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SOME ESTIMATES OF TOTAL TENSION AND
THEIR APPLICATIONS
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Abstract

In this note, we give two best possible estimates of the total tension for
a smooth map. Such estimates are established in terms of order of the map.
Applications of such estimates to isometric immersions and to spectral geo-
metry are given by applying an inequality obtained in [3].

1. Introduction.

Let M be a compact submanifold of a Euclidean m-space E™. By applying
the induced metric on M, the author introduced in [2] the notion of order of
the submanifold. The notion of order is known to be closely related with the
differential geometry of the submanifold (cf. [4]). In [5, 6] such notion was
generalized to smooth maps of a compact Riemannian manifold into £™. Some
relations between the total tension and the order were obtained in [5, 6].

In this note, we will obtain two more relations between the total tension
and the order of a map. Such relations are applied to obtain a best possible
estimate of the total mean curvature of a spherical submanifold. By using a
best possible inequality derived in [3], such relations were then applied to ob-
tain some best possible eigenvalue estimates for minimal submanifolds in rank-

one symmetric spaces.

2. Order of a Map.

Let M be a compact n-dimensional Riemannian manifold and A the Laplacian
of M acting on the space C°(M) of smooth functions. Then A has an infinite
discrete sequence of eigenvalues:

0=2,< <A< s KAp <+ T 00,

For each %k (=0, 1, 2, ---), the eigenspace V,={feC>(M): Af=2,f} is finite-
dimensional. With respect to the inner product (f, g):SMfg dV on C=(M), the
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decomposition 3,V, is orthogonal and dense in C~(M). Therefore, for each
feCM), f=f,+>:s1f:;, where f, is a constant and f, is the projection of f
into Vt.

For a smooth map x: M—E™, we can apply the above decomposition to
each coordinate function of M in E™. Thus, we obtain the following spectral
decomposition of the E™-valued function x :

@.1) x=xo+;ilxz,

where x, is a constant vector which is the center of mass of x and x, a vector
with Ax,=21,x,.

If x is a non-constant map, then there exists a positive integer p such that
x%,7#0 and x=x,+>;2,%;. If there are infinitely many nonzero x,’s in the
decomposition (2.1), we put g=oo. Otherwise, we let ¢ be the largest integer
such that x,#0 in the decomposition (2.1). In both cases we have

2.2) x=x0+t=2qpx;.

We call [p, ¢] the order of the map x. The map is said to be of finite type
if ¢ is finite. Otherwise, the map is said to be of infinite {ype. More precisely,
the map x is said to be of k-type (k€ NU{co}) if there exist exactly 2 nonzero
x;’s (t=1) in the decomposition (2.2) (cf. [1, 2, 4]).

If x: M-E™ is an immersion and M equipped with the induced metric,
then the submanifold M is said to be of k-type if the immersion does.

3. Total Tension.
If 6: M—N is a map between Riemannian manifolds, then the energy e(s)
of ¢ is the real-valued function on M given by

(3.1) e(a) = —21— trace (6*g’),

where g’ is the metric on N. The energy E(c) of ¢ is defined by
3.2) E(a):SMe(a)dV .
The Euler-Lagrange operator associated with E shall be written z(g)=div (do)

and called the tension field of ¢. A map ¢ is harmonic if its tension field
vanishes identically. The total tension of the map ¢ is defined by

(3.3) ET(a)=SM|[r||2dV .

For a map x : M—E™, the moment of x is given by
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(3.4) JM(x):SMOc—xO, x—x>dV .
It is easy to verify that the moment of x is independent of the choice of the

Euclidean coordinate system on E™,

In this section, we give two best possible estimates of the total tension of
a map x: M—E™,

The following result gives a best possible lower bound of total tension.

THEOREM 1. Let x: M—E™ be a smooth non-constant map from a compact
n-dimensional Riemannian manifold M into E™. Then we have

(3.5) Sﬁhde;ﬂA+%aE@%—AkﬂKﬂ.

Equality sign holds if and only if x is either of 1-type and of order [1, 1] or of
order [2, 2] or x is of 2-type and of order [1, 2].

Proof. Let x:M—E™ be a smooth non-constant map from M into E™.
Then we have

3.6) x=x0F 3 1t
t=p

where [p, ¢] is the order of the map x. Since A is self-adjoint, we have
(x4, x5)=0 for t+#s. Thus, (3.6) gives

(3.7) Hx)=(x =0, x—x0)= Cx =20, x—2aV= 5 (x,, ).,
Moreover, from (3.1), (3.2) and (3.6), we find

(3.8 2E(x)=(dx, dx)=(x, ddx)=(x, Ax),

which implies

3.9 2E(x)= 2 Az, %),

From the definition of tension field one may prove (cf. [7])

(3.10) Ax=—1(x).

Thus, by applying (3.3), (3.6) and (3.10), we find

@3.11) T(x)=(Ax, Ax):zé)) 2(x., x2) .

Combining (3.7), (3.9) and (3.11), we obtain
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(3.12) g(x)_z(lp"l'zp-kl)E(x)+lp'2p+1‘m(x)

q
=t=2p (lt—"'zp)('zt—lpﬂ)(xt; x.)=0.
This implies
(313) g(x)gz(zp‘i_lpH)E(x)"_'szpﬂkm(x) .

Since p is always greater than or equal to one, (3.13) gives inequality (3.5). If
the equality sign of (3.5) holds, then (3.12) becomes an equality with p=1.
Thus, from (3.12), we see that all of the x, ¢>0, vanish except t=1, 2. If
either x,=0 or x,=0, x is of 1-type and of order [2, 2] or [1, 1]. Otherwise,
x is of 2-type with order [1, 2]. This completes the proof of the theorem.

Remark 1. Given a compact Riemannian manifold M, there exist infinitely
many smooth non-constant maps from M into E™ which satisfy equality sign
of (3.5).

If x is of finite type, we also have the following best possible upper bound
of total tension.

THEOREM 2. If x: M—E™ is a smooth non-constant map of finite type, then
we have

(3.15) SMH-:[[zdV§2(2p+2q)E(x)—2p2q:M(x).
Equality sign holds if and only if x is of l-type (p=q) or of 2-type.

Since this theorem can be proved in a way similar to that of Theorem 1,
so we omit the proof.

4. Some Applications.

In this section we give some applications of Theorem 1. The following
result gives a best possible estimate of total mean curvature for spherical sub-
manifolds.

THEOREM 3. Let x: M—=S™*(»)CTE™ be an isometric immersion of a compact
n-dimensional Riemannian manifold M into a hypersphere S™ Y (r) of radius r.
Then the mean curvature vector H of M in E™ satisfies

(4.1 SM [H|*dV=(1/n*){n(2;+ ) — i der*} vol (M) .

Equality sign holds if and only if M has constant mean curvature |H| and M is
of order [1, 1], [1, 2] or [2, 2] aud M is mass-symmetric.
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Proof. Let x: M—S™-(r)CE™ be an isometric immersion. Then we have
4.2) Ax=—nH.
Thus, by combining with (3.10), we find
4.3) {r, to=n*H, H).
On the other hand, since x is isometric, the energy E(x) of x is given by
4.4) 2E(x)=nvol(M).
Therefore, by Theorem 1, (4.3) and (4.4), we obtain

(4.5) nZSM |HI2dV = 12,4+ 2) vol (M) — 2,25 5H(x) .

Without loss of generality, we may assume that the hypersphere S™~'(r) is
centered at the origin of E™. Since M is immersed in S™~!(r), we have

(4.6) ﬂ(x):SMOc, x>d V—SM@,,, x>dV <r*vol (M) .

equality holding if and only if x,=0. From (4.5) and (4.6), we get inequality
4.1).

If the equality sign of (4.1) holds, then both equality signs of (4.5) and (4.6)
hold. Thus, x is of order [1, 1], [1, 2] or [2, 2] and x,=0 z.e., M is mass-
symmetric in S™-Y(r).

If x is of order [1, 1], we have x=x,. Thus, (4.2) gives —nH=2,x which
implies n*CH, H)>=2%* Thus, M has constant mean curvature. Similarly, if
x is of order [2, 2], we have n*(H, H)>=2%" which also shows that M has con-
stant mean curvature.

If x is of order [1, 2], then we have x=x,+x,. Thus, A%x=(2,+2,)Ax — ;A%
=—n(A+2A)H—2,4,x. On the other hand, since M lies in S™ (r), we also
have H=H’—(1/r)x, where H’ denotes the mean curvature vector of M in
S™-(r). Therefore, we find

4.7) (A%x, xy=nr(R;+A)— A A7

which is a constant. On the other hand, by applying Lemma 4.2 of [4, p. 273],
we also have

4.8) Ax, x)=—<nAH, x)=n*H, H)/r*.

Thus, from (4.7) and (4.8), we see that the mean curvature of M in E™ is also
constant.

The converse follows easily from Theorem I, (4.3), (4.4), (4.5) and (4.6).
This completes the proof of Theorem 3.

In the following, F' denotes the field R of real numbers, the field C of com-
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plex numbers, or the field H of quaternions. We put d=1, 2 or 4 according
to F=R, C or H, respectively. We denote by FP™ the m-dimensional projec-
tive space over F, and of constant sectional curvature 1 if F=R, of constant
holomorphic sectional curvature 4 if F=C, and of constant quaternionic sec-
tional curvature 4 if F=H, respectively.

By applying Theorem 3 and an inequality derived in [3], we have the fol-
lowing eigenvalue inequality for compact minimal submanifolds in projective
spaces.

THEOREM 4. Let M be a compact n-dimensional Riemannian manifold. If
M admits an isometric minimal immersion nto FP™, then we have

_m
2(m+1)

If F=H, then the equality holds if and only if n=4m and M=HP™. If F=C,
then the equality holds if and only if M is one of the following Einstein Hermutian
symmetric spaces: CP*(4), CP*(2), Q%, CP*(4)X CP*4), U(k+2)/U (k)X U2) (k>2),
SO(10)/U(5), and E¢/Spin (10)X T, with an appropriate metric, and m is given by
k, R(k+3)/2, k+1, k(k+2), k(R+3)/2, 15, and 26, respectively.

(4.9) x‘lgg n(11+12_2n—‘2d) .

Proof. Let z=%(z,, -+, zn)eF ™. We denote by H(m+1; F) the space
of all m+1)x(m-+1) Hermitian matrices over F. On H(m+1; F) we define an
inner product {, ) by <4, B)>=(1/2)Retr (AB). On F™*! we consider the metric
<z, z’)=Re (*zz’), () denotes the transpose. Let S™*9d-! denote the unit hy-
persphere of F™*! defined by {z€F™*':{z z)=1}. Then the projective m-
space FP™ can be regarded as the quotient space of the unit hypersphere ob-
tained by identifying “(zq, -+, zm) With *(cz,, -+, ¢zn) With ceF and |c|=1.

Define a mapping p: S™*Pe-'H(im+1; F) by

4.10) p(z)=zz*%,

where z*='zZ. If F=R, p defines an isometric immersion of S™ into Him-+1; R)
and it induces an isometric imbedding p of RP™ into H(m+1; R). If F=C or
H, p induces an isometric imbedding p of FP™ into Him+1; F).

If M admits a minimal isometric immersion into FP™, then by regarding
FP™ as a submanifold of H(m+1; F) via p, we have the following best pos-
sible inequality of the mean curvature of M in Him+1; F) (Lemma 2 of [3] or
Lemma 6.5 of [4, p. 152]):

@1 s 20D

where H denotes the mean curvature vector of M in H(m-+1; F). Moreover,
from Lemma 2 of [3], we know that equality sign of (4.11) holds if and only
if M is a quaternion submanifold if F=H; M is a complex submanifold if
F=C; and if F=R, then the equality sign of (4.11) holds automatically. On
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the other hand, it is known that FP™ is imbedded in a hypersphere of Hm-+1; F)
with radius r=+/m/2(m+1) via p ([12] or cf. [3, 4]). Thus, by applying Theo-
rem 3 and inequality (4.11), we may obtain

4.12) 2(n+d)n§n(ll+22)-—2—l—1122.

(m—+1)
This implies (4.9).

If F=H and the equality sign of (4.9) holds, then the equality sign of
(4.11) holds. Hence, Lemma 2 of [3] shows that M is a quaternionic submani-
fold of HP™. Because the only quaternionic submanifolds of HP™ are quater-
nionic totally geodesic submanifolds. Thus, we conclude that M is a HP™*
Now, since 4, and A, of HP* are given by 8(k+1) and 8(2k+3), respectively.
Thus, we obtain n=4m. The converse of this is easy to verify.

If F=C and the equality sign of (4.9) holds, then the equality sign of (4.11)
holds. Thus, Lemma 2 of [3] implies that M is a Kaehler submanifold of CP™.
Moreover, from Theorem 3, we see that either M is of 1-type in Him-+1; C)
or M is of 2-type and of order [1, 2]. If M is of 1-type, then by a result of
Ros [10], we know that M is a totally geodesic CP* (2k=n). Since 4, and 2,
of CP* are given by 4(k+1) and 8(k+2), respectively, we find n=2m. If Mis
of 2-type and of order [1, 2], then we may apply a result of Ros-Udagawa
[10, 137 about the classification of compact Kaehler submanifolds of CP™ of
order [1, 2]. Such submanifolds are exactly non-totally geodesic Kaehler sub-
manifolds which are Einsteinian and with parallel second fundamental form (cf.
Proposition 3 of [13]). Furthermore, such Kaehler submanifolds were classified
by Nakagawa and Takagi [9]; they are CP*(2), Q% CP*(4)xCP*4), U(k+2)/
UR)x U2) (k>2), SO10)/U(5) and E./Spin (10)X T which lie fully in CP™ with
m given respectively by k(k+3)/2, k+1, k(k+2), k(k+3)/2, 15 and 26, respec-
tively. Conversely, if M is one of Einstein Hermitian symmetric spaces and m
is the corresponding integer, then by the known values of 4, and 4, of these
spaces (see Table 1 below), we see that the equality sign of (4.9) holds. This
completes the proof.

Remark 2. 1f F=R and the equality sign of (4.9) holds, then M is of order
[1,2] in H(m+1; R) by Theorem 3. If M is a projective space FP* or the
Cayley plane and if ¢: M—S?" is the first standard imbedding of M, then it is
clear that the composite immersion p-o: M—S¥—H(n+1; R) is of order [1, 2].
Moreover, if ¢ is full, then the equality sign of (4.9) holds. In view of Theo-
rem 4 and [1], it seems to be interesting to classify all compact minimal sub-
manifolds of RP™ which satisfy the equality sign of (4.9).

From Theorem 4 we also have the following.

COROLLARY 1. If M 1s a compact n-dimensional wummal submanifold of
S™(1), then we have
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(4.13) mA A, =2n(m+1){A;+A,—2n—2}.

Proof. If M admits a minimal isometric immersion into S™(1), then it
admits a minimal isometric immersion into RP™. Thus, (4.13) follows immedi-
ately from Theorem 4.

Remark 3. Ros [11] obtain a best possible inequality between 4, and 4.
similar to (4.13) with an additional assumption that M admits an order 1 minimal
immersion in a sphere (see, also [8]).

Remark 4. In [10, 13], the Einstein Hermitian symmetric spaces given in
Table 1 were characterized by their spectrum among all compact Kaehler sub-
manifolds of CP™. By applying Theorem 4, we see that these manifolds can
be characterized by their spectrum among all compact minimal submanifolds of
CcP™,

Table 1.
Submanifold n m A1 Az
CP*(4) 2k k 4(k+1) 8(k+2)
CPH) 2 LS kD) 4k+2)
Q* 2k k+1 4k 4(k+2)
CP*4)x CP*(4) 4k 4(k+2) 4(k+1) 8(k+1)
U(k+2)/U(k)xU2) k>2 4k %k(k+3) 4(k+2) 8(k+1)
SO(10)/U(5) 20 15 32 48
E,/Spin (10)X T 32 26 48 72
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