D.E. BLAIR AND L. VANHECKE KODAI MATH. J. 10 (1987), 102—107

NEW CHARACTERIZATIONS OF φ -SYMMETRIC SPACES

BY D.E. BLAIR AND L. VANHECKE

1. Introduction.

Sasakian φ -symmetric spaces have been introduced and studied by T. Takahashi in [6] and the notion of a φ -geodesic symmetry, used to define them, has been explored further in [2]. In this note we give three characterizations of Sasakian φ -symmetric spaces. The first is technical in nature and is analogous to the fact that a Kahler manifold is locally symmetric if and only if $(\nabla_{X}R)_{XJXXJX}$ = 0 for all X. The second is geometric in nature and is analogous to the following characteristic property of symmetric spaces. Let *m* be the midpoint of a sufficiently short geodesic segment joining *p* and *q.* Then the geodesic spheres of radius equal to the distance $d(m, p)$ centered at p and q have the same shape operator at *m.* Finally, we have previously observed [2] that a complete, simply connected locally φ -symmetric space is a naturally reductive homogeneous space. We shall show conversely that a naturally reductive homo geneous space with an invariant Sasakian structure is φ -symmetric.

2. Sasakian manifolds and φ -symmetric spaces.

A C°° manifold *M2n+1* is said to be an *almost contact manifold* if the structural group of its tangent bundle is reducible to $\mathcal{U}(n) \times 1$. It is well-known that such a manifold admits a tensor field *φ* of type (1,1), a vector field *ξ* and a 1-form η satisfying

$$
\eta(\xi)=1,\qquad \varphi^2=-I+\eta\otimes\xi.
$$

These conditions imply that $\varphi \xi = 0$ and $\eta \cdot \varphi = 0$. Moreover, *M* admits a Riemannian metric *g* satisfying

$$
g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y)
$$

for any tangent vector fields X and Y; note that this implies that $\eta(X)=g(X,\xi)$. *M* together with these structure tensors is said to be an *almost contact metric manifold.* If now these structure tensors satisfy

$$
(1) \t\t (\nabla_X \varphi) Y = g(X, Y)\xi - \eta(Y)X,
$$

Received September 8, 1986

where ∇ denotes the Riemannian connection of g, M is said to be a *Sasakian manifold.* It is easy to see from (1) that

$$
\nabla_X \xi = -\varphi X
$$

from which it follows that *ξ* is a Killing vector field. The curvature tensor

$$
R_{XY}Z\!=\!\!\nabla_X\!\nabla_Y Z\!-\!\nabla_Y\!\nabla_X Z\!-\!\nabla_{\!\mathbb{E} X,Y\!}\,Z
$$

of a Sasakian manifold satisfies

$$
(3) \t R_{X\xi}Y = \eta(Y)X - g(X, Y)\xi.
$$

For a general reference to the above ideas see $\lceil 1 \rceil$, $\lceil 8 \rceil$.

A geodesic *γ* on a Sasakian manifold is said to be a *φ-geodesic* if *η(γ')=Q.* From (2) it is easy to see that a geodesic which is initially orthogonal to *ξ* remains orthogonal to *ξ.* A local diffeomorphism *s m* of *M, m<=M,* is said to be a φ -geodesic symmetry if its domain *U* is such that, for every φ -geodesic $\gamma(s)$ such that *γ(0)* lies in the intersection of *U* with the integral curve of *ξ* through *m,*

$$
(s_m \cdot \gamma)(s) = \gamma(-s)
$$

for all s with $\gamma(\pm s) \in U$, s being the arc length [6]. At the point m the differential s_{m*} of s_m is given by

$$
s_{m*}(m) = -I + 2\eta \otimes \xi.
$$

In [6] Takahashi introduced the notion of a *locally φ-symmetnc* space by reguiring that

$$
\varphi^2(\nabla_V R)_{XY} Z = 0
$$

for all vector fields *V, X, Y, Z* orthogonal to *ξ.* On the other hand he defined a *globally φ-symmetric space* by requiring that any φ-geodesic symmetry be extendable to a global automorphism of *M* and that the Killing vector field *ξ* generate a global one-parameter subgroup of isometries.

Let $\tilde{\mathcal{U}}$ be a neighborhood on M on which ξ is regular. Then, as is wellknown, the fibration $\tilde{\mathbb{U}} {\rightarrow} \mathbb{U} = \tilde{\mathbb{U}}/\xi$ gives a Kähler structure $(J, \, G)$ on the base manifold *U*. Among the main results of [6] are the following:

PROPOSITION 1. *A Sasakian manifold is a locally φ-symmetric space if and only if each Kähler manifold, which is the base space of a local fibering, is a Hermitian locally symmetric space.*

PROPOSITION 2. *A necessary and sufficient condition for a Sasakian manifold to be a locally φ-symmetric space is that it admits a φ-geodesic symmetry, at every point, which is a local automorphism.*

PROPOSITION 3. *A complete, connected, simply connected Sasakian locally φ-*

symmetric space is a globally φ-symmetric space.

If *M* is a Sasakian manifold which is also a homogeneous space, we say that *M* has an *invariant Sasakian structure* if the structure tensors *(φ, ζ, η, g)* are invariant by the group of isometries acting transitively on *M.* For *M* homo geneous we have a local homogeneous structure *T* on M, *i.e.* a tensor field of type $(1, 2)$ such that with respect to the connection \overline{V} defined by

$$
\overline{\nabla}_X Y = \nabla_X Y + T_X Y,
$$

g, R and *T* are parallel. If now *M* has an invariant Sasakian structure, then the structure tensors φ , ξ, η are also parallel with respect to the canonical connection $\overline{\nabla}$. If moreover the homogeneous manifold is naturally reductive then *TχX=0* for all tangent vectors *X.* For a general reference to these ideas see [7].

We close this section with several notational matters and an important lemma from Kähler geometry. We denote by $d(p, q)$ the distance with respect to the metric *g* between points *p* and *q*. We denote by $T_p(m)$ the shape operator of the geodesic sphere, centered at p , at the point m . (p is assumed to be sufficiently close to *m.)* For the curvature tensor and its covariant derivative we write R_{XYZW} for $g(R_{XY}Z, W)$ and $(\nabla_U R)_{XYZW}$ for $g((\nabla_U R)_{XY}Z, W)$.

In the case of Kahler manifolds we denote as before the structure tensors by (J, G) and we denote by D the Riemannian connection of G and by R its curvature tensor. We have $([4], [5])$

LEMMA 4. *A Kahler manifold is a Hermitian locally symmetric space if and only if*

$$
(D_X R)_{XJXXJX} = 0
$$

for all vector fields X.

3. Characterizations of φ -symmetric spaces.

We now give three results on the characterization of φ -symmetric Sasakian manifolds.

THEOREM 5. *A Sasakian manifold M is locally φ-symmetric if and only if*

$$
(4) \t\t (\nabla_U R)_{U\varphi U U\varphi U} = 0
$$

for all vector fields U orthogonal to ξ.

Proof. The necessity is clear, so we prove only the sufficiency. Consider the local fibration $\tilde{\mathcal{U}} \rightarrow \mathcal{U} = \tilde{\mathcal{U}}/\xi$ as before. For a vector field X on V we denote its horizontal lift with respect to the connection form *η* by *X*.* Then Takahashi shows in [6] that

$$
((D_{V}R)_{XY}Z)^* = -\varphi^2((\nabla_{V^*}R)_{X^*Y^*}Z^*)
$$

for any vector fields V, X, Y, Z on U . Taking the inner product with a hor izontal lift *W** we have

$$
G((D_{V}R)_{XY}Z, W)=g((\nabla_{V^*}R)_{X^*Y^*}Z^*, W^*).
$$

If now (4) holds, setting *U=X** we have

$$
(D_X \underline{R})_{XJXXJX} = 0.
$$

Thus from Lemma 4 we see that U is a Hermitian locally symmetric space and hence by Proposition 1, M is locally φ -symmetric.

THEOREM 6. *A Sasakian manifold M is locally φ-symmetnc if and only if for every point m^M and every φ-geodesic γ through m we have the following property: For every p∈γ such that p and s*_{*m*}(*p*) lie in a normal neighborhood of *m, the shape operators at m of the geodesic spheres of radius d(m, p) centered at p and s^m (p) "commute" with s^m *(m), i.e.*

$$
(5) \t\t sm*(m) \cdot Tp(m) = Tsm(p)(m) \cdot sm*(m).
$$

Proof. If *M* is locally φ -symmetric, then by Proposition 2 each s_m is an automorphism of the Sasakian structure; in particular each *s^m* is an isometry and hence the condition (5) is satisfied.

Conversely we shall show that it is in fact enough to assume that (5) holds when applied to the vector φU at *m, U* being the unit tangent field to the geodesic *γ. A* power series expansion of the shape operator *T^p (m)* with coeffi cients at *m* may be derived using the formula

$$
T_m(p) = -(A'A^{-1})(r), \qquad r = d(m, p),
$$

where *A* satisfies the Jacobi equation

$$
A''\mathord{-} R\!\cdot\! A\!=\!0
$$

with initial values $A(0)=0$, $A'(0)=I$. (See for example Section 3 in [3].) One obtains

$$
T_p(m) = \frac{1}{r}I + \frac{1}{3}R(m)r + \frac{1}{12}R'(m)r^2 + 0(r^3),
$$

where the meaning of the coefficients is for $T_p(m)X$:

$$
R(m)X = R_{UX}U, \qquad R'(m)X = (\nabla_U R)_{UX}U.
$$

Now denote $s_m(m) = -I + 2\eta \otimes \xi$ by S. Then using the power series expansions of $T_p(m)$ and $T_{s_m(p)}(m)$ in (5) and applying both sides to φU , we have

$$
(\nabla_{\mathcal{S}\mathcal{U}}R)_{\mathcal{S}\mathcal{U}\mathcal{S}\varphi\mathcal{U}}SU=S(\nabla_{\mathcal{U}}R)_{\mathcal{U}\varphi\mathcal{U}}U
$$

from which

$$
(\nabla_U R)_{U\varphi U} U = -(\nabla_U R)_{U\varphi U} U + 2\eta (\nabla_U R_{U\varphi U} U)\xi.
$$

Taking the inner product of this last expression with *φU we* have

 $(\nabla_U R)_{U\varphi UU\varphi U} = 0$

for any *U* orthogonal to *ξ* and the result follows from Theorem 5.

THEOREM 7. *Let M be a complete, connected, simply connected Sasakian manifold. Then M is a globally φ-symmetric space if and only if M is a naturally reductive homogeneous space with invariant Sasakian structure.*

Proof. We remarked earlier that Proposition 3 shows that a connected, com plete, simply connected locally φ -symmetric space is a globally φ -symmetric space. In $\lceil 2 \rceil$ it was noted that a complete, simply connected locally φ -symmetric space is a naturally reductive homogeneous space. In particular, an ex plicit tensor field T of type (1, 2) such that $T_xX=0$ was given for which $\overline{V}=$ $\nabla+T$ gives $\overline{\nabla}R=\overline{\nabla}q=\overline{\nabla}T=\overline{\nabla}\varphi=0$, etc.

Conversely, if *M* is a naturally reductive homogeneous space with invariant Sasakian structure, then there exists a tensor field *T* of type (1, 2) such that with respect to the connection $\overline{\nabla}=\nabla+T$, *g*, *R*, *T*, φ , etc. are parallel and $T_xX=0$ for all tangent vectors X. Now, let γ be a φ -geodesic and U its unit tangent field. Expanding $\overline{\nabla}R=0$ we have

$$
\langle \nabla_U R \rangle_{U \varphi UU \varphi U} = 2R_{T_U U \varphi UU \varphi U} + 2R_{UT_U \varphi UU \varphi U} \n= 2R_{UT_U \varphi UU \varphi U}.
$$

Further, from $\overline{\nabla}\varphi=0$ we have, using (1),

$$
0 = (\nabla_U \varphi) U + T_U \varphi U - \varphi T_U U
$$

= $\xi + T_U \varphi U$.

Therefore, from (3),

$$
R_{UT_U\varphi UU\varphi U} = -g(R_{U\xi}U, \varphi U) = g(\xi, \varphi U) = 0
$$

giving

$$
(\nabla_U R)_{U\varphi UU\varphi U}=0
$$

and the result follows.

REFERENCES

- [1] D. E. BLAIR, Contact manifolds in Riemannian geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [2] D. E. BLAIR AND L. VANHECKE, Symmetries and φ -symmetric spaces, to appear.
- [3] B.Y. CHEN AND L. VANHECKE, Differential geometry of geodesic spheres, J. Reine Angew. Math., **325** (1981), 28-67.

- [4] A. GRAY, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geometry, 7 (1972), 343-369.
- [5] K. SEKIGAWA AND L. VANHECKE, Symplectic geodesic symmetries of Kähler manifolds, Quart. J. Math. Oxford, 37 (1986), 95-103.
- [6] T. TAKAHASHI, Sasakian φ -symmetric spaces, Tôhoku Math. J., 29 (1977), 91-113.
- [7] F. TRICERRI AND L. VANHECKE, *Homogeneous structures on Riemannian manifolds,* London Math. Soc. Lecture Note Series, 83, Cambridge Univ. Press, Lon don, 1983.
- [8] K. YANO AND M. KON, *Structures on manifolds,* Series in Pure Mathematics, 3, World Scientific Publ. Co, Singapore, 1984.

