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A UNIQUENESS THEOREM FOR MINIMAL
SURFACES IN Ss

BY MAKOTO SAKAKI

§ 1. Introduction.

R3 and S3 have some similar properties. First both of them have congruent
translations such as the parallel translations or the rotations, and secondly they
have the concept of the convex hull. ([1]).

W. H. Meeks III states some uniqueness theorems for minimal surfaces in
R3 and one of the theorems is the following.

THEOREM 1 (Meeks III [3]). Suppose γ is a C2-Jordan curve on a plane.
Then there exists a positive number ε so that any Jordan curve in R3 which is ε
close to γ in the C2-norm is the boundary curve of a unique compact minimal sur-
face. Furthermore, this minimal surface is a graph over the plane.

We will show anologous theorem paying attention to the next paragraph
for minimal surfaces in S3.

THEOREM 2. Suppose that γ is a C2-Jordan curve on a geodesic 2-sphere in
S3 and belongs to some open hemisphere of S3. Then there exists a positive num-
ber ε such that any Jordan curve in S3 which is ε close to γ in the C2-norm is the
boundary curve of a unique compact minimal surface in the open hemisphere. And
also this minimal surface can be represented as a graph over the geodesic 2-sphere.

§ 2. Preparation.

We introduce for our arguement the following model for S3 which is found
in [2].

We identify R3 which S3 by the stereographic projection from the point
(0, 0, 0, —1). The origin O = (0, 0, 0) corresponds to the south pole of the pro-
jection. The geodesies of S3 correspond to the all straight lines through O, or
all great circles of the unit sphere S centered at O, or all plane circles meeting
S in antipodal points. The geodesic 2-spheres of S3 correspond to all planes
through O, or the sphere S, or all Euclidean spheres which meet 5 in a great
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circle of S. All plane circles correspond to the small circles in S3. So con-
sider all plane circles which intersect orthogonally with xy-plane P and S. Then
we find some translation along this flow of circles corresponds to a rotation
which leaves C=the intersection of P and S fixed.

§3. Proof of the theorem 2.

Proof. We use the same method as [3]. By the assumption of the theorem
we shall assume that γ is on P and belongs to the interior of C, which is the
argument in the model of S3. Let F={γt\Q<Lt^\.} be a C2-foliation by Jordan
curves of the annular region in P bounded by TO—Ϊ and T Ί = C .

Consider a point which goes from each point on γt along the geodesic m
on P in the direction of the inner normal by β. Here β is a small positive
number so that for each t we obtain another Jordan curve at as a set of the
points above. Suppose that on a geodesic 2-sphere two geodesies intersect
orthogonally at some point Q, and let δ(β) be the distance between the two
points each of which is on each of the two geodesies and is far from Q by β.
Consider a point which goes above (below) by β from each point on at along
the geodesic n through the point that is orthogonal to P, and around this point
construct a geodesic circle of radius δ(β) on the geodesic 2-sphere made by m
and n. By these constructions we obtain the torus Tt(Tτ) which is around at

and contains γt for each t. Here we put a new restriction on β. The number
β should be small enough for Tf (or Tj) to have positive mean curvature with
respect to the inner normal.

Take two points X+, X~ on z-axis which are far from O by δ(β)—β and
construct two geodesic 2-sρheres P+, P~ including C and X+ or X~. Let St be
a piecewise smooth sphere constructed by Tt, Tj, P+ and P~, which contains
γt. Then there are subsets At, Aj, Di and Dj of Tj, Tf, P+ and P~ such that
St is the union of At, Aj, Dt and Dj.

Let G={f: S3->S3 |/ is a C2-diffeomorphism} and

N={f\f is contained in G and satisfies (1) (2) (3)}.

(1) 11/00-%||<? for all points x in S3.

(2) (Dfx(v)/\\Dfx(v)\\, ^)>cos>7 for all x in S3 and v in TXS
3 with ||v|| = l.

(3) /(int At) and /(int Aj) have positive mean curvature for all t.

Here we take f > 0 such that ^-neighborhood of P+ (or P") and the convex hull
of ^-neighborhood of γ are disjoint and set

^=min{the angle between v and the tangent vector at x of the
small circle through x which is orthogonal to P and 5}.

Here we take minimum among all x in A% and v in TXSO. Construct the co-
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ordinate system in Ss by the flow of small circles orthogonal to P and S, and
by the coordinate system on the geodesic 2-spheres orthogonal to the flow. The
inner product in (2) is the inner product of R* in such coordinate. N is an
open neighborhood of identity map in G.

Let M be a minimal surface in S with boundary f(γ) where / is contained
in N. We will first show that M is contained in the ball B bounded by f(S0).
If M is not contained in B, then σ = m a x { ί | 0 ^ ί ^ l , the intersection of M and
f(St) is not empty} is greater than 0. By condition (1), the convex hull of f(γ)
is contained between f(P+) and f{P~). This shows that the intersection of M
and f(Sσ) is contained in the union of f(Ai) and f(Aϊ). And also by condition
(1), M is contained in the interior of the ball bounded by /(Si). Thus σ<l.
Condition (2) implies that the interior angles along the surfaces f(Ai) and f(Aά)
are less than π. Hence the intersection of M and f(Sσ) is contained in the
union of /(int Λί) and /(int Ao). We find this fact is a contradiction by con-
dition (3) and by maximum principle. So we obtain σ=0 and M is contained
in B, and also int M is contained in int B.

We regard the flow of small circles orthogonal to P and S as vertical lines.
Condition (2) implies that /(union of A% and D%) and /(union of A^ and Do)
are graphs over P in the above sence. This fact and the fact that int M is
contained in int B show that the nontrivial rotation of M along the flow of
small circles orthogonal to P and S is disjoint from f(γ), which is essential.

If M is not a graph over P, then some nontrivial rotation of int M inter-
sects intM and locally above it. By using maximum principle we can lead a
contradiction. Thus M i s a graph over P. The same method leads a contra-
diction if there are two distinct minimal surfaces in 5 with boundary f(γ).
Thus f(γ) is the boundary of a unique compact minimal surface in S. q. e. d.
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