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NEW CHARACTERIZATIONS OF ^-SYMMETRIC SPACES

BY D.E. BLAIR AND L. VANHECKE

1. Introduction.

Sasakian ^-symmetric spaces have been introduced and studied by T. Taka-
hashi in [6] and the notion of a ^-geodesic symmetry, used to define them, has
been explored further in [2]. In this note we give three characterizations of
Sasakian ^-symmetric spaces. The first is technical in nature and is analogous
to the fact that a Kahler manifold is locally symmetric if and only if
QJχR)χjχχjχ—§ for all X. The second is geometric in nature and is analogous
to the following characteristic property of symmetric spaces. Let m be the
midpoint of a sufficiently short geodesic segment joining p and q. Then the
geodesic spheres of radius equal to the distance d(m, p) centered at p and q have
the same shape operator at m. Finally, we have previously observed [2] that
a complete, simply connected locally ^-symmetric space is a naturally reductive
homogeneous space. We shall show conversely that a naturally reductive homo-
geneous space with an invariant Sasakian structure is ^-symmetric.

2. Sasakian manifolds and ^-symmetric spaces.

A C°° manifold M2n+1 is said to be an almost contact manifold if the structural
group of its tangent bundle is reducible to ΊJ(n)xl. It is well-known that such
a manifold admits a tensor field φ of type (1,1), a vector field ξ and a 1-form
η satisfying

These conditions imply that φξ=O and η°φ =§. Moreover, M admits a Rieman-
nian metric g satisfying

g(φX, φY)=g(X, Y)-η{X)η{Y)

for any tangent vector fields X and Y; note that this implies that η(X)—g{X,ξ).
M together with these structure tensors is said to be an almost contact metric
manifold. If now these structure tensors satisfy

=g(X, Y)ξ-η(Y)X,
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where 7 denotes the Riemannian connection of g, M is said to be a Sasaki an
manifold. It is easy to see from (1) that

(2) lxξ=-φX

from which it follows that ξ is a Killing vector field. The curvature tensor

of a Sasakian manifold satisfies

(3) RxξY=η(Y)X-g(X,Y)ξ.

For a general reference to the above ideas see [1], [8].
A geodesic γ on a Sasakian manifold is said to be a φ-geodesic if η(γ')=Q.

From (2) it is easy to see that a geodesic which is initially orthogonal to ξ
remains orthogonal to ξ. A local diffeomorphism sm of M, m<=M, is said to be
a φ-geodesic symmetry if its domain U is such that, for every ^-geodesic γ(s)
such that γ(0) lies in the intersection of U with the integral curve of ξ through m,

for all s with γ(±s)^U, s being the arc length [6]. At the point m the differ-
ential sm* of sm is given by

In [6] Takahashi introduced the notion of a locally φ-symmetnc space by
reguiring that

for all vector fields V, X, Y, Z orthogonal to ξ. On the other hand he defined
a globally φsymmetric space by requiring that any ̂ -geodesic symmetry be ex-
tendable to a global automorphism of M and that the Killing vector field ξ
generate a global one-parameter subgroup of isometries.

Let Φ be a neighborhood on M on which ξ is regular. Then, as is well-
known, the fibration cOr->cU=cLJ/f gives a Kahler structure (/, G) on the base
manifold cϋ. Among the main results of [6] are the following:

PROPOSITION 1. A Sasakian manifold is a locally φ-symmetric space if and
only if each Kahler manifold, which is the base space of a local fiber ing, is a
Hermitian locally symmetric space.

PROPOSITION 2. A necessary and sufficient condition for a Sasakian manifold
to be a locally φ-symmetric space is that it admits a φ-geodesic symmetry, at every
point, which is a local automorphism.

PROPOSITION 3. A complete, connected, simply connected Sasakian locally φ-
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symmetric space is a globally φ-symmetήc space.

If M is a Sasakian manifold which is also a homogeneous space, we say
that M has an invariant Sasakian structure if the structure tensors (φ, ζ, η, g)
are invariant by the group of isometries acting transitively on M. For M homo-
geneous we have a local homogeneous structure T on M, i.e. a tensor field of
type (1, 2) such that with respect to the connection 7 defined by

g, R and T are parallel. If now M has an invariant Sasakian structure, then
the structure tensors φ, ξ, η are also parallel with respect to the canonical con-
nection 7. If moreover the homogeneous manifold is naturally reductive then
TχX=0 for all tangent vectors X. For a general reference to these ideas
see [7].

We close this section with several notational matters and an important lemma
from Kahler geometry. We denote by d(p, q) the distance with respect to the
metric g between points p and q. We denote by Tp(m) the shape operator of
the geodesic sphere, centered at p, at the point m. (p is assumed to be suffi-
ciently close to m.) For the curvature tensor and its covariant derivative we
write RXYZW for g(RχYZ, W) and {luR)χγZw for g(C7uR)χYZ) W).

In the case of Kahler manifolds we denote as before the structure tensors
by (/, G) and we denote by D the Riemannian connection of G and by R its
curvature tensor. We have ([4], [5])

LEMMA 4. A Kahler manifold is a Hermitian locally symmetric space if and
only if

(DχR)χjχχjχ = 0

for all vector fields X.

3. Characterizations of ̂ -symmetric spaces.

We now give three results on the characterization of ^-symmetric Sasakian
manifolds.

THEOREM 5. A Sasakian manifold M is locally φ-symmetric if and only if

(4) WuR)uφuuφu=0

for all vector fields U orthogonal to ξ.

Proof. The necessity is clear, so we prove only the sufficiency. Consider
the local fibration cU-*cU—cU/ξ as before. For a vector field Z o n ^ w e denote
its horizontal lift with respect to the connection form η by X*. Then Takahashi
shows in [6] that
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for any vector fields V, X, Y, Z on CU. Taking the inner product with a hor-
izontal lift W* we have

If now (4) holds, setting U=X* we have

Thus from Lemma 4 we see that HJ is a Hermitian locally symmetric space and
hence by Proposition 1, M is locally ^-symmetric.

THEOREM 6. A Sasakian manifold M is locally φ-symmetnc if and only if
for every point m^M and every φ-geodesic γ through m we have the following
property: For every p^γ such that p and sm(p) lie in a normal neighborhood of
m, the shape operators at m of the geodesic spheres of radius d(m, p) centered at
p and sm(p) "commute" with sm*(m), i.e.

(5) sn (m)°Tp(m) = T,mw(m)*sn*(m).

Proof. If M is locally ^-symmetric, then by Proposition 2 each sm is an
automorphism of the Sasakian structure; in particular each sm is an isometry
and hence the condition (5) is satisfied.

Conversely we shall show that it is in fact enough to assume that (5) holds
when applied to the vector φU at m, U being the unit tangent field to the
geodesic γ. A power series expansion of the shape operator Tp(m) with coeffi-
cients at m may be derived using the formula

where A satisfies the Jacobi equation

Aff-R*A=0

with initial values .4(0)=0, .4'(0)=J. (See for example Section 3 in [3].) One
obtains

Tp(m)=— I+ — R(m)r+-^-R^

where the meaning of the coefficients is for Tp(m)X:

R(m)X=RuxU, R'(m)X=WuR)uχU.

Now denote sm*(m)=—IJr2τ]<S)ξ by S. Then using the power series expansions
of Tp(m) and T5 m ( p )(m) in (5) and applying both sides to φU, we have
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from which

Taking the inner product of this last expression with φU we have

for any U orthogonal to ξ and the result follows from Theorem 5.

THEOREM 7. Let M be a complete, connected, simply connected Sasakian mani-

fold. Then M is a globally φ-symmetric space if and only if M is a naturally

reductive homogeneous space with invariant Sasakian structure.

Proof. We remarked earlier that Proposition 3 shows that a connected, com-
plete, simply connected locally ^-symmetric space is a globally ^-symmetric
space. In [2] it was noted that a complete, simply connected locally ^-sym-
metric space is a naturally reductive homogeneous space. In particular, an ex-
plicit tensor field T of type (1, 2) such that TxX—0 was given for which 7 =
V+T gives 7i?=7g=7T=%>=:0, etc.

Conversely, if M is a naturally reductive homogeneous space with invariant
Sasakian structure, then there exists a tensor field T of type (1, 2) such that
with respect to the connection 7=7+T, g, R, T, φ, etc. are parallel and TχX=Q
for all tangent vectors X. Now, let γ be a ^-geodesic and U its unit tangent
field. Expanding 7i?=0 we have

Further, from 7^=0 we have, using (1),

Therefore, from (3),

Ruτuφuuφu=-g(RuξU, φU)=g(ξ, φU)=0
giving

(^l/R)uφϋUφU — 0

and the result follows.
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