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REPRESENTATION OF ADDITIVE FUNCTIONALS

ON MUSIELAK-ORLICZ SPACE OF

VECTOR-VALUED FUNCTIONS

BY RYSZARD PLUCIENNIK

In the paper [4] Hiai proved theorems on representation of additive func-
tionals on vector-valued normed Kδthe spaces. His theory, as is shown by the
Example 2., does not contain an important and large class of non-solid Orlicz
and Musielak-Orlicz spaces of vector-valued functions. Nevertheless, a very
interesting idea of the proofs is so universal that it can be applied in the above
case as well. It is necessary to change only proofs of Lemma 3.1 and Theorem
3.4 in which the following assumption

\\f(t)\\x^\\g(t)\\x for almost all t implies | | / | U ^ | | g | U

is essential. Therefore, in order to avoid the repetition of argumentations pre-
sented in the paper [4], this note contains the modifications of Lemma 3.1 and
Theorem 3.4. Then representation theorems for additive lower semicontinuous
and continuous functionals are presented as a conclusion. Moreover, it is worth
to notice that the representation theorem for bounded linear functionals, con-
sidered also by Hiai, in these spaces was elementarily proved in a particular
case by Kozek (see [8]).

1. Introduction. Let (T, Σ, μ) be a positive, (/-finite and complete mea-
sure space. (X, \\-\\x) denotes a separable real Banach space.

DEFINITION 1. A function M: ZxT-*[0, oo] is said to be an ^-function,
iff

a) M is & x J-measurable, where & denotes the <7-algebra of Borel subsets
of X,

b) M(-,t) is even, convex, lower semicontinuous, continuous at zero and
M(0, 0 = 0 for a. a. ί e T ,

c) lim M(x, 0—°° fl. β. in T.
\\x\\χ->oo

Let us assume that ^-function M satisfies the so-called Condition B, which
can be also formulated in the following simple form (see [15] Remark 1.5)
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B: For every natural numbers n and i

I sup M(x, t)dμ<oo
iτn \\x\\χ<i Γ

where {Tn} is an increasing sequence of measurable sets such that μ(Tn)<co

and \JTn=T.
71 = 1

In the following by DCX we will denote the set of all strongly measurable
functions from T into X. The famous Pettis theorem states that the strong
measurability and the weak one are equivalent for separable Banach spaces.
Therefore, we will say shortly "measurable function".

By Musielak-Orlicz space LM we mean the set of all functions f^3Cx for
which there exists a constant k>0 such that

The functional

is a norm in LM. It is called the Luxemburg norm. If M(x, t)=M(x, s) for
every t, s<=T, then the space LM generated by M is called an Orlicz space.

By EM we denote a subspace of finite elements, /. e.

EM={f£Ξ3Cx:IM(kf)<cχ> for every k>0}.

Obviously, EMdLM. The space EM equals the space of all f^LM possessing
absolutely continuous norms (see [14] Theorem 1.2. This theorem is also true
without the assumption that the measure μ is non-atomic). Concerning pro-
perties of the space EM we refer to [8], [9] and [12] (Theorem 1.15).

Musielak-Orlicz spaces even Orlicz spaces, defined as above, are not normed
Kδthe spaces in general. The following natural example shows this fact.

Example 2. Let X=R2, T=(0, 1), Σ be the σ-algebra of Lebesgue measur-
able subsets of (0, 1), μ be the Lebesgue measure and define M: i?2->[0, oo] by
the formula

M(r, s)=r2+s*.

It is easy to verify that M satisfies Δ2-condition (see [8] p. 268). Corollary 1.7.4
in [9] implies the equality LM=EM. Let/i and/ 2 be two functions from (0, 1)
into R2 which are defined by the following formulas

/i(0=(f-1/8, t) f€=(0, 1)

1).
We have

V ^ F VFF^= \\f2(t) \\R2
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for every ίe(0, 1). On the other hand /jr(/i)=16/5 and / ^ ( Λ ) ^ 0 0 , therefore
f^LM and f^LM because M satisfies Δ2-condition. Moreover, ||/il|jtf < °° and
IIΛIIϋί^00. Thus, the norm \\ \\M in LM does not satisfy Condition (iv) in [4]
p. 301 and the space LM cannot be solid.

2. Results. In this section, the most of notations are identical with those
in Section 3 in [4], We will present them for the convenience of reading.

Let F: T->2X be a multivalued function from T into the family of subsets
of the space X. Denote the sets

D(F)={t^T:F(t)Φ0} and G(F)={(t, x)<=TxX: xt=F(t)}

which are called the domain of F and the graph of F, respectively. Also denote
the inverse image of F by

F- 1 ( ί7)={ίeT: F(t)Γ\UΦ0}, UdX.

Since (T, Σ, μ) is complete, for F: T->2X such that F(t) is closed for every
t^T, the following conditions are equivalent:

(1) F~\C)^Σ for every closed subset C of X
(2) F-\O)ΪΞΣ for every open subset 0 of X
(3) D(F)<BΣ and there exists a sequence {fn} of measurable functions

/»: D(F)->X such that F(t)=cl{fn(t)} for all t^D{F)
(4) G(F)ΪΞΣX<B.

A closed-valued function F: T—>2X is called to be measurable if F satisfies
one of the above conditions. We will denote by ^[T, X~] the collection of all
measurable multivalued functions F: T-^2X such that F(t) is nonempty and
closed for every ί e T .

Let 31 be a family of measurable functions in 3CX. The family 31 is said
to be decomposable if fXA+gXτ\A^^ for each /, g^3l and A&Σ, where XA

denotes the characteristic function of a set A. Let Lx denote the space of
integrable functions from T to the set of reals. Consider the space EMxLλ

with the norm H I J T + I H I I - If F^V^T, XxR] then the subset SM>1(F) of
EMxLi is defined by

xL1: (/(ί), f(ί))6/?(ί) a.e.}.

The properties of subsets SM,i(F) are presented in the following lemmas.

LEMMA 3. For every F^HJ\T, XxR] the set SMΛ{F) ts dosed in EMxLlt

Proof. Let {(/„, ξn)} be a sequence in SM,i(F) convergent to (/, ξ)^EMxL1.
Let {ξnk\ be a subsequence of {ξn) which is convergent to ξ α. e. in T. In view
of Remark 3° in [7] the sequence {fn\ is convergent in measure on each set
T% (i—1, 2, •••), where Tt are from Condition B. Therefore, we can find a
subsequence {fk,i} of {fnk\ convergent to / α.e. on TV Suppose that the
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sequence {/*,*} is convergent to / a. e. on Tt. Since the sequence {/*,*} is
convergent to / in measure on the set T ι + 1, then there exists a subsequence
{fk,ι+i\ of {/*,J such that {fk,ι+i\ is convergent t o / α. £. on T t + i . Let us
notice that so-called diagonal sequence {/*,*} is convergent to / a.e. on T.
Hence, by the closedness of the set F{f) in the norm || |U+I Ί , we obtain that
(/(*), ξ(t))tΞF(t) a.e. on T. Thus (/, ξ)^SM,i(F) and the lemma is proved.

LEMMA 4. // Fe<U[T, Xxi?] and SM,i(F) is nonempty, then there exists a
sequence {(/„, £„)} m SM,i(F) such that F(t)=cl{(fn(t), ξn(f))} for all ί e T .

LEMMA 5. // FtΞHJlT, XXR'] and SM,i(F) is nonempty and convex, then F(f)
is convex for a.e. teT.

If is easy to see that the proofs of these lemmas are the same as the proofs
of lemmas 3.2 and 3.3 in [4].

Now, we give a theorem characterizing closed decomposable subsets in EMXL^

THEOREM 6. Let Si be a nonempty subset of EMXL^ Then 31 is closed
and decomposable in EMxL1 if and only if there exists a multivalued function

, XxR~] such that &=SXti(F).

Proof. Sufficiency is clear by Lemma 3.
The necessity will be proved in two steps.
I. Assume in addition that 31 contains (0, 0). LX(X) denotes the space of

all Bochner integrable functions from T into X. Define 3ί1=3ίΓλ(L1(X)xL1)
and £R,2 as the closure of 3t± in L1(X)xL1. Obviously, 3l2 is a nonempty,
closed and decomposable subset of L1{X)xL1. Applying Theorem 3.1 in [5]
to the space L1(X)xL1=L1(XxR), where XxR is considered with the norm
IK , ) I U X Λ = I H I X + I I, we can find a multivalued function F^<V[T, XxR~] such
that

& {(/ f ) L W L ( / ( ί ) f ( 0 ) F ( ί ) a.e.).

We will prove that &=SM,i(F). Put

n = l, 2,

where (/, ξ)^EMxL1 and Tn are from Condition B. Then {flA

X Llf and the fact T\Λn | 0 gives

^ll i—>0 as n->cx>,

in view of the absolute continuity of norms || | |^ and || II -L- Hence, by (0,
we see that ' ^ is dense in SI and SM,i(F)ίΛL1(XxR)=:SM>1(F)ίΛ3l2 is dense in
SM,I(F). Since both 31 and SM,i(F) are closed, it remains to show that ̂ (Z
SM,I(F) and SM,i(F)ΓΛ3l2C13l. The first inclusion is obvious. To prove the
second inclusion, we assume that (/, ξ)^SM,i(F)Γ\3l2. Then there exists a
sequence {(/*, ξk)} in 3l± convergent to (/, ξ) with respect to the norm in
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L1(X)xLί. Hence, it can be assumed that \\fk(t)—f(t)\\χ-^O a.e. Denote

for n, k, z'^1, where Tn are from Condition B. Obviously, for each fixed n and
i, we have μ(Tn\Bn>k>t)-^0 as &-̂ oo. For each fixed n, by Condition B there
exists a

[ sup M(x, t)dμ<\.

For each η>0, let i be such that (πy)" 1 ^. Then

Therefore we have

/jrOΓ'OW)**,..
and so

IK/.-/)**,. ,.,11*^7 for a l l * .

This fact and the absolute continuity of the norm of / give

for sufficiently large k. Since (/*%*„,Λii, { A B l J k ( i ) e Λ by (0, 0)e3i, it follows
that (/ZΓn, £%rB)^3l for all n. Thus, (/, £)e3l and the proof of the equality
^=Sif,i(F) is finished.

II. If (0, 0)^iR, then we use Hiai's argumentation (see [4] beginning of
the proof of Theorem 3.4). This completes the proof.

We say that a functional Φ: EM^R — \_—oo, cx>] is proper if Φ(/)>~oo for
all f^EM and Φ^oo. For a measurable function f:T-*X, let Supρ/=
{ίeΞΓ:/(ί)^0}. A functional Φ is called to be additive if Φ(f+g)=Φ(f)+Φ(g)
for each /, g^EM such that /z(Supρ/nSuρpg )=0.

Also, Lemmas 4.1, 4.2, 4.3 and 4.4 in [4] are true in our case. The proofs
of these lemmas are similar because they do not require directly the assumption
that Lp is solid. Now, using our modified lemmas and Hiai's method, we can
prove the following representation theorems for additive lower semicontinuous
and continuous functionals on Musielak-Orlicz spaces of vector-valued functions.

THEOREM 7. Let Φ : EM->R be an additive lower semicontinuous proper func-
tional. Then there exists a Σx <B-measurable function <p:TxX->R such that
<p(t, 0)=0 a.e., <p(t, •) is lower semicontinuous and proper for every ί e T and

o(t, f(t))dμ for every f^EM.

Moreover such a function φ is unique up to sets of the form NxXwith μ(N)=O.
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THEOREM 8. If Φ: EM-+R is an additive continuous functional, then there
exists a function <p: TxX-+R such that <p{t, 0)=0 a.e., <p satisfies Caratheodory
conditions (/. e. φ(t, x) is measurable in t and continuous in x) and

Φ(f) = \ <p(t, f(f))dμ for every fe=EM.

Moreover such a function ψ is unique up to sets of the form NxX with μ(N)=0.
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