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Introduction.

In [1], using a family of negative plurisubharmonic functions on a complex
manifold M, the author defined an invariant pseudo-metric PM on M whose
indicatrices are always pseudoconvex domains in the holomorphic tangent spaces.
On the other hand, Klimek [5] defined an extremal plurisubharmonic function
g% with pole at a given point p of M.

The aim of the present note is to clarify the relationship between PM and
g% (Proposition 2.4), and to simplify the original construction of PM in [1]
(Lemma 2.1, Corollary 2.5). We also show that PM is a higher-dimensional
generalization of the pseudo-metric c*β\dz\ induced from the capacity czβ —
exp(— kzβ) on an open Riemann surface M (cf. [11]), where kzβ(p) is the Robin
constant at a point p of M with respect to a local coordinate z around p (Pro-
position 3.1). Finally, we derive some results related to the pseudo-metric PM

for Riemann surfaces M.

§ 1. Klimek's extremal plulisubharmonic functions.

Let p be a point of a complex manifold M. We denote by PSM(p) the
family of all [—oo, 0)-valued plurisubharmonic functions f on M such that the
function /—log ||z|| is bounded from above in a deleted neighborhood of p for
some holomorphic local coordinate z with z(p)—0. We note that every f<=PSM(p)
takes the value - o o at ί, and that PSM(p) always contains the constant func-
tion — oo. The definition of the family PSM(p) does not depend on the choice
of the coordinate z with z(p)—0. According to Klimek [5], we define the ex-
tremal function g§ on M by

f<=PS"(p)}

for #eM.
We quote from [5] some results on g%. In [5], Klimek dealt with the case

when M i s a domain in Cm. However, one can see that these assertions hold
also for prescribed manifolds M.
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LEMMA 1.1 ([5; Theorem 1.1]). (Decreasing property) // Φ\M-^Mf is a
holomorphic mapping between complex manifolds M and M'', then gφ(P)°Φ^gp on
M for any p^M.

LEMMA 1.2 ([5; Corollary 1.3]). For every point p of a complex manifold
M, the function g% belongs to PSM(p).

LEMMA 1.3 ([5; Theorem 1.5]). // g=g?*=L?oc(M-{p}), then g satisfies the
homogeneous Monge-Ampere equation (ddcg)m=0 in M—{p), where dc—i{d—d) and
m is the dimension of a complex manifold M (cf. [2]).

In one complex variable, the Monge-Ampere equation is reduced to the
Laplace equation, so that when M is one-dimensional the conclusion of Lemma
1.3 means that g% is harmonic in M—{p}.

LEMMA 1.4 ([5; Proposition 1.6]). // M is a pseudoconvex, relatively compact
domain of a Stein manifold with ^-boundary, then g%^L?0C(M—{p}), and gp(q)
—>0 if q approaches any boundary point of M (cf. [4]).

We note that every open Riemann surface is a Stein manifold, and that every
domain of an open Riemann surface is pseudoconvex.

§ 2. Invariant pseudo-metrics.

For a holomorphic tangent vector X^TP{M) at a point p of a complex
manifold M, we denote by LHC(Z) the totality of local holomorphic curves
contacting with X at p, that is, φ<=LHC(X) if and only if φ is a holomorphic
mapping from εU={λ<^C; \λ\<ε\ with some ε>0 into M satisfying φ{Qι)—p and
φ*(d/dλ)0=X. For f^PSM(p) and peLHC(Z), we set

We shall show the following key lemma for the argument in this note,
which was proved in [ 1 ; Remark 3.1] in the case when M is one-dimensional.

LEMMA 2.1. // f<=PSM(p) and φi^LUC(X) (z=0, 1) with X^TP(M), then

Proof. Take a holomorphic chart (z, Uz) with z(p)—0. We may assume that
are defined in εU with ψi{εU)CLUz. Since ψi(Q)=p, the open subset

D={(λ, φ φ

of εUxC includes the line {0}xC. For every £eC, the mapping
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defined for λ^εU with (λ, ξ)^D belongs to LHC(Z) and satisfies φo=ψo, ψi—ψi.
We consider the function

which is plurisubharmonic on D-({0}xC). Since f^PSM(p), there exists a
positive number η such that (expf^z'^^^ηWvW for all sufficiently small
where m is the dimension of M. For every ?eC, using foφξ=(foz~
we see that

for all sufficiently small 2 e C - ( 0 } . If we take a u=(u\ •••, um)^Cm with

(2.1) ^=(S£)p :=Σ?Li^O/fe%,

where z—(21, •••, zm), it then follows that

(2.2) limsupα', ^ c o . α ^ o ^ W , ξ')^log(η\\u\\)

for any {eC. Therefore, g is uniquely extended to a plurisubharmonic func-
tion Jf on D. Furthermore, the value g(0, ξ) coincides with the left hand side
of (2.2). Using the fact that the restriction of g over the intersection of a
complex line with D is a subharmonic function there, we get the desired asser-
tion as follows: First, for every £eC, the function g( , ξ) is subharmonic in
a neighborhood of 0 in C. From this we have

(2.3) £(0, f)=lim sup^ 0 . W t f , Ώ

ιχΦOg(λ, ξ)

Secondly, the function ^(0, •) is subharmonic on C. Furthermore, it follows from
(2.2) that g(0, •) is bounded from above on C, so that it must be constant.
Combining this with (2.3), we have

logL/[?>o]=^(0, 0)=£(0, l )=l

as desired.
Lemma 2.1 implies that the family PSM(p) defined in the present paper

coincides with the one originally defined in [1].
By virtue of Lemma 2.1, for every f^PSM(p), we may define a function Lf

on TP(M) by

Lf{X)^Lf[_ψ-], X<ΞTP(M),

where φ^LUC(X).

LEMMA 2.2 ([1; Lemma 3.3]). // f^PSM(p), ^eLHC(Z), and φ is defined
on εU, then the function a{r), 0 < r < ε , given by
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f°φ(reίθ)dθ-\ogr

is monotone-increasing in the interval (0, ε) and converges to log Lf(X) as r—>0.

LEMMA 2.3. For every f<^PSM{p), the function \ogLf is plurisubharmonic
on TP(M).

Proof. Take a holomorphic chart (z, Uz) around p so that z(p)=0 and z(U2)
is a ball, and set l(u)=\ogLf((dz

u)p) for w e C m (see (2.1)), where ra=dimM.
We must show that / is plurisubharmonic on Cm.

To prove the upper semi-continuity of /, consider the function h on D—
{{λ} u)<=CxCm λu<Ξz(U2)} defined by h(λ, u)=f*z-K*u)f y, w )eZλ Fix a vector
« 0 GC m , and take a real number η>l(u0). Since

/ ( H 0 ) = l i m s u p ^ o , λ Φ o ( h ( λ , u Q ) — \ o g \ λ \ ) ,

one can find a positive number δ such that /ι(2, uQ)—\og\λ\<η for any
with 0<|Λ|^<5. Since h is upper semi-continuous, using the compactness of the
set δT={λ<=C; \λ\=δ\, we can find a neighborhood W of u0 such that ΛU, u)
—\ogδ<η for any yle^T and u^W. It follows from Lemma 2.2 that

h(δeiθ, u)dθ-

for any u^W. This means that / is upper semi-continuous at u0.
We next show that

Jo

for any M, v<=Cm. By Lemma 2.2 we have

Thus, the desired inequality follows from the monotone convergence theorem,
Fubini's theorem, and the plurisubharmonicity of f^z'1 (cf. the proof of [1
Lemma 3.8]). This completes the proof.

For every Z G Ξ T P ( M ) , we define

PROPOSITION 2.4. // g—g% is the extremal plurisubharmonic function on a
complex manifold M with pole at p^M, defined in the preceding section, then
PM=Lg on TP(M).
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Proof. Let XeiTp(M). Since g^PSM{p) (Lemma 1.2), we have
Lg(X). On the other hand, if f^PSM(p) and ^eLHC(Z), then

for all sufficiently small λ^C-{0}. It follows that Lf{X)^Lg(X)} so that
PM{X)^Lg(X). This completes the proof.

Combining Proposition 2.4 with Lemma 2.3, we get the following.

COROLLARY 2.5. For ẑ βr y point p of a complex manifold M, the function
\ogPM\Tp(M) is plurisubharmonic on TV(M).

In particular, this corollary asserts that \ogPM\Tp{Mϊ is upper semi-continuous
on TP(M). Therefore, the function PM defined in the present paper coincides
with the one originally defined in [1]. According to [1 Proposition 3.8, Theorem
4.3], we review some fundamental properties on PM in the following:

For every complex manifold M, PM is a pseudo-metric on M, that is, PM

is a [0, +oo)-valued function on the holomorphic tangent bundle T(M) of M
satisfying P"(λX)=\λ\PM(X) for any Z e T ( M ) and k C .

For a holomorphic mapping Φ from M to M', it holds that

(2.4) φ*pM><^pM

(Decreasing property).
Let CM and KM be the Caratheodory and Kobayashi pseudo-metrics on M,

respectively (for the definitions, cf., e.g., [7], [3], [1]). Then, it follows that

(2.5) CM£PM^KM.

For every j ε M , the indicatrix {X^TP(M); PM{X)<\) of PM at p is a
pseudoconvex domain in TV{M).

Let M be a starlike circular domain in Cm, z.£., a domain satisfying λMdM
for any 2 G C with |Λ |^1, and let NM(u)=inί{λ>0; u^λM), P^(u)=PM((dz

u)o)
for w e C m (see (2.1)), where z{u) — u, u^M, is the natural coordinate on M.
Then, Pfi^NM, and the equality holds if and only if M is pseudoconvex. Fur-
thermore, the indicatrix {weC m ; Pf(u)<l} of P f coincides with the holomor-
phic hull of M.

Recently, Nishihara, Shon, and Sugawara [9] introduced, in the same man-
ner as in [1], the pseudo-metric PM for a class of infinite-dimensional complex
manifolds M, and showed that the above-mentioned properties hold also for such
manifolds.

We close this section by a useful lemma, which will be employed later.

LEMMA 2.6. Let (MJ£ = 1 be a sequence of domains in a complex manifold M
such that Mn+1uMn, M={J^=1Mn. Then, the following hold:

(i) For every p^M, the sequence of functions gpn is decreasing and con-
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verges to g% (see Lemma 1.1).
(ii) For every X^T(M), the sequence of numbers PMn(X) is decreasing and

converges to PM(X) (see (2.4)).

Proof. Fix P<BM, take n0 with p^MnQ, and set gn=gpn, g=gp, Pn—

n (jo for ttΞ>n0.
v p

(i) By the decreasing property (Lemma 1.1) we see that gn(q)^gn+i(q)^g(q)
for q<^Mn, n^n0. It follows that the function /—lim^oog^ is well-defined on
M and satisfies f^g. Since / is the limit of a decreasing sequence of pluri-
subharmonic functions, it follows that f^PSM(p), so that f^g. Therefore,
f=g

(ii) Assume XZΞTP(M). Let peLHC(Z), φ:εU->M, and set

an(r)=(2π)-1\ gn°φ(reιθ)dθ-\ogr,

τ

g°φ(reιθ)dθ—logr

for rE(0, ε), n^n0. By Proposition 2.4 as well as Lemma 2.2, we have logP(Z)
=limr->o+a(r), \ogPn(X)—\ιmr^+an(r). On the other hand, using the monotone
convergence theorem, by part (i) we have a(r)=\imn^ooan(r). However, using
the monotonicity of an(r) in each variable of n and r, we see that

lim r_»0+liin7i-ooα7 l(r)=limπ_>oolim r_> 0 +α7 l(r)

this means that logP(Z)=limn^cologPn(Z). The proof is completed.
It is well-known that the same assertion (ii) of Lemma 2.6 for CM or KM

in place of PM holds true.

§3. One-dimensional cases.

Throughout this section, we assume that the manifold M under considera-
tion is one-dimensional, i.e., M i s a Riemann surface. Let CM and KM be the
Caratheodory and Kobayashi pseudo-metrics on M, respectively. If we express
CM as cz

B\dz\ using a local coordinate z, the quantity c%(p) is called the analytic
capacity at p^M with respect to z. On the other hand, if the universal cover-
ing of M is holomorphically equivalent to the unit disc U in C, then KM is the
metric induced from the Poincare metric of U otherwise KM=0.

We next investigate the pseudo-metric PM on a Riemann surface. When M
is compact, it is immediately seen by definition that PM—0. To clarify PM on
an open Riemann surface M, we review the definition of the capacity, according
to Sario and Oikawa [11 pp. 54-55]. Let (MJ~= 1 be an exhaustion of M by
regular subdomains with respect to the Dirichlet problem for the Laplace equa-
tion. Let fEM, and z a local coordinate around p. For n with p<ΞMn, let gn

and kz

n(p) be the Green function on Mn and the Robin constant at p with respect
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to z, respectively, i.e., gn( ,p) and kz

n{p) be a unique function and a unique real
constant, respectively, such that gn( ,p) is harmonic on Mn—{p), gn{q, p)+
log\z(q)—z(p)\->kz

n(p) as q-^p, and gn(q, p)-^0 as q approaches any boundary point
of Mn. Set

cf( ~h) — Ijrn ε? ( u) f?zo(f)i^^Iim tp^ίii)

The quantities &£(/>) and czβ(p)—exp(—kz

β(p)) are called the Robin constant and
the capacity (of the ideal boundary β) at p with respect to the coordinate z,
respectively. By Lemmas 1.3 and 1.4 and the remarks after them, we have
gP

n=—gn( ,P)- Furthermore, by Proposition 2.4 we see log PMn((d/dz)p)=
— kz

n(p). Therefore, Proposition 2.6 implies that gp=-g( ,p), PM((d/dz)p)=^
czβ{p). We thus get the following.

PROPOSITION 3.1. // M is an open Riemann surface, then the pseudo-metric
PM coincides with cz

β\dz\, where cz

β=exp(—kβ) is the capacity and kz

β is the Robin
constant with respect to a local coordinate z.

Now, we have noted in (2.5) that CM^PM^KM. Since M is one-dimension-
al, the quantities CM/PM and pM/KM are well-defined [0, l]-valued functions
on M, provided that PM>0 and KM>0, respectively. Of course, these functions
are biholomorphically invariant. We also note that both the functions converge
to 1 as the point approaches any boundary point of M when M is a strongly
pseudoconvex domain in C (cf. Graham [3], also cf. [13]).

To establish a formula for PM/KM, we review the argument in Suita [13]
based on Myrberg's theorem [8]. Let M be an open Riemann surface with
M&OG, i.e., with PM>0. Then, the universal covering of Mis holomorphically
equivalent to the unit disc U— {λ^C; \λ\<l}. Assume that M is not simply
connected. Let π be a covering projection from U onto M. Let p(=M. Take
a connected neighborhood W of p such that for every component Wn of π~\W)
(fl=0, 1, •••), the restriction π\Wn:Wn-*W is homeomorphic. Let z—(π\Wo)~1,
and zn—{π\Wv)~1 for nΞ>l. By Myrberg's theorem [8] the Green function g of
M can be expressed as

for # e W. It follows that

z(q)-z(p) z(q)-zn(p)

1—znz

on W. Since \dz\/(l—\z\2) is the restriction to W of the Kobayashi metric on
M, we get the following.

LEMMA 3.2. Let π: U-^M be a universal covering of an open Riemann sur-
face M with M&OG- For every p^M, let {ζτϊ}n=o be a numbering of the fibre
π'Kp). Then,
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COROLLARY 3.3. An open Riemann surface M with M&OG is simply con-
nected, i.e., holomorphically equivalent to U, if and only if PM=KM, or equiv-
alently, PM—KM on some tangent space TP(M).

As an example, we consider the functions CA/PA,PA/KΛ for the annulus
A=Aq={λeC; ^< |A |<1} with 0<q<l. For F = C , P, or K, the same symbol
F stands for FA({d/dz)i), where z{λ)—λ, λ(=A is the natural coordinate on A.
Then, these values are explicitly given by

(3.2) P=-

K } 2qt(-\ogg)siaπt9

where | ^ | = ^ ί (0<ί<l) for teA The formula (3.1) was given by Robinson
[10] and Simha [12]. The formula (3.2) was given by Suita [13], or is ob-
tained from the formulas of the Green function given in [5], [10]. The formula
(3.3) is obtained from the explicit form (as in the proof of Proposition 3.4 below)
of a covering projection from the unit disc onto A (cf. Kobayashi [6; pp. 14-
15]).

To formulate our assertion, set a(t)=C/P, β(t)=P/K(tt=φ, 1)) with \λ\=qc,
2 G A It is noted that a(l—t)=a(t), β(l—t)=β(t) for fe(0, 1). Let <9q be Jacobi's
theta function given by

We shall show the following.

PROPOSITION 3.4. The functions a, β are strictly decreasing in the interval
(0, 1/2]. In particular, the minimums of C/P and P/K are both taken in the
middle circle \λ\=VΎ of the annulus Aq. The minimums of C/P and P/K are
given by

(3.4)

and

(3.5)

respectively, where re(0, 1) is the number determined by

(3.6)
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We remark that the value (3.4) is the square root of the modulus in the
theory of Jacobi elliptic functions with respect to the period basis (2πι, 2 log q).
Furthermore, Robinson proved in [10] that this value is realized as the ex-
ponential of the minimum value —g(VΎ, ~VΎ) of —g(s, —t) when both s
and t run over the subset (q, l)dΛq> where g is the Green function of the
annulus Aq.

Proof of Proposition 3.4. By (3.1) and (3.2) we find that

It is known ([10 p. 348]) that the function Q{ί) is strictly decreasing in the
interval [0, 1/2]. Therefore, all the assertions for a and C/P follow.

To prove the assertions for β and P/K, we consider the domains B—{ξGC;
0<lmf<-logtf}, i7=:{^eC; Imτ7>0}, U^{ζ^C; | ζ | < l } , and the mappings
Φ:U-+H, Ψ:H->B, πr.B-^A, given by η=i(ζ+ϊ)/(ζ-l), ξ=(-logq)(logη)/π,
and^β**, respectively. Then, π^π^Ψ Φ :U-+A is a covering projection onto
A. Let Xe(q, 1)(ZA be fixed. For neZ, set ζn=2nπ-i\ogλ, ηn=Ψ'1(ξn\ and
C»=Φ-1(?»). Since π-1W)={ζn; neZ}, ζ»=(7»-ί)/(?n+0, it follows from
Myrberg's formula (Lemma 3.2) that

Using the number r given by (3.6) we see ηn=r~2netπι. Therefore, for every
ίe(0, 1) we see

For every n, it is easily seen that the function R(t)~\eUκι—r2n\ is strictly in-
creasing in the interval [0, 1/2]. Therefore, the function β is strictly decreas-
ing in (0, 1/2], and P/K takes the minimum

at λ&A with |Λ|=\Λ?~. Furthermore, it follows from formulas (3.2) and (3.3)
that

This gives the first expression in (3.5) for the value /3(l/2). Thus, the proof of
Proposition 3.4 is completed.

Remark 3.5. We make some comments on the relation (3.5). First, we
assume q=r, i.e., q—e~π. Then, the relation (3.5) implies that the number
q=e~π satisfies the equation -9q(q)q1/i='9q(—l), that is,

or
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On the other hand, since

taking the limits as #->l—0 in both sides of (3.5), noting r->0+, we obtain
Wallis' formula

Thus, the formula (3.5) can be seen as an extension of Wallis' formula.
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