M. SAKAI KODAI MATH. J. 01 (1987), 39—41

A UNIQUENESS THEOREM FOR MINIMAL SURFACES IN *S^s*

BY MAKOTO SAKAKI

§ **1. Introduction.**

R 3 and *S³* have some similar properties. First both of them have congruent translations such as the parallel translations or the rotations, and secondly they have the concept of the convex hull. $([1])$.

W. H. Meeks III states some uniqueness theorems for minimal surfaces in *R 3* and one of the theorems is the following.

THEOREM 1 (Meeks III [3]). *Suppose γ is a C² -Jordan curve on a plane. Then there exists a positive number ε so that any Jordan curve in R³ which is* ε *close to γ in the C² -norm is the boundary curve of a unique compact minimal surface. Furthermore, this minimal surface is a graph over the plane.*

We will show anologous theorem paying attention to the next paragraph for minimal surfaces in *S³ .*

THEOREM 2. *Suppose that γ is a C² -Jordan curve on a geodesic 2-sphere in S 3 and belongs to some open hemisphere of S³ . Then there exists a positive number* ε *such that any Jordan curve in S³ which is* ε *close to γ in the C² -norm is the boundary curve of a unique compact minimal surface in the open hemisphere. And also this minimal surface can be represented as a graph over the geodesic 2-sphere.*

§ **2. Preparation.**

We introduce for our arguement the following model for *S³* which is found in [2].

We identify R^3 which S^3 by the stereographic projection from the point $(0, 0, 0, -1)$. The origin $O = (0, 0, 0)$ corresponds to the south pole of the projection. The geodesies of *S³* correspond to the all straight lines through *O,* or all great circles of the unit sphere S centered at *O,* or all plane circles meeting S in antipodal points. The geodesic 2-spheres of *S³* correspond to all planes through *O,* or the sphere *S,* or all Euclidean spheres which meet 5 in a great

Received March 7, 1986

40 MAKOTO SAKAKI

circle of S. All plane circles correspond to the small circles in S^s . So con sider all plane circles which intersect orthogonally with *xy-plane P* and *S.* Then we find some translation along this flow of circles corresponds to a rotation which leaves C=the intersection of *P* and S fixed.

§3. **Proof of the theorem 2.**

Proof. We use the same method as [3]. By the assumption of the theorem we shall assume that γ is on P and belongs to the interior of C, which is the argument in the model of S³. Let $F = \{ \gamma_t \mid 0 \le t \le 1 \}$ be a C²-foliation by Jordan curves of the annular region in P bounded by $\gamma_0 = \gamma$ and $\gamma_1 = C$.

Consider a point which goes from each point on *γ^t* along the geodesic *m* on *P* in the direction of the inner normal by β . Here β is a small positive number so that for each t we obtain another Jordan curve α_t as a set of the points above. Suppose that on a geodesic 2-sphere two geodesics intersect orthogonally at some point Q , and let $\delta(\beta)$ be the distance between the two points each of which is on each of the two geodesies and is far from *Q* by *β.* Consider a point which goes above (below) by β from each point on α_t along the geodesic *n* through the point that is orthogonal to *P,* and around this point construct a geodesic circle of radius $\delta(\beta)$ on the geodesic 2-sphere made by m and *n*. By these constructions we obtain the torus $T_t^+(T_t)$ which is around α_t and contains γ_t for each *t*. Here we put a new restriction on β . The number β should be small enough for T_t^+ (or T_t^-) to have positive mean curvature with respect to the inner normal.

Take two points X^+ , X^- on *z*-axis which are far from *O* by $\delta(\beta)$ - β and construct two geodesic 2-spheres P^+ , P^- including C and X^+ or X^- . Let S_t be a piecewise smooth sphere constructed by T_t^+ , T_t^- , P^+ and P^- , which contains *t*. Then there are subsets A_t^+ , A_t^- , D_t^+ and D_t^- of T_t^- , T_t^+ , P^+ and P^- such that S_t is the union of A_t^+ , A_t^- , D_t^+ and D_t^- .

Let $G = \{f : S^3 \rightarrow S^3 | f$ is a C^2 -diffeomorphism} and

 $N=\{f\mid f$ is contained in *G* and satisfies (1) (2) (3)}.

- (1) $||f(x)-x|| < \xi$ for all points x in S³.
- (2) $(Df_x(v)/\|Df_x(v)\|, v) > \cos \eta$ for all x in S³ and v in T_xS^3 with $||v||=1$.
- (3) $f(int A_t^+)$ and $f(int A_t^-)$ have positive mean curvature for all t.

Here we take $\xi > 0$ such that ξ -neighborhood of P^+ (or P^-) and the convex hull of ξ -neighborhood of γ are disjoint and set

 η =min{the angle between *v* and the tangent vector at *x* of the small circle through *x* which is orthogonal to *P* and 5}.

Here we take minimum among all x in A_0^+ and v in T_xS_0 . Construct the co

ordinate system in *S^s* by the flow of small circles orthogonal to *P* and *S,* and by the coordinate system on the geodesic 2-spheres orthogonal to the flow. The inner product in (2) is the inner product of R^3 in such coordinate. N is an open neighborhood of identity map in *G.*

Let *M* be a minimal surface in S with boundary $f(\gamma)$ where f is contained in *N*. We will first show that *M* is contained in the ball *B* bounded by $f(S_0)$. If *M* is not contained in *B*, then $\sigma = \max\{t \mid 0 \leq t \leq 1\}$, the intersection of *M* and $f(S_t)$ is not empty} is greater than 0. By condition (1), the convex hull of $f(\gamma)$ is contained between $f(P^+)$ and $f(P^-)$. This shows that the intersection of M and $f(S_a)$ is contained in the union of $f(A^+_a)$ and $f(A^-_a)$. And also by condition (1), *M* is contained in the interior of the ball bounded by $f(S_1)$. Thus $\sigma < 1$. Condition (2) implies that the interior angles along the surfaces $f(A_{\sigma}^+)$ and $f(A_{\sigma}^-)$ *are* less than π . Hence the intersection of M and $f(S_{\sigma})$ is contained in the union of $f(int \, A_{\sigma}^+)$ and $f(int \, A_{\sigma}^-)$. We find this fact is a contradiction by condition (3) and by maximum principle. So we obtain $\sigma=0$ and M is contained in *B,* and also int *M* is contained in int *B.*

We regard the flow of small circles orthogonal to *P* and S as vertical lines. Condition (2) implies that f (union of A_0^+ and D_0^+) and f (union of A_0^- and D_0^-) are graphs over P in the above sence. This fact and the fact that int M is contained in int *B* show that the nontrivial rotation of *M* along the flow of small circles orthogonal to P and S is disjoint from $f(\gamma)$, which is essential.

If *M* is not a graph over *P*, then some nontrivial rotation of int *M* intersects int M and locally above it. By using maximum principle we can lead a contradiction. Thus M is a graph over P . The same method leads a contradiction if there are two distinct minimal surfaces in 5 with boundary *f(γ).* Thus $f(\gamma)$ is the boundary of a unique compact minimal surface in S. q. e. d.

REFERENCES

- [1] H.B. Lawson, JR., The global behavior of minimal surfaces in $Sⁿ$, Ann. Math., 92 (1970), 224-237.
- [2] H.B. Lawson, JR., Complete minimal surfaces in S^3 , Ann. Math., 92 (1970), 335-374.
- [3] W.H. MEEKS III, Uniqueness theorems for minimal surfaces, Illinois J. Math., 25 (1981), 318-336.

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY