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A UNIQUENESS THEOREM FOR MINIMAL
SURFACES IN §°

By MAKOTO SAKAKI

§1. Introduction.

R?® and S® have some similar properties. First both of them have congruent
translations such as the parallel translations or the rotations, and secondly they
have the concept of the convex hull. ([1]).

W.H. Meeks Il states some uniqueness theorems for minimal surfaces in
R?® and one of the theorems is the following.

THEOREM 1 (Meeks IIl [3]). Suppose y s a C*Jordan curve on a plane.
Then there exists a positive number e so that any Jordan curve in R® which 1s ¢
close to 7 in the C*-norm is the boundary curve of a unique compact minimal sur-
face. Furthermore, this mummal surface is a graph over the plane.

We will show anologous theorem paying attention to the next paragraph
for minimal surfaces in S°

THEOREM 2. Suppose that y is a C*-Jordan curve on a geodesic 2-sphere in
S® and belongs to some open hemisphere of S®. Then there exists a positiwe num-
ber e such that any Jordan curve in S® which 1s e close to v in the C*norm 1s the
boundary curve of a unique compact minimal surface in the open hemisphere. And
also this minimal surface can be represented as a graph over the geodesic 2-sphere.

§2. Preparation.

We introduce for our arguement the following model for S® which is found
in [2].

We identify R® which S® by the stereographic projection from the point
0, 0,0, —1). The origin O=(0, 0, 0) corresponds to the south pole of the pro-
jection. The geodesics of S*® correspond to the all straight lines through O, or
all great circles of the unit sphere S centered at O, or all plane circles meeting
S in antipodal points. The geodesic 2-spheres of S*® correspond to all planes
through O, or the sphere S, or all Euclidean spheres which meet S in a great
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circle of S. All plane circles correspond to the small circles in S®. So con-
sider all plane circles which intersect orthogonally with xy-plane P and S. Then
we find some translation along this flow of circles corresponds to a rotation
which leaves C=the intersection of P and S fixed.

§3. Proof of the theorem 2.

Proof. We use the same method as [3]. By the assumption of the theorem
we shall assume that 7 is on P and belongs to the interior of C, which is the
argument in the model of S®. Let F={y,|0=¢t<1} be a C*foliation by Jordan
curves of the annular region in P bounded by 7,=7 and 7,=C.

Consider a point which goes from each point on 7, along the geodesic m
on P in the direction of the inner normal by 8. Here B is a small positive
number so that for each ¢ we obtain another Jordan curve «; as a set of the
points above. Suppose that on a geodesic 2-sphere two geodesics intersect
orthogonally at some point @, and let d(3) be the distance between the two
points each of which is on each of the two geodesics and is far from Q by p.
Consider a point which goes above (below) by B from each point on . along
the geodesic n through the point that is orthogonal to P, and around this point
construct a geodesic circle of radius d(8) on the geodesic 2-sphere made by m
and n. By these constructions we obtain the torus 77(7T;) which is around «,
and contains 7, for each . Here we put a new restriction on 8. The number
B should be small enough for Tf (or T7) to have positive mean curvature with
respect to the inner normal.

Take two points X*, X~ on z-axis which are far from O by d(8)—p and
construct two geodesic 2-spheres P*, P~ including C and X* or X-. Let S, be
a piecewise smooth sphere constructed by T7, T7, P and P-, which contains
7:. Then there are subsets Af, A;, Df and D; of Ty, T#, P* and P- such that
S, is the union of A}, Ay, D} and Dj.

Let G={f:S*>S*|f is a C*diffeomorphism} and

N={f|f is contained in G and satisfies (1) (2) (3)}.
1) |If(x)—=x||<é& for all points x in S3
2) (Df:)/IDf zw)ll, v)>cos y for all x in S* and v in T,S* with [jv]|=1.
(3) f(@int Af) and f(int A7) have positive mean curvature for all t.

Here we take £>0 such that &-neighborhood of P* (or P-) and the convex hull
of &-neighborhood of 7 are disjoint and set

y=min {the angle between v and the tangent vector at x of the
small circle through x which is orthogonal to P and S}.

Here we take minimum among all x in A} and v in T,.S,. Construct the co-
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ordinate system in S® by the flow of small circles orthogonal to P and S, and
by the coordinate system on the geodesic 2-spheres orthogonal to the flow. The
inner product in (2) is the inner product of R® in such coordinate. N is an
open neighborhood of identity map in G.

Let M be a minimal surface in S with boundary f(y) where f is contained
in N. We will first show that M is contained in the ball B bounded by f(S,).
If M is not contained in B, then oc=max{t|0<t<1, the intersection of M and
f(S;) is not empty} is greater than 0. By condition (1), the convex hull of f(y)
is contained between f(P*) and f(P-). This shows that the intersection of M
and f(S,) is contained in the union of (A7) and f(A;). And also by condition
(1), M is contained in the interior of the ball bounded by f(S;). Thus ¢<1.
Condition (2) implies that the interior angles along the surfaces f(AS) and f(A;)
are less than =. Hence the intersection of M and f(S,) is contained in the
union of f(int Af) and f(int A;7). We find this fact is a contradiction by con-
dition (3) and by maximum principle. So we obtain ¢=0 and M is contained
in B, and also int M is contained in int B.

We regard the flow of small circles orthogonal to P and S as vertical lines.
Condition (2) implies that f (union of A§ and D?) and f(union of Aj and Dp)
are graphs over P in the above sence. This fact and the fact that int M is
contained in int B show that the nontrivial rotation of M along the flow of
small circles orthogonal to P and S is disjoint from f(y), which is essential.

If M is not a graph over P, then some nontrivial rotation of int M inter-
sects int M and locally above it. By using maximum principle we can lead a
contradiction. Thus M is a graph over P. The same method leads a contra-
diction if there are two distinct minimal surfaces in S with boundary f().
Thus f(7) is the boundary of a unique compact minimal surface in S. q.e.d.
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