M. SAKAI KODAI MATH. J. 01 (1987), 39-41

A UNIQUENESS THEOREM FOR MINIMAL SURFACES IN S³

ΒΥ ΜΑΚΟΤΟ SAKAKI

§1. Introduction.

 R^{3} and S^{3} have some similar properties. First both of them have congruent translations such as the parallel translations or the rotations, and secondly they have the concept of the convex hull. ([1]).

W.H. Meeks III states some uniqueness theorems for minimal surfaces in R^3 and one of the theorems is the following.

THEOREM 1 (Meeks III [3]). Suppose γ is a C²-Jordan curve on a plane. Then there exists a positive number ε so that any Jordan curve in R³ which is ε close to γ in the C²-norm is the boundary curve of a unique compact minimal surface. Furthermore, this minimal surface is a graph over the plane.

We will show anologous theorem paying attention to the next paragraph for minimal surfaces in S^3 .

THEOREM 2. Suppose that γ is a C²-Jordan curve on a geodesic 2-sphere in S³ and belongs to some open hemisphere of S³. Then there exists a positive number ε such that any Jordan curve in S³ which is ε close to γ in the C²-norm is the boundary curve of a unique compact minimal surface in the open hemisphere. And also this minimal surface can be represented as a graph over the geodesic 2-sphere.

§2. Preparation.

We introduce for our argument the following model for S^3 which is found in [2].

We identify R^3 which S^3 by the stereographic projection from the point (0, 0, 0, -1). The origin O=(0, 0, 0) corresponds to the south pole of the projection. The geodesics of S^3 correspond to the all straight lines through O, or all great circles of the unit sphere S centered at O, or all plane circles meeting S in antipodal points. The geodesic 2-spheres of S^3 correspond to all planes through O, or the sphere S, or all Euclidean spheres which meet S in a great

Received March 7, 1986

MAKOTO SAKAKI

circle of S. All plane circles correspond to the small circles in S^{s} . So consider all plane circles which intersect orthogonally with xy-plane P and S. Then we find some translation along this flow of circles corresponds to a rotation which leaves C=the intersection of P and S fixed.

§3. Proof of the theorem 2.

Proof. We use the same method as [3]. By the assumption of the theorem we shall assume that γ is on P and belongs to the interior of C, which is the argument in the model of S^3 . Let $F = \{\gamma_t | 0 \le t \le 1\}$ be a C^2 -foliation by Jordan curves of the annular region in P bounded by $\gamma_0 = \gamma$ and $\gamma_1 = C$.

Consider a point which goes from each point on γ_t along the geodesic mon P in the direction of the inner normal by β . Here β is a small positive number so that for each t we obtain another Jordan curve α_t as a set of the points above. Suppose that on a geodesic 2-sphere two geodesics intersect orthogonally at some point Q, and let $\delta(\beta)$ be the distance between the two points each of which is on each of the two geodesics and is far from Q by β . Consider a point which goes above (below) by β from each point on α_t along the geodesic n through the point that is orthogonal to P, and around this point construct a geodesic circle of radius $\delta(\beta)$ on the geodesic 2-sphere made by mand n. By these constructions we obtain the torus $T_t^+(T_t^-)$ which is around α_t and contains γ_t for each t. Here we put a new restriction on β . The number β should be small enough for T_t^+ (or T_t^-) to have positive mean curvature with respect to the inner normal.

Take two points X^+ , X^- on z-axis which are far from O by $\delta(\beta) - \beta$ and construct two geodesic 2-spheres P^+ , P^- including C and X^+ or X^- . Let S_t be a piecewise smooth sphere constructed by T_t^+ , T_t^- , P^+ and P^- , which contains γ_t . Then there are subsets A_t^+ , A_t^- , D_t^+ and D_t^- of T_t^- , T_t^+ , P^+ and P^- such that S_t is the union of A_t^+ , A_t^- , D_t^+ and D_t^- .

Let $G = \{f : S^3 \rightarrow S^3 | f \text{ is a } C^2\text{-diffeomorphism}\}$ and

 $N = \{f | f \text{ is contained in } G \text{ and satisfies (1) (2) (3)}\}.$

- (1) $||f(x)-x|| < \xi$ for all points x in S^3 .
- (2) $(Df_x(v)/||Df_x(v)||, v) > \cos \eta$ for all x in S³ and v in T_xS^3 with ||v|| = 1.
- (3) $f(\operatorname{int} A_t^+)$ and $f(\operatorname{int} A_t^-)$ have positive mean curvature for all t.

Here we take $\xi > 0$ such that ξ -neighborhood of P^+ (or P^-) and the convex hull of ξ -neighborhood of γ are disjoint and set

 $\eta = \min \{ \text{the angle between } v \text{ and the tangent vector at } x \text{ of the small circle through } x \text{ which is orthogonal to } P \text{ and } S \}.$

Here we take minimum among all x in A_0^+ and v in T_xS_0 . Construct the co-

ordinate system in S^3 by the flow of small circles orthogonal to P and S, and by the coordinate system on the geodesic 2-spheres orthogonal to the flow. The inner product in (2) is the inner product of R^3 in such coordinate. N is an open neighborhood of identity map in G.

Let M be a minimal surface in S with boundary $f(\gamma)$ where f is contained in N. We will first show that M is contained in the ball B bounded by $f(S_0)$. If M is not contained in B, then $\sigma = \max\{t | 0 \le t \le 1$, the intersection of M and $f(S_t)$ is not empty} is greater than 0. By condition (1), the convex hull of $f(\gamma)$ is contained between $f(P^+)$ and $f(P^-)$. This shows that the intersection of Mand $f(S_{\sigma})$ is contained in the union of $f(A_{\sigma}^+)$ and $f(A_{\sigma}^-)$. And also by condition (1), M is contained in the interior of the ball bounded by $f(S_1)$. Thus $\sigma < 1$. Condition (2) implies that the interior angles along the surfaces $f(A_{\sigma}^+)$ and $f(A_{\sigma}^-)$ are less than π . Hence the intersection of M and $f(S_{\sigma})$ is contained in the union of $f(\operatorname{int} A_{\sigma}^+)$ and $f(\operatorname{int} A_{\sigma}^-)$. We find this fact is a contradiction by condition (3) and by maximum principle. So we obtain $\sigma = 0$ and M is contained in B, and also int M is contained in int B.

We regard the flow of small circles orthogonal to P and S as vertical lines. Condition (2) implies that f (union of A_0^+ and D_0^+) and f(union of A_0^- and D_0^-) are graphs over P in the above sence. This fact and the fact that int M is contained in int B show that the nontrivial rotation of M along the flow of small circles orthogonal to P and S is disjoint from $f(\gamma)$, which is essential.

If M is not a graph over P, then some nontrivial rotation of $\operatorname{int} M$ intersects $\operatorname{int} M$ and locally above it. By using maximum principle we can lead a contradiction. Thus M is a graph over P. The same method leads a contradiction if there are two distinct minimal surfaces in S with boundary $f(\gamma)$. Thus $f(\gamma)$ is the boundary of a unique compact minimal surface in S. q.e.d.

References

- H.B. LAWSON, JR., The global behavior of minimal surfaces in Sⁿ, Ann. Math., 92 (1970), 224-237.
- [2] H.B. LAWSON, JR., Complete minimal surfaces in S³, Ann. Math., 92 (1970), 335-374.
- [3] W.H. MEEKS III, Uniqueness theorems for minimal surfaces, Illinois J. Math., 25 (1981), 318-336.

Department of Mathematics Tokyo Institute of Technology