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MINIMAL IMMERSIONS OF CURVATURE PINCHED

2-MANIFOLDS INTO SPHERES

BY TAKASHI OKAYASU

0. Introduction.

Let (M, g) be a closed, connected two-dimensional Riemannian manifold.
We consider isometric minimal immersions φ: M->S^(1) into the ^-dimensional
unit sphere of the Euclidean space RN+1. Let S\K) be a sphere of constant
curvature K and let S<BN, ϋΓ(s)=2[s(s+l)]-1. In [3] Boruvka constructed iso-
metric minimal immersions ψs: S\K(s))^S2s(l). Later Calabi proved that any-
isometric minimal full immersion of S2(K) into S^(l) is congruent to some Ψs

([5]).
Because of Calabi's result Simon cojectured the following ([6]).

CONJECTURE. Let (M, g) be a closed, connected 2-manifold with curvature
K. Let seΛΓ and let φ : M-*SN(1) be an isometric minimal immersion such that
K(s+l)^K^K(s). Then either K~K{s) or K=K(s+l) on (M, g) and φ=φ8 or
φ—φs+i, respectively.

The conjecture is true for s = l and s—2 (cf. [7] for s = l and A^=4; [2]
for s = l , AT arbitrary [6], [8] for s=2).

In this paper we give a partial positive answer to this conjecture for s=3;
we prove:

THEOREM. For a real number Ko satisfying 1/10 <iΓ0< 1/6, put Kχ=
iίΓo+(l/18)(l--6iϊo)(10/Co-l) (then 1 / 1 0 < K O < / C 1 < 1 / 6 ) . Let (M, g) be a closed,
connected 2-dimensional Riemannian manifold with curvature K. Assume that
K^K^Ki. Then there exists no isometric minimal immersion φ: M->SN(1) for
any N.

In the course of the proof, we also get short proofs for the case s = l , 2.
The author would like to express hearty thanks to Professor S. Tanno for

his advice and encouragement during the developement of this work.
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1. Proof.

The main idea of our proof is to use the operators X, Y and H, which
were introduced by Bryant for classifying minimal surfaces with constant Gaus-
sian curvature in spheres ([4]), in our variable curvature case.

We describe the definitions of the operators X, Y and H following Bryant
([4]). Let (M2, g) be an oriented, connected 2-dimensional Riemannian mani-
fold. We let X: £F->M be the bundle of oriented or thonormal frames. Thus
/ G E F is a triple / = ( # , elf e2), where I G M and elf e2^TxM form an oriented
basis. The canonical 1-forms, ω1, ω2 on £F are the unique 1-forms satisfying
dX^e^+e^w2. Set ω~ω1+iω2, ω=ω1—iω2. Let τ->M be the complex line
bundle of 1-forms which are multiples of ω and let τ"1->M be the complex line
bundle of 1-forms which are multiples of ω. For m^O, let τm-»M (resp. τ~m—>M)
be the m-th power of τ-±M (resp. r"1—>M) as a complex line bundle. Using
the identification ωm=(ώ)~m for all m, we have a canonical pairing τmXτk-^τm+k

for all m and k. Let C°°(τm) be the vector space consisting of all smooth sec-
tions of r m . If σeC°°(τm), then, on £F, we may write σ=s(ω)m for a unique
function s on 2\ One easily computes that ds~—miρs+s'ω+s"ω for some
unique functions s' and s" on £F, where p is the commection form. It is easy
to see that the forms s'(ω)m+1—σ' and sff(ω)m~1=σ" are well-defined sections of
τ m + 1 and τ771"1 respectively. This allows us to define operators dm: C°°(τm)->
C°°(τm+1) and Sm:C0O(τm)-^O°(τm-1) by dmσ = σ', dmσ-=σ". Let / m : C ^ ^ H C 1 " ^ )
be the identity map. Set £r=0mC°°(τm) as a Z-graded vector space and define
the operators

Thus for a function f on M regarded as a cross section of τ°, we get

(1) Xf= jiej-ie.nω, Yf=j(eJ+ie2f)ω.

Let <,> denote the standard inner product on RN+1. We set q^=/?
and extend the operators X, Y and i/ to ̂ V in the natural way. We also have
a pairing <,>: ^X^-^EΓ extending the given <,> in the obvious fashion. We
define conjugation in c\? by setting σ=s(ω)~m for σ = s(ω)m^C°°(τm). Thus we
have Xσ=Tσ, Yd^Xσ.

We have the following two propositions (see Proposition 1.1 and Proposition
1.2 in [4]).

PROPOSITION 1. The operators X, Y and H satisfy

(2) IX,Y1

(3) A=2(XY+YX),

where K ts the Gaussian curvature of M and A: £Γ—>SΓ ts the Laplace-Beltrami
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operator on each graded piece.

PROPOSITION 2. Let φ: M2->SN(l)C.RN+1 be an isometric minimal immersion
of an oriented 2-dimensional Riemannian manifold M. Then

(4) <Φ,Φ>=1;

(5) <Xφ,

(6) <Xφ,

(7) Aφ=~2φ.

LEMMA 1. Let (M2, g) be an oriented 2-dimensional Riemannian manifold.
If f is a smooth function on M, then

(8) Af=4XYf=4:YXf.

If f, h are smooth functions on M, then

(9) Xf- Yh+Yf Xh=jg(gradf, grad A).

Proof. Since /e£Γ has degree 0, Hf=0. Thus

Af=2(XYf+YXf),

from which (8) follows. From (1) we obtain

Xf- Yh^jieJ-i

Therefore

from which (9) follows.

LEMMA 2. Let φ: M2^SN(l)dRN+1 be an isometric minimal immersion of
an oriented 2-dimensιonal Riemannian manifold. Then

(10) XYφ = YXφ=~f;

(11) <

(12) (Xφ, Y2φ)=0, (Yφ, X2φ>=0;

(13) χJCzL Jtl
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(14) <X*φfγ*φ>=λzlL;

(15) <X2φ, Y*φ>=-jYK, <Y2φ, Xsφ>=-jXK;

-J o lζ 1

(16) XY*φ=jYK Yφ+ Y2φ,

I q Tζ 1

YX*φ=jXK Xφ+ X2φ

(19)

(17) <Xφ,Y*φy=0, <Yφ,X°φ>=0;

(18) <X>φ,Y°φ>=il

(20) XY'φ =jY2KΎφ+2YKΎ2φ + 6K~λ Y3φ ,

l X3φ;

(21) (1-g)(1-f)(1-6^

Proof. Applying Lemma 1 to each component of φ we obtain J^φ—AXYφ
=4YXφ. Then (10) follows immediately from (7). Operating X to (φ, 0>=1,
we get (φ, Xφ}=0. Since ^ = ^ , we get (φ, Yφ>=0. Operating Y to (6),
we get (YXφ, Yφ>+<Xφ, Y2φ>=0. By (10) and (11) (Xφ, Y2φ> vanishes.
The second equation of (12) is the conjugate of the first. By (2) and (10) we
get

which proves (13). Operating X to (Xφ, Y2φ>=0 and using (13) and (6), we
get
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which proves (14). Operating Y to (14) and using (13) and (12), we get

which proves (15). By (2) and (13) we get

which proves (16). Operating Y to <Xφ, Y2φ}=0 and using (10), (11) and (5),
we get

<xφ, γ*φy=-<yxψ, γ*φ>=j<φ, γ*φ>

±<Yφ, Yφ}=0,

which proves (17). Operating X to <X2φ, Y3φ}=-(1/4)YK and using (8), (16),
(12) and (14), we get

<Xsφ, Yiφ')=-γξ)AK-iX'

±

8 '

which proves (18). Operating Y to (18) and using (16), (17) and (15), we get

which proves (19). By (2) and (16) we get

Y3φ.



CURVATURE PINCHED 2-MANIFOLDS INTO SPHERES 121

This proves (20). Operating X to the first equation of (19) and using (8), (9)
and (20), we get

<X'φ, Y ' φ ) = ^ ^ ^ ^

zφ,\Y2K-Yφ+2YK-Y2φ + & K l Y°φ).

By using (17), (15), (18) and KAK=a/2)AK2-\\gradK\\\ (21) follows easily
from the last equation.

Now we can give proofs for the case s = l , 2. We briefly explain the case
s=2. Let (M, g) be a closed 2-dimensional Riemannian manifold with 1/6^K
^1/3. Let Φ: M-*SN(l)CRN+1 be an isometric minimal immersion. We may
assume M is orientable. Integration of (21) gives

Since <Z 4^, Y4φ}=(X*φ, J ^ > ^ 0 and l/6gf l^l/3, the integrands on the
left hand side are all non-negative. Therefore K=l/3 or 1/6. Thus we get
the conclusion from Calabi's theorem ([5]).

From now on we assume that φ: M->SN(l)ClRN+1 is an isometric minimal
immersion of a closed, connected 2-dimensional Riemannian manifold M. We
may assume that M is orientable.

Set < Z γ , Y4φ)=F. Operating Y to (X'φ, Y4φ)-=F and using (20), we get

(22) <ZV, Y*φ>=YF-<YX'φ, Y4φ}

^ ψ , Y*φ}-2XK<X*φ, Y*φ)

.<Xy,Yy>m

On the other hand, by (17), (10), (11) and (5), we get

(23) <Xφ, Y*φ>=-<YXφ, Y*φ>=j<φ, Y3φ>

Y<φY*φ>

~Y{Y^φ, Yφy-<Jφ,
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By (15), (13), (17) and (9), we get

(24) XK(.X*φ, Y'φ>=XK{Y(X%φ, Ysφ>-<YX*φ, Yzφ}}

= ~\{Y{XK YK)-YXK YK)
4

= Y(\\gradK\\η+

Substituting (23), (24) and (19) to (22), we obtain

(25) <X'φ, Y'φy

(6K-WK-5)
16 ' 32

Operating X to (25), we get

(26) <X5φ, Y5φ>+(X*φ, XY5φ>

=XYF+^XY(\\graάK\\2)-^X(AKΎK)
o o

X{(6Kl)(9K5)YK} + :
ID 61

Adding (26) to its conjugate, we get

(27) 2(X*φ, Y'φy+ζX'φ, XY'φy+iY'φ, YX'ψy

= jAF+j-6A(\\gτadK\\η-j{X(AKΎK)+Y(AK XK)\

+ ±{X{(6K-1)Y(AK)}+Y{(6K-1)X(AK)}}.

We need the following lemma.

LEMMA 3. Let (M', g') be a closed, orientable 2-dimensional Riemannian
manifold and f, h be functions on M'. Then

[ {X(f-Yh)+Y(f-Xh)}=0.
J M'
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Proof. By using (9) and Green's formula, we get

{X(fΎh)+Y(f Xh)}

= \ {XfΎh + Yf Xh+f'XYh+f-YXh}
JM'

=\Mι{jg'(gradf, gradh)+jf-Ah\=O.

We integrate (27) and apply Lemma 3. Then we get

(28) [ {2<X*φ, Y'φy+iX'φ, XY'φy+iY'φ, YX*φ>}=0.
JM'

We compute XY5φ. By (20) we get

(29) XY5φ

By (29), (23), (19), (15) and (17), we get

(30) <x*φ, χγ&φy=^rY*K(X±φ, Yφ>+^-Y2K(X4φ, Y2φ>

(X*φ, XY>φ>\

5 ) Hgr

1 <X'φ, Y*φ>.

From (28) and (30), we get

Y6Φ>(31) \M{ j ^

^ y, Y'φ}]
J

= 0 .
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On the other hand, we have

(32) [ X2KΎ2K=[ {X(XKΎ2K)-XK'XY2K}

YK)-YXK- YK} -XK-

From (31) and (32), we get

(33) \ M { Φ Φ

+ (10K-lKXi, φY*φ>}=0.

By (21) we get from (33)

(34) 0

lb

Let Ko, Kt be constants. Then from (34) and (21) we get

(35) 0

'φ, Y'φy
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+5(K-K0)<Xiφ, FV>Hr^(A:-

On the other hand, by (18) we have

(36)

From (35) and (36) we get

(37) 0=^{2<Z5^, Y'φ>+5(K-K0KX'φ, Y*

Let l/10<ϋC0<l/6 and put K^Ko+a/lSXl-βKoXlOKo-l). Then l/10<K0

<Kt<l/6. We define h(f)=(l-6t)(10ΐ+10K0-2)+36(t-K1). Then h(Ko)=0 and
Λ(/C1)>0. Thus h(K)>0 for

We can rewrite (37) as follows.

(38) 0^M\φ φ φ φ

^ , Y3φ>

The integrands of the right hand side are all non-negative under the assumption
of the theorem. Therefore (l-K)(lSK)h(K)^0. That is K=K0. Since
1/10<K0< 1/6, according to Calabi's theorem ([4]), this is impossible. This
completes the proof of the theorem. (q. e. d.).

Remarks. (1) Since iΓ1-ϋ:o-(l/18)(l-6iί:o)(10A:o-l)=:(l/18){-60(iί:o-2/15)2

+1/15}, max(/C1-ϋΓ0)=l/(18 15). This value is 1/18 of 1/6-1/10.
(2) At present we need some additional assumption to prove the conjecture

for s^3 ([1], [9]).
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