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0. Introduction.

Let (M, g) be a closed, connected two-dimensional Riemannian manifold.
We consider isometric minimal immersions ¢ : M—S¥(1) into the N-dimensional
unit sphere of the Euclidean space R¥*+., Let S%X) be a sphere of constant
curvature K and let seN, K(s)=2[s(s+1)]-%. In [3] Boravka constructed iso-
metric minimal immersions ¢, : S¥K(s))—S*(1). Later Calabi proved that any
isometric minimal full immersion of S*K) into S¥(1) is congruent to some ¥
(L5D).

Because of Calabi’s result Simon cojectured the following ([6]).

CONJECTURE. Let (M, g) be a closed, connected 2-manifold with curvature
K. Let seN and let ¢: M—S¥(1) be an isometric minimal immersion such that
K(s+1)<K=<K(s). Then either K=K(s) or K=K(s+1) on (M, g) and ¢=¢; or
d=q,4+1, respectively.

The conjecture is true for s=1 and s=2 (cf. [7] for s=1 and N=4; [2]
for s=1, N arbitrary; [6], [8] for s=2).

In this paper we give a partial positive answer to this conjecture for s=3;
we prove:

THEOREM. For a real number K, satisfying 1/10<K,<1/6, put K,=
K,+(1/18)1—6K)(10K,—1) (then 1/10<K,<K,;<1/6). Let (M, g) be a closed,
connected 2-dimensional Riemannian manifold with curvature K. Assume that
K,<K=<K, Then there exists no isometric minimal immersion ¢: M—SV(1) for
any N.

In the course of the proof, we also get short proofs for the case s=1, 2.
The author would like to express hearty thanks to Professor S. Tanno for
his advice and encouragement during the developement of this work.
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1. Proof.

The main idea of our proof is to use the operators X, Y and H, which
were introduced by Bryant for classifying minimal surfaces with constant Gaus-
sian curvature in spheres ([4]), in our variable curvature case.

We describe the definitions of the operators X, ¥ and H following Bryant
([4]). Let (M? g) be an oriented, connected 2-dimensional Riemannian mani-
fold. We let X: $—M be the bundle of oriented or thonormal frames. Thus
fET is a triple f=(x, e;, ¢,), where x€M and e,, ¢, T, M form an oriented
basis. The canonical 1-forms, !, @®* on F are the unique 1-forms satisfying
dX=e,0'+e¢,0°. Set w=w'+iw?, d=w'—iw?. Let r—M be the complex line
bundle of 1-forms which are multiples of w and let z-*—M be the complex line
bundle of 1-forms which are multiples of @. For m=0, let t™—M (resp. - *—M)
be the m-th power of r—M (resp. t~'—>M) as a complex line bundle. Using
the identification @™=(@)"™ for all m, we have a canonical pairing t™ X t*—r™**
for all m and k. Let C=(z™) be the vector space consisting of all smooth sec-
tions of z™. If o¢=C~(r™), then, on ¥, we may write o=s(w)™ for a unique
function s on ¢. One easily computes that ds=—mips+s'w+s"@ for some
unique functions s’ and s” on &, where p is the commection form. It is easy
to see that the forms s’(w)™*'=¢’ and s”(w)™ *=¢” are well-defined sections of
t™*1 and ™! respectively. This allows us to define operators 0, :C%(z™)—
C=(z™*Y) and 3, : C*(t™)—C>(t™ 1) by 0pno=0", 0mo=0c". Let I, :C(z™)—C=(z™)
be the identity map. Set =,C=(c™) as a Z-graded vector space and define
the operators

X:@mam: Y:@maﬂu H:@mm'lm .

Thus for a function f on M regarded as a cross section of z° we get
1 . 1 . —
oy Xf=5(af—iafo, Yi=5(eftiaf)o.

Let ¢,> denote the standard inner product on R¥*., We set W=R¥ "R
and extend the operators X, Y and H to <V in the natural way. We also have
a pairing <, ): WX V—9T extending the given <, ) in the obvious fashion. We
define conjugation in ¢V by setting ¢=3§(w) ™ for c=s(w)™"=C>(z™). Thus we
have X6=Yo, Yo=Xo.

We have the following two propositions (see Proposition 1.1 and Proposition
1.2 in [4]).

PROPOSITION 1. The operators X, Y and H satisfy
K
@ [X, Y1=(—3)H,
3 A=2(XY+YX),

where K 1s the Gaussian curvature of M and A: I9—9d 1s the Laplace-Belirami
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operator on each graded piece.

PROPOSITION 2. Let ¢: M*—>SV(1)CTR¥*! be an isometric mimimal 1mmersion
of an oriented 2-dimensional Riemannian manifold M. Then

) (¢, p>=1;

® X, Xpp=0, ¥, Y$=0;
© (Xp, Y§y="5;

@ Ap=—2¢ .

LEMMA 1. Let (M2, g) be an oriented 2-dimensional Riemanman manifold.
If f is a smooth function on M, then

® Af=4XYf=4Y Xf .
If f, h are smooth functions on M, then
9 Xf-Yh+ Yf-Xh=%g(gradf, grad h) .

Proof. Since f<9 has degree 0, Hf=0. Thus
Af=2XYf+YXf), (XY—-YX) :=——§Hf=0,
from which (8) follows. From (1) we obtain
Xf- Yh=-—p(erf —1eaf Nesh-+1esh).
Therefore
Xf- Yh—l—Yf~Xh=—é—(elf-elh—|—e2f'ezh),
from which (9) follows.

LEMMA 2. Let ¢: M*->SY(L)CTRY* be an isometric mimmal immersion of
an oriented 2-dimensional Riemannian manifold. Then

(10) XY§=YXp=—f;

(11) {p, X¢>=0, (p, Y$>=0;

(12) (X$, Yi$5=0, (Y, X*¢>=0;

(13) xrig=L"tyg vxeg=E"1xg,

2 2
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(1) g, vigy=275
(15) (X%, Vi) =——71—YK, Y9, X3¢>=——£]1'—XK;
(16) Y3¢~—YK Yo+ Bl yay
K
YX3¢——XK xg+B71 xag,
an X, Yigy=0, Vg, X'¢y=0;
18) g, gy = UZRU30) 2R
(19) (X', Vigy — K S yK— Y(IA(;K )
g, xogy =K g XK
(20) Y4¢—% Y:K-Yo+2Y K-V + GK Y3¢
1 K
VX' = XK Xg+2XK- X g+ ! xog;
(21) xg, gy = LTRSS —1—16 lgrad K|
15, ., 3
+6—4AK _l_éAK A(AK).

Proof. Applying Lemma 1 to each component of ¢ we obtain Ag=4XY¢
=4Y X¢. Then (10) follows immediately from (7). Operating X to <{¢, ¢>=1,
we get {(¢, X¢>=0. Since ¢=¢, we get (¢, Y$>=0. Operating Y to (6),
we get Y X¢, Yp>+<Xg, Y?¢>=0. By (10) and (11) <(X¢, Y?p)> vanishes.
The second equation of (12) is the conjugate of the first. By (2) and (10) we
get

XY2¢=(XY)(Y¢)=(YX— %H)(Y¢):Y(Xy¢)+_]2£y¢

=—3¥p+ive=L"lyy,

which proves (13). Operating X to {X¢, Y2¢>=0 and using (13) and (6), we
get
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X, Vigy=—iXp, XY'py=— L (x4, =125,

which proves (14). Operating Y to (14) and using (13) and (12), we get
—%—YK:(YX%, YD +<( X%, Y¢>=<X2p, Y?¢>,

which proves (15). By (2) and (13) we get
XY3¢=XY(Y2¢)=(YX—%H)(Y2¢)=Y(XY’¢)+K-Y2¢

K—1 YK 3K—1
=Y (SFY9)HE Y=Y ST,

which proves (16). Operating YV to <X¢, Y?¢>=0 and using (10), (11) and (5),
we get

X$, V=~V X, Ygr=5$, V')
1 1
=2V, Y2V, V=0,

which proves (17). Operating X to <X%¢, Y*¢>=—(1/4)Y K and using (8), (16),
(12) and (14), we get

(X%, Y6 ———AK—<X 29, XY*¢>
= 116AK——<X2¢ lykygs3 Y2¢>
=——AK+ (1— K)(81 3K) ’
which proves (18). Operating Y to (18) and using (16), (17) and (15), we get
(X%, Yig)=— Y(AK)+ 3K4 2 YK—Y X%, V¢
Y(AK)-I— 9K J YK,

which proves (19). By (2) and (16) we get
xvig=(YX- S H)V9)=v(xXv*)+ SEvig

6K—1
2

= %}”K Y-+2YK-Y?¢ + Yig.
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This proves (20). Operating X to the first equation of (19) and using (8), (9)
and (20), we get

9 9K—5 1
4 4 — 2 3 4
(X*¢, Yig> =35 lgrad K|+ 3 AK 64A(AK) (X%, XY'¢>

__9_ 2 9K—5 *l
—lelgradKH—I- 3 AK 64A(AK)

6K1

<X3¢ SYIK-Y§+2YK- Vg + Y3¢>.
By using (17), (15), (18) and KAK=(1/2)AK*—|grad K|? (21) follows easily
from the last equation.

Now we can give proofs for the case s=1, 2. We briefly explain the case
s=2. Let (M, g) be a closed 2-dimensional Riemannian manifold with 1/6=K
<1/3. Let @: M—-SY(1)CR¥*! be an isometric minimal immersion. We may
assume M is orientable. Integration of (21) gives

1-K)1-3K)6K—1
[ fcxeg, v+ EERESRIORED 4 L ygrag iy =0,

Since <(X'¢, Yi¢y=<(X*¢, X'¢>=0 and 1/6<K=1/3, the integrands on the
left hand side are all non-negative. Therefore K=1/3 or 1/6. Thus we get
the conclusion from Calabi’s theorem ([5]).

From now on we assume that ¢: M—S¥(1)CR¥*! is an isometric minimal
immersion of a closed, connected 2-dimensional Riemannian manifold M. We
may assume that M is orientable.

Set (X*¢, Y*¢>=F. Operating ¥V to {X*‘¢, Y*¢>=F and using (20), we get

22) (X', Yigy)=Y F— (Y X'¢, Y'¢>
=y X Xg, vigy—2XKCX*g, Vg
6K P
On the other hand, by (17), (10), (11) and (5), we get
@) (X§, Vigy=— (Y Xp, V'$y= 1, V'
=Y, Vi)~ VS, V')
= LYY, Y ¥, YDl V¥, V)
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By (15), (13), (17) and (9), we get
(24) XKL{X2p, Vi) =XK{Y{X?%, Y3¢>—<Y X%, Y¢>}

=XK{—-%Y2K——K——1—<X¢ g}

——Llxk.ye
=— XK YK

— 7‘1: (Y(XK-YE)—Y XK-YK}

Y(||grad K“Z)-I— AK YK.

Substituting (23), (24) and (19) to (22), we obtain

25) (X4p, Yop) = Yﬁ+Y(—é— lgrad K|?)— %AK- YK
(6K—1)(9K—5) 6K—1
- 2 YK+~ Y(AK).

Operating X to (25), we get
(26) (XP0, Yig>+<(X'p, XY 0>
=XYF+%XY(IIgrad K|?— %—X(AK- YK)

—%X{(GK——I)(QK——S)YK} —l—gléX{(GK—l)Y(AK)} .
Adding (26) to its conjugate, we get
27 (X%, Y“¢>+<X‘¢ XYy +<(Y4p, Y X°6)
AF+ A(llgrad Kllz)———{X(AK YK)+Y(AK-XK)}

1
T 16

1
32

We need the following lemma.

{ {(6K-—-1)(9K—5)YK}+Y{(6K—l)(9K—5)XK}}

o= { X 6K~ DY (KO} Y {(6K—DXAK)}

LEMMA 3. Let (M’, g’) be a closed, orientable 2-dimensional Riemannian
manifold and f, h be functions on M’. Then

[, (x¢ vy xm =
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Proof. By using (9) and Green’s formula, we get

[, (XYY XR)
= XS YRV Xhtf- XY bt f Y X

—_—SM, {—;—g’(grad f, grad h)—l—%f-Ah}:O

We integrate (27) and apply Lemma 3. Then we get

(28) [, (X5, Y9y X6, XY*6>4-CY', Y X)) =0.
We compute XY*¢. By (20) we get
29) XY'¢= (YX—%H)(Y4¢)=Y(XY4¢)+2K- Yig
= Y{ SVK-Y§+2VK-Y'9 4 AL Y3¢}+2K )
=YKVt SV V5V Y3¢—|—10K2 Ly,
By (29), (23), (19), (15) and (17), we get
(30) (X*g, XY5¢>=—;—Y3K<X4¢, Y¢>+%Y2K<X“¢, Yig)

IOK 1

+5YK(X"¢, Yi¢>+ (X'¢, Yi¢>

=%Y2K{X<X3¢, Yigy—<(X°¢, XY*¢)}

IOK 1

{QK 5

F5VK XK -i%xmm} (X'd, Vg

5 (9K 5)

——8—Y2K XK+ lgrad K|*

—1—56YK X(AK)+ 10K L

From (28) and (30), we get
31 S {2<X5<D Y5(D>———X2K Yo K+

(X6, Yig).

5(9K—5
28 jgrad K

— 2 glgrad K, grad (AK))+(10K—1)CX', V')
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32)

(33)
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On the other hand, we have

[ X vr={ (xox veio—xic Xy
M
[X(Y(XK-YK)~YXK-YK) XK~<YX—£H)(YK)}

=l
S { Allgrad K||2———-X(AK YK)———XK Y(AK)——XK YK}

“Jt-1
=1

2 K 2
=SM{I6<AK> — g lgrad K|}
From (31) and (32), we get
5
| foxeg, veor+ g+

(XAK)-YK+Y(AK)- XK} — (AK)2~—||grad Kn}

oo]|-- ua|

¢ l(grad AK, grad K)— 5 (AK '~ Kgrad K|

95K 50

lgrad K|?

+ (10K—1)X X4, ¢y4¢>}=

By (21) we get from (33)

(34)

(35)

5 95K 50
=SM{2<X5<D, Yo O)+ g (AK )+ 00— ||grad K|*
n 10K 1<X4@ Vit 10[;'—1[(-1—]()(1—1361{)(1—61{)

_1 RCIN Y
s lgrad K|t o AK*— ZAK MA(AK)]}

5 5 1
=SM{2<X 8, V6> 35(1— K )(1—-3K)1—6K (10K —1)

E=L xo, vioy+ P graa )

Let K,, K, be constants. Then from (34) and (21) we get
S {2<X5¢ Y5¢>—|— (1 —K)1-3K)(1—6K)(10K—1)

_I_

10(K—K,)

+ BERD) (x4, yogy 4 LEemL

<X ‘9, Yig)

10(K—K,)

I 10K,—10
32

2
grad K|*+ 39

i lgrad K%}
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=SM{2<X5¢, Y5¢>+glé(l—K)(l~3K)(1——6K)(10K—1+10K0~1)
K- KX, Vg + o

On the other hand, by (18) we have

9
(K—Klgrad K |*— 5 Igrad K|}

(36) SM{— % lgrad K|t} =SMI96KAK=§M %(K—KI)AK

={ s~ 0o{cxg, Yy 5 (1—KXI-3K)}

3 3 9
=SM{9(K1—K)<X 0,Y ¢>—§(1—K)(1—3K)(K1—K)}-
From (35) and (36) we get

37 O:SM{2<X5¢, Yo¢>+5(K—K )X X', Vi)
(K grad K [+9(K,~ K)X'§, Y6

+3—)1-2(1—1()(1-—3K)[(1—6K)(10K+10K0—2)+36(K—K1)]} .

Let 1/10<K,<1/6 and put K,=K,+(1/18)(1—6K,)(10K,—1). Then 1/10< K,
<K,<1/6. We define h(t)=(1—6¢)(10t+10K,—2)+36(:—K;). Then A(K,)=0 and
h(K)>0. Thus A(K)>0 for K,<KZK,.

We can rewrite (37) as follows.

(38) O=SM{2<X5¢, Yig)+5(K—Ko){X*p, Yid>
+%<K—Ko>ugrad KKK XX, V')

1
+§2(1—K)(1—3K)h(K)}» .

The integrands of the right hand side are all non-negative under the assumption
of the theorem. Therefore (1—K)1—3K)h(K)=0. That is K=K, Since
1/10< K,<1/6, according to Calabi’s theorem ([4]), this is impossible. This
completes the proof of the theorem. (q.e.d.).

Remarks. (1) Since K;—K,=(1/18)(1—6K,)(10K,—1)=(1/18) {—60(K,—2/15)?
+1/15}, max (K;—K,)=1/(18-15). This value is 1/18 of 1/6—1/10.

(2) At present we need some additional assumption to prove the conjecture
for s=3 ([17, [9D).
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