E mod F) ~ mapo(£, ΩB*) ̂  mapo(£, G{F)).
w w

Especially when F is an Eilenberg-MacLane complex K(π, n) (n>l) we have
the following

THEOREM 2.4. Let p: E->B be a fibration with fibre F=K(π, n) (n>l) such
that B is a CW complex. Assume B is simply connected, then G(E mod F) has
the same weak homotopy type as

, K(π, n))o^Hn(B, π)xϊίκ(Hn'\B9 π), i).
W *=i

Proof. Let SG(F) be the path connected component of idF in G(F). Since
G{F) is a grouplike topological monoid and has the same weak homotopy type
as K(π, n)xAut(ττ), where Aut(ττ) denotes the group of automorphisms of π,
then we have the following fibration [7] :

Bj λ
BSG{F) — > BG(F) — > K(Aut (π), 1).

Here Bj may be regarded as the map between classifying spaces which is in-
duced by the inclusion j : SG{F)-*G(F).

Because B is a simply connected CW complex, we can easily see that
maρo(£, /Γ(Aut (π), 1)) is weakly contractible. Thus we have the following
fibration:

(Bj),
mapo(£, BSG(F) k') > mapo(£, BG(F) k)

— > mapo(£, ΛΓ(Aut (π), 1)),

where [Bj°k'~\ = \_k~\. Consequently we have

mapo(£, BSG{F); *7) ~ m a p o ( B , BG{F); k).
w

Note that BSG(F)=K(π, n+1) is a homotopy associative //-space, then we have
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by Corollary 2.2

S(E mod F) ~ β mapo(5, BG(F) k)
w

~ J2mapo(5, BSG(F); kf)
w

~i2map o (5, BSG(F) c)
w

~ mapo(£, ΩBSG(F))
w

: ~ mapo(£, K(π, ft))
w

(for the last weak homotopy equivalence, see [7]),

where c is the constant map of B to BSG(F). By the theorem of J. C. Moore
[8] it holds that

mapoGB, K(π, n))^Hn(B, π)χnflκ{Hn-ι{B} π), i).
w i = 1

Thus our proof is completed.

§ 3. Applications.

In Theorem 1.5, we have essentially the following fibration:

Q(E mod F) —> G0(E) -Λ> G0(B)xG0(F).

Hereafter we shall investigate the image of p.
For this purpose we shall recall Allaud's theory on the classification of

fibre spaces [1, 7]. Let B be a space with base point b0. Then we write (£, i)
the following fibration:

i p
F—>E—>Bf

where i: F-+p-\b0) is a homotopy equivalence and the fibres are of the same
homotopy type. Let (£', /') be another fibration:

V p'
F>—>£'—>B'.

Define a map of (£, i) to (ξ\ if) as a triple

g: F—> F\ f: E —> E', f : (B, b0) —•* (B'f b'o)

such that in the following diagram:
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P B

the square on the left is homotopy commutative as maps to the fibre p'~\bβ
and the square on the right is commutative. In the sequel the commutativity
of this kind of diagram will be called briefly as semi-commutativity.

Now, let F be a CW complex (not necessary connected). Suppose given
two fibrations (£, /) and (£',. if) over CW complexes B and B' with the same
fibre F

i p
F—+ E —+B,

if p'
F—>E'—>Bf,

there exists a map (A, / , g) of (£, i) to (£', i') such that A is a self homotopy
equivalence of F.

We denote the induced fibration (g*ξ', iλ) as follows:

(g*ξ\ ii g*E' B .

Let / ' : E->g*Ef be a fibre homotopy equivalence given by f'(e)=(p(e),f(e))
for e^E. Then we have the following semi-commutative diagram:

P'

This implies that the fibration

(f, /- A"1): B

is equivalent to the fibration (g*ζ'9 2*1).
On the other hand, by the main theorem of G. Allaud [1] there exists a

map %E(h): (B, b0)-+(Boo, boo) corresponding to the fibration (£, /"A"1). Obviously
the homotopy class [XJS(Λ)] is only dependent on the homotopy class [A]. Denote
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by (£00, z'oo) the universal fibration:

too poo

F—>E~—> &.,

we have also a self map TL,(h) of {Boo, &») corresponding to the fibration

137

About map XJ,h), we can get

PUΛ'.Λ)]=[3Uλ')] PUλ)] (A, A'

by using the following semi-commutative diagram:

Consider the following semi-commutative diagram:

/-•A"1

Uh)

where έ : (β, bo)-*(Bx, 6») is a map corresponding to the fibration (f, 2). This
implies that the map X*>{h)° k : (B, bo)-*(Bn, bj) is a corresponding map to the
fibration (ξ, i'h-1). When έ ' : (B\ i»ί)->(5», 6«,) is a map corresponding to the
fibration (£', /'), clearly we get a map fe' g : (β, ύo)->(β~, ί»») corresponding to
the fibration (g*ξ', «Ί) which is equivalent to the fibration (£, i'h'1). Consequently
by the main theorem of G. Allaud again we have
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One can reverse the above argument. Thus we can obtain the following

THEOREM 3.1. Let F be a CW complex {not necessary connected). And let

{ξ, i): F-Λ E^B and (£', i'): F^ Ef ^> Bf be two fibrations over CW complexes
B and B' respectively. For given elements g of mapo(#, Bf) and h of G{F) there
exists a fibration map g: E-+E' such that the following diagram is semi-com-
mutative :

•* E

\h

F - * E' >B'

{the square on the left is homotopy commutative as maps to the fibre p'~\K) and
the square on the right is commutative) if and only if it holds that

where maps k : {B, b0)->{Boo, b<*)> k': {Bf, b'0)-+{Boo, boo) are corresponding ones to
the fibrations {ξ, i) and (£', ir) respectively and IJJn) is a self homotopy equiva-
lence of {Boo, boo).

If a fibre F is simply connected, then this theorem yields the following
result.

THEOREM 3.2. Under the same hypothesis as in Theorem 1.5, the image of
p: G0{E)-^G0{B)xG0{F) is just the union of the path connected components in
G0{B)xG0{F) each of which contains {g, h) satisfying

where k : {B, 60)—•(#«>, boo) is a map corresponding to the fibration: F—> E —> B.

About the map 3L(λ), when a fibre F is a complex K{π, n) (n>l), we have
the following

PROPOSITION 3.3. Let F be K{π, n) (n>l) and let

be the universal fibration with typical fibre F. Then for a given homotopy equi-
valence h: F->F we have



SELF HOMOTOPY EQUIVALENCES 139

where j is the inclusion of SG(F) to G(F), Bj is the map of (BSG(F), bL) to
(BG(F), b^) and h' is a self map of (BSG(F), bL) with [A/] = [A]eAut(π:/).

Proof. Let EL denote the fibre space (Bj^E^ of the induced fibration by
Bj: (BL, bL)->{Boo, &«,), where BL is the classifying space BSG(F). First we
shall show that EL is contractible.

Now, since F is K(π, n) (n>l), the boundary homomorphism d^: πι+1(Boa)
->πi(F) in the homotopy sequence of the universal fibration is an isomorphism
if z'^2 and a monomorphism if i—l ([1]). So, d*,: πι+1(B00)-*πi(F) is an iso-
morphism for every *Ξ>1. Let us consider the homotopy sequence of the induced
fibration pL: EL-+BL. Let dL be the corresponding boundary homomorphism,
then we have a commutative diagram:

πι+1(BL)

Consequently we see that 9^: πι+1(BL)^πi(F) is an isomorphism for every i^l.
This implies that πt{EL) is trivial for every z^O.

On the other hand, BL is a CW complex and each fibre of the fibration
pL: EL-+BL has the same homotopy type as F which is a CW complex. By
the theorem of Stasheff [11, 14] EL has the same homotopy type as a CW com-
plex. Therefore EL is contractible.

Now, we have the following semi-commutative diagram:

This implies

W

* Bo,.

and [A] = [A']eAut(τr') when we regard the homotopy classes [A] and [Ar] as

element of Aut(π'). On the other hand, we have [ZίSβ(A)] = [Zβo(A) βy] because

Bj: (BL, bL)->(Boo, boo) is the corresponding map of the fibration
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iL PL

(ξL, iL): F-* EL—> BL.

Thus we have [J3/ A/]=[Z«,(A) S;].

Now, using Proposition 3.3 combined with Theorem 1.5, 2.4 and 3.2, we
obtain the following

THEOREM 3.4. For given l<m<n, let

i p
F=K(πf, n) — > E — > K(π, m)=B

be a fibration with a corresponding map k : (B} b0)-^(Boo, boo). Then there exists
a map k':(B, bo)-^(BL, bL) such that lBj*k']=lk]. And we have

-KB, π')y i),
W t=i

where R is the subgroup of Aut(π)xAut(π')=ε(B)xε(F) consisting of ([#], [A])
with

Here [έ 7 ] is regarded as an element of Hn+1(B, π'), g* and h* are the automor-
phisms of Hn+1(B, π') induced by g and h respectively.

Proof. Since B is a simply connected CW complex, there exists a map
kf\ (B, bo)-+(BL, bL) such that [ΰ/ * / ] = [ * ] .

Moreover, note that the following equalities hold [18, 19]:

G(B) ~ Aut (π) X K(π, m), G0(B) z*. Aut (π),
w w

G{F) Ω~ Aut (τrθ X K(π', n), GQ(F) ^ Aut (π').
w w

By Theorem 1.5, 2.4 and 3.2 our proof is completed if we see that [%oo(A)°&] =
\_k°g~] is equivalent to

By Proposition 3.3 we have

Since the correspondence (Bj)* between based homotopy classes: [B, BL
IB, Boo^o is bijective, we conclude that [X»(A) *] = [*•#] is equivalent to
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Now, we must note the work of J. Siegel [12] where he studied the space

BG0(E) under the same situation as the above theorem.
Moreover, note that the map p : Go(E)-+Go(B)xGo(F) defined in Theorem 1.5

induces the homomorphism p* of ε(E) into ε(J3)Xε(F), then we can easily see
that the image of p* is just R in Theorem 3.4 and the kernel of p* may be
regarded as Hn(B, π'). Thus as a corollary of Theorem 3.4 we have the fol-
lowing theorem proved by W. Shih [10] and Y. Nomura [9].

COROLLARY 3.5. Under the same hypothesis as Theorem 3.4, there exists the

following exact sequence

1 — > Hn(B, πf) — > ε{E) — > R — > 1,

where R is the same group as the group stated in Theorem 3.4.
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