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Introduction.

In [1], using a family of negative plurisubharmonic functions on a complex
manifold M, the author defined an invariant pseudo-metric P¥ on M whose
indicatrices are always pseudoconvex domains in the holomorphic tangent spaces.
On the other hand, Klimek [5] defined an extremal plurisubharmonic function
g¥ with pole at a given point p of M.

The aim of the present note is to clarify the relationship between P¥ and
g¥ (Proposition 2.4), and to simplify the original construction of P¥ in [1]
(Lemma 2.1, Corollary 2.5). We also show that P¥ is a higher-dimensional
generalization of the pseudo-metric c%|dz| induced from the capacity c3=
exp(—k3%) on an open Riemann surface M (cf. [11]), where k%(p) is the Robin
constant at a point p of M with respect to a local coordinate z around p (Pro-
position 3.1). Finally, we derive some results related to the pseudo-metric P¥
for Riemann surfaces M.

§1. Klimek’s extremal plulisubharmonic functions.

Let p be a point of a complex manifold M. We denote by PS¥(p) the
family of all [—oo, 0)-valued plurisubharmonic functions f on M such that the
function f—log |z| is bounded from above in a deleted neighborhood of p for
some holomorphic local coordinate z with z(p)=0. We note that every f < PS™(p)
takes the value —oo at p, and that PS¥(p) always contains the constant func-
tion —oo. The definition of the family PS¥(p) does not depend on the choice
of the coordinate z with z(p)=0. According to Klimek [5], we define the ex-
tremal function g¥ on M by

g¥(g)=sup{f(q); f=PS™(p)}

for g M.
We quote from [5] some results on g¥. In [5], Klimek dealt with the case
when M is a domain in C™. However, one can see that these assertions hold

also for prescribed manifolds M.
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LEmMMA 1.1 ([5; Theorem 1.1]). (Decreasing property) If @:M—-M’ is a
holomorphic mapping between complex manifolds M and M’, then g¥, @=g¥ on
M for any peM.

LEMMA 1.2 ([5; Corollary 1.3]). For every point p of a complex manifold
M, the function g¥ belongs to PS¥(p).

LEMMA 1.3 ([5; Theorem 1.5]). If g=g¥< Lx.(M—{p}), then g satisfies the
homogeneous Monge-Ampere equation (dd°g)™=0 in M—{p}, where d°=i(G—0d) and
m is the dimension of a complex manifold M (cf. [2]).

In one complex variable, the Monge-Ampére equation is reduced to the
Laplace equation, so that when M is one-dimensional the conclusion of Lemma
1.3 means that g¥ is harmonic in M—{p}.

LeEmMMA 1.4 ([5; Proposition 1.6]). If M is a pseudoconvex, relatively compact
domain of a Stein manifold with C'-boundary, then g¥e Ly (M—{p}), and g¥(q)
—0 if q approaches any boundary point of M (cf. [4]).

We note that every open Riemann surface is a Stein manifold, and that every
domain of an open Riemann surface is pseudoconvex.

§2. Invariant pseudo-metrics.

For a holomorphic tangent vector XeT,(M) at a point p of a complex
manifold M, we denote by LHC(X) the totality of local holomorphic curves
contacting with X at p, that is, p=LHC(X) if and only if ¢ is a holomorphic
mapping from eU={1€C;|2| <e} with some >0 into M satisfying ¢ (0)=p and
¢ox(d/d2)y=X. For fePS"(p) and p=LHC(X), we set

L [p]=1im Sup;-o, 240(€XD f2@)()/|2].

We shall show the following key lemma for the argument in this note,
which was proved in [1; Remark 3.1] in the case when M is one-dimensional.

LEMMA 2.1. If f€PS™(p) and ¢,€LHC(X) (i=0, 1) with X&T,(M), then
Lilpod=L L.

Proof. Take a holomorphic chart (z, U,) with z(p)=0. We may assume that
¢; are defined in eU with ¢;(eU)CU,. Since ¢;(0)=p, the open subset

D={@4, §)eeUXC; (1-8)z+@y(D)+Ez-p,(D)2(U,)}
of eUXC includes the line {0} XC. For every £€=C, the mapping

F(A=z"(1—=E)zopo(A)+E 2°01(2)
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defined for AeU with (4, §)e D belongs to LHC (X) and satisfies ¢o=¢,, ¢:=¢:.
We consider the function

g4, &)= -gs(A)—logldl, (4 §D—({0}xC),

which is plurisubharmonic on D—({0} XC). Since fePS™(p), there exists a
positive number 7 such that (exp fez ")w)=7n|v|l for all sufficiently small v&eC™,
where m is the dimension of M. For every £=C, using feg:=(f°2"")e(z°3e),
we see that

(exp fo@e)A)/ 12| =7nllz=@:(4)/A]

for all sufficiently small AeC—{0}. If we take a u=(u?, ---, u™)=C™ with
2.1 X=(02)p :=21,u*(0/02"),,

where z=(z!, ---, z™), it then follows that

(2.2) lim Supcar, g3-00,0, 220847, §)=log (plul)

for any £é=C. Therefore, g is uniquely extended to a plurisubharmonic func-
tion & on D. Furthermore, the value g(0, &) coincides with the left hand side
of (2.2). Using the fact that the restriction of g over the intersection of a
complex line with D is a subharmonic function there, we get the desired asser-
tion as follows: First, for every é=C, the function g(-, &) is subharmonic in
a neighborhood of 0 in C. From this we have

(2.3) £(0, &)=lim sup .o, 22024, &)
=1lim SUp -0, 2408(4, &)
=10g Lf[@f:l .

Secondly, the function g(0, -) is subharmonic on C. Furthermore, it follows from
(2.2) that 2(0, -) is bounded from above on C, so that it must be constant.
Combining this with (2.3), we have

log L ;[¢,]1=8(0, 0)=2(0, 1)=log L ;[¢:],

as desired.

Lemma 2.1 implies that the family PS¥(p) defined in the present paper
coincides with the one originally defined in [1].

By virtue of Lemma 2.1, for every f< PS¥(p), we may define a function L,
on T,(M) by

L X)=L;[¢], XeT (M),

where ¢ LHC (X).

LEMMA 2.2 ([1; Lemma 3.3]). If f=PS™(p), pcLHC(X), and ¢ 1s defined
on €U, then the function a(r), 0<r<e, gwen by
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a(r)y=@m)|" fop(re")d0—logr
is monotone-increasing in the interval (0, €) and converges to log L ;(X) as r—0.

LEMMA 2.3. For every fePS™(p), the function logL; is plurisubharmonic
on Tp(M).

Proof. Take a holomorphic chart (z, U,) around p so that z(p)=0 and z(U,)
is a ball, and set /(u)=log L;((03),) for usC™ (see (2.1)), where m=dim M.
We must show that / is plurisubharmonic on C™.

To prove the upper semi-continuity of /, consider the function A on D=
{QA, w) €eCXC™; ucsz(U,)} defined by h(4, u)=f-z"*(Au), (4, u)e D. Fix a vector
u,€C™, and take a real number %>{(u,). Since

{(uo)=1im Sup;_o, 220(A(4, uo)—logla]),

one can find a positive number 9 such that h(4, u,)—log|4| <x for any AcC
with 0<|4]| <4. Since A is upper semi-continuous, using the compactness of the
set 0T={A=C; |A|=4d}, we can find a neighborhood W of u, such that A(4, u)
—logd<n for any 20T and usW. It follows from Lemma 2.2 that

() =@n) " hde?, wdo—loga<y

for any uW. This means that / is upper semi-continuous at u,.
We next show that

Kuwy=@m) | "+ ev)dg
for any u, veC™. By Lemma 2.2 we have

l(u):]irnrAOJ,((Zfr)"S ﬁfez‘l(re“’u)dﬁ——log r) ,

2
0
. 2r . .
l(u+e‘5v)=lim7»0+<(2x)‘150 fez Y (retutret?+9y)df —log r) .

Thus, the desired inequality follows from the monotone convergence theorem,
Fubini’s theorem, and the plurisubharmonicity of f.z-! (cf. the proof of [1;
Lemma 3.8]). This completes the proof.

For every XeT,(M), we define

PY(X)=sup{L(X); f€PS"(p)}.

PROPOSITION 2.4. If g=g¥ 1s the extremal plurisubharmonic function on a
complex manifold M with pole at peM, defined in the preceding section, then
P¥=L, on T,(M).



THE INVARIANT PSEUDO-METRIC 87

Proof. Let XeT,(M). Since g€ PS*(p) (Lemma 1.2), we have P¥(X)=
L, (X). On the other hand, if f=PS¥(p) and p=LHC(X), then

(exp fep)(A)/|A| =(exp gop)A)/|A]

for all sufficiently small 2eC—{0}. It follows that L (X)<L,(X), so that
P¥(X)<L,(X). This completes the proof.
Combining Proposition 2.4 with Lemma 2.3, we get the following.

COROLLARY 2.5. For every point p of a complex manifold M, the function
logPMITp(M) is plurisubharmonic on T ,(M).

In particular, this corollary asserts that log P¥ |, 0D is upper semi-continuous
on T,(M). Therefore, the function P¥ defined in the present paper coincides
with the one originally defined in [1]. According to [1; Proposition 3.8, Theorem
4.3], we review some fundamental properties on P¥ in the following:

For every complex manifold M, P is a pseudo-metric on M, that is, P¥
is a [0, +o0)-valued function on the holomorphic tangent bundle T(M) of M
satisfying P*(AX)=|A| P¥(X) for any XeT(M) and 2<C.

For a holomorphic mapping @ from M to M’, it holds that

2.4 QO*pH < p¥

(Decreasing property).
Let C¥ and K¥ be the Carathéodory and Kobayashi pseudo-metrics on M,
respectively (for the definitions, cf., e.g., [7], [3], [1]). Then, it follows that

(2.5) CY<P¥<K™.

For every peM, the indicatrix {XeT,(M); P*(X)<1} of P¥ at p is a
pseudoconvex domain in T',(M).

Let M be a starlike circular domain in C™, z.e., a domain satisfying AMC M
for any 2eC with |2| <1, and let N¥(uw)=inf{1>0; uciM}, P¥(u)=P¥((0%),)
for ueC™ (see (2.1)), where z(u)=u, ucsM, is the natural coordinate on M.
Then, P¥<N¥, and the equality holds if and only if M is pseudoconvex. Fur-
thermore, the indicatrix {uesC™; P¥(u)<1} of P¥ coincides with the holomor-
phic hull of M.

Recently, Nishihara, Shon, and Sugawara [9] introduced, in the same man-
ner as in [1], the pseudo-metric P¥ for a class of infinite-dimensional complex
manifolds M, and showed that the above-mentioned properties hold also for such
manifolds.

We close this section by a useful lemma, which will be employed later.

LEMMA 2.6. Let (M,)7-, be a sequence of domains in a complex manifold M
such that M,y DOM,, M=\_J5-.M,. Then, the follouing hold:
(i) For every peM, the sequence of functions g¥n» is decreasing and con-
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verges to g¥ (see Lemma 1.1).
(ii) For every XeT(M), the sequence of numbers P¥n(X) is decreasing and
converges to P¥(X) (see (2.4)).

Proof. Fix peM, take n, with peM,, and set g,=g¥», g=g¥, P,=
PM"]Tpuu), P:PMITP(M) for n=n,.

(i) By the decreasing property (Lemma 1.1) we see that g,(¢)=g,+1(q)=g(q)
for geM,, n=n, It follows that the function f=lim,.~g, is well-defined on
M and satisfies f=g. Since f is the limit of a decreasing sequence of pluri-
subharmonic functions, it follows that fePS¥(p), so that f=<g. Therefore,
f=sg.

(i) Assume XeT,(M). Let pcLHC(X), ¢:eU—M, and set

dn(T)I(Zn)“‘S:"gnogo(relﬂ)dﬁ—log r,

G(T)Z(Zn)"gzngo@(re’ﬁ)d&—logr

for »=(0, ¢), n=n,. By Proposition 2.4 as well as Lemma 2.2, we have log P(X)
=lim,.,+a(r), log P,(X)=lim,.,+a,(*). On the other hand, using the monotone
convergence theorem, by part (i) we have a(r)=lim,..a,(r). However, using
the monotonicity of a,(») in each variable of » and », we see that

limyos 1My 0@ (7)) =1lim,_ o lim,_ . a,(¥) ;

this means that log P(X)=Ilim,..log P,(X). The proof is completed.
It is well-known that the same assertion (ii) of Lemma 2.6 for C¥ or K¥
in place of P¥ holds true.

§3. One-dimensional cases.

Throughout this section, we assume that the manifold M under considera-
tion is one-dimensional, 7.e., M is a Riemann surface. Let C¥ and K% be the
Carathéodory and Kobayashi pseudo-metrics on M, respectively. If we express
C¥ as c3|dz| using a local coordinate z, the quantity c3(p) is called the analytic
capacity at p M with respect to z. On the other hand, if the universal cover-
ing of M is holomorphically equivalent to the unit disc U in C, then K¥ is the
metric induced from the Poincaré metric of U ; otherwise K¥=0.

We next investigate the pseudo-metric P¥ on a Riemann surface. When M
is compact, it is immediately seen by definition that P¥*=0. To clarify P¥ on
an open Riemann surface M, we review the definition of the capacity, according
to Sario and Oikawa [11; pp. 54-55]. Let (M,)3-; be an exhaustion of M by
regular subdomains with respect to the Dirichlet problem for the Laplace equa-
tion. Let peM, and z a local coordinate around p. For n with peM,, let g,
and k%(p) be the Green function on M, and the Robin constant at p with respect
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to z, respectively, z.e., g,( ,p) and k%(p) be a unique function and a unique real
constant, respectively, such that g,(,p) is harmonic on M,—{p}, g.(q, p)+
log|z(g)—z(p)|— k%(p) as g—p, and g,(q, p)—0 as g approaches any boundary point
of M,. Set

g( :p)zlimn—»wgn( D), k%(p):hmn—mk;z(p)

The quantities k3(p) and c(p)=exp(—k3(p)) are called the Robin constant and
the capacity (of the ideal boundary B) at p with respect to the coordinate =z,
respectively. By Lemmas 1.3 and 1.4 and the remarks after them, we have
g¥n=—g,(,p). Furthermore, by Proposition 2.4 we see log P"»((d/dz),)=
—ki(p). Therefore, Proposition 2.6 implies that g¥=—g( ,p), P*((d/dz),)=
cx(p). We thus get the following.

ProOPOSITION 3.1. If M 1s an open Riemann surface, then the pseudo-metric
PY coincides with c%|dz|, where c3=exp(—k}) is the capacity and k% is the Robin
constant with respect to a local coordinate z.

Now, we have noted in (2.5) that CY*<P¥*<K?™. Since M is one-dimension-
al, the quantities C¥/P¥ and P¥/K¥ are well-defined [0, 1]-valued functions
on M, provided that P¥ >0 and K* >0, respectively. Of course, these functions
are biholomorphically invariant. We also note that both the functions converge
to 1 as the point approaches any boundary point of M when M is a strongly
pseudoconvex domain in C (cf. Graham [3], also cf. [13]).

To establish a formula for P¥/K*, we review the argument in Suita [13]
based on Myrberg’s theorem [8]. Let M be an open Riemann surface with
Me&Qg, i.e., with P2>0. Then, the universal covering of M is holomorphically
equivalent to the unit disc U={1eC; |2]<1}. Assume that M is not simply
connected. Let m be a covering projection from U onto M. Let peM. Take
a connected neighborhood W of p such that for every component W, of z~(W)
(n=0, 1, ---), the restriction z|w, :W,—W is homeomorphic. Let z=(m|w,)",
and z,=(x|w,)"* for n=1. By Myrberg’s theorem [8] the Green function g of
M can be expressed as

L 1=Z0)2@) |, < 1-2,(p)2(q)
g(g, p)=log H—2p) |+Zn=1log| 20)—2p)
for g W. It follows that
1 Z2—2n

o

ch= 1=z e

1—2z,z
on W. Since |dz|/(1—]z|?) is the restriction to W of the Kobayashi metric on
M, we get the following.

LEmMMA 3.2. Let n:U—M be a umwversal covering of an open Riemann sur-
face M with Me&Qg.  For every peM, let {{,}5-0 be a numbering of the fibre
n~Yp). Then,
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PM/KM(P)= ‘;Lo=l I Co_Cn l /I 1-‘CnCo| .

COROLLARY 3.3. An open Riemann surface M with M&QOg is simply con-
nected, i.e., holomorphically equivalent to U, if and only if P¥=K™, or equiv-
alently, P*=K™ on some tangent space T,(M).

As an example, we consider the functions C4/P4,P4/K4 for the annulus
A=A,={2eC; ¢<|2]<1} with 0<¢<1l. For F=C, P, or K, the same symbol
F stands for F4((d/dz);), where z(A)=4, A= A is the natural coordinate on A.
Then, these values are explicitly given by

I3 (A—g (1 g* 12 (14-¢*"1%)
3.1 C=
o (12 1)3(1— g -D+2y (] —g2n-2t)
?,L°= (1_q2n)2
qzz :=1(1_qzzn—l)ﬂt)(l_qzn—zz) ’

(3.2) P=

T

@.3) K= 2¢'(—log ¢q)sin =t ’

where |4|=¢° (0<t<1) for A A. The formula (3.1) was given by Robinson
[10] and Simha [12]. The formula (3.2) was given by Suita [13], or is ob-
tained from the formulas of the Green function given in [5], [10]. The formula
(3.3) is obtained from the explicit form (as in the proof of Proposition 3.4 below)
of a covering projection from the unit disc onto A (cf. Kobayashi [6; pp. 14-
15]).

To formulate our assertion, set a(t)=C/P, B{t)=P/K (t€(0, 1)) with |1]=¢",
A€ A. ltis noted that a(l—f)=a(?), f(1—1t)=p@) for t=(0, 1). Let 9, be Jacobi’s
theta function given by

9V =Tnez ¢"'2"
=T3¢ (L g 2) L1270,

We shall show the following.

PROPOSITION 3.4. The functions a, B are strictly decreasing in the interval
0, 1/21. In particular, the minimums of C/P and P/K are both taken in the
middle circle |A|=+/q of the annulus A, The minimums of C/P and P/K are
given by

(3.4) a(1/2)=q"*9(g)9(1)
and
3.5 B(1/2)=g"*(—log q)n9,(1)I(q)=I(1)I(—1),

respectively, where r&(0, 1) is the number determined by

3.6) n/log g=(logr)/x.
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We remark that the value (3.4) is the square root of the modulus in the
theory of Jacobi elliptic functions with respect to the period basis (2xz, 2 log g).
Furthermore, Robinson proved in [10] that this value is realized as the ex-
ponential of the minimum value —g(v/¢, —+/¢q) of —g(s, —f) when both s
and ¢ run over the subset (¢, 1)CA, where g is the Green function of the
annulus A,

Proof of Proposition 3.4. By (3.1) and (3.2) we find that
at)=Q(t)/Q(0), Q) : =T nez g™*0".

It is known ([10; p.348]) that the function Q(¢) is strictly decreasing in the
interval [0, 1/2]. Therefore, all the assertions for « and C/P follow.

To prove the assertions for 8 and P/K, we consider the domains B={§=C;
0<Imé<—loggq}, H={neC; Imy>0}, U={{=C; |{|<1}, and the mappings
@:U—H, ¥:H-B, =,: B—A, given by p=i({+1)/({—1), é=(—logq)(log )/,
and A=¢%, respectively. Then, z=r,-¥-@:U—A is a covering projection onto
A. Let ie(q, )CA be fixed. For neZ, set &,=2nr—ilogl, 7,=¥%*&,), and
o=@ X%,). Since zA)={ls; n€Z}, Lu=n,—1)/(n.+1), it follows from
Myrberg’s formula (Lemma 3.2) that

P/KZHn#OICn_COI/‘l_EnCOI:Hn#olvn_nol/l Ta—"Nol.
Using the number » given by (3.6) we see 9,=r"*"e‘*. Therefore, for every
te(0, 1) we see
‘B(t>: ;lo=l(l__r2n)21 eztzz_rzrb I «Z.
For every n, it is easily seen that the function R(f)=|e***—r*"| is strictly in-

creasing in the interval [0, 1/2]. Therefore, the function B is strictly decreas-
ing in (0, 1/2], and P/K takes the minimum

B/2)=TI7=1=r"")(1+7*")* =G ()I(—1)

at A= A with |A]=+/¢. Furthermore, it follows from formulas (3.2) and (3.3)
that

B(1/2)=2¢""*(—log @) TI5=y(1—g*")*(1—g*" )2
=g (—log q)m~*94(1)9y(q) .

This gives the first expression in (3.5) for the value B(1/2). Thus, the proof of
Proposition 3.4 is completed.

Remark 3.5. We make some comments on the relation (3.5). First, we
assume ¢=vr, i.e., g=e ". Then, the relation (3.5) implies that the number
g=e"" satisfies the equation 9,(¢)¢"/*=39,(—1), that is,

220%=1exp (—a(n—1/2))=14+223-(—1)" exp (—=zn?)
or
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ez/8=\/71‘[o’:=1(1+e—nn+e—2nx+e-3nn)_
On the other hand, since

2¢'4(—log @) ., (L4g+ - +g2n-1)2
77:(1_4) net (1+q+ +q2n_2)(l+q+ +q2n) ’

taking the limits as ¢—1—0 in both sides of (3.5), noting »—04, we obtain
Wallis’ formula

B(1/2)=

(2/m)7=-12n)*/(2n—1)2n+1)=1.

Thus, the formula (3.5) can be seen as an extension of Wallis’ formula.
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