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ORIENTATION REVERSING INVOLUTIONS
ON BRIESKORN SPHERES

By YASUHIKO KITADA

§1. Introduction and Results.

Free involutions on homotopy spheres have been studied extensively by
many topologists, and in particular, when the sphere bounds a parallelizable
manifold, interesting examples have been constructed using Brieskorn spheres
or plumbing methods ([1], [2], [5], [6], [7]). But as for non-free involutions,
especially when the involution reverses the orientation, few results have been

known so far.
The purpose of this paper is to classify the orientation reversing involutions

on Brieskorn spheres of dimension 4%2-+1 which are defined by the conjugation
of complex numbers. In this case, the fixed point set is of dimension 2% and
to classify these examples, we meet with the failure of the “ Gap Hypothesis”
([3], [9]). However, with the aid of Z,-surgery theory due to K.H. Dovermann

[4], this situation can be handled.
Le us begin with showing our examples. Let C?*? be the complex (n+2)-

space with the conjugate involution, and f; be a polynomial function
fa(zo, 23, 5 Zns)=2¢+23+ -+ 4254

where n is even, and d=2¢+1 is odd.
Denote by S?"*+® the unit sphere in C?** and set

W?lni-l:le(())mSZn-Hi.

The involution on C?*® keeps W%**! invariant and defines an involution 7; on
W§n+1.

The second construction is the equivariant attaching method ([1]). For a
unit vector xR"*!, let @, be the reflection with respect to the hyperplane
normal to x:

0:y=y—2x, y>x,

where <, ) is the usual inner product in R**!. Let ¢ be the diffeomorphism of
S*x S™ defined by
¢(x; y):(ﬂzﬁyx, 010yy) .
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Then using the relation 6,4,=A8,A* for A=0(n+1), it is easy to verify that
PUx, 9)=>0.0,)x, (0,60,)%) .

The diffeomorphism ¢ is equivariant with respect to the involution: (x, y)—
(x, —y) of S*xS™ Therefore we have an involution 7, on the manifold

Z'Znn___.snxpnn U D*+1x S,
(/,q

where D"*'x S™ is attached to S"XD™*' via ¢? and the involution is given by
(%, y)=(x, —y). About these two examples, we can prove their equivalence.

THEOREM 1. (Wi, Typer) and (23, t,) are diffeomorphic involutions. In
fact they are diffeomorphic as Z,XO(n+1)-manifolds. (For the O(n+-1)-structure,
see [2], [6].)

Denote by S®*7-(») the unit sphere in R.PR", where R’ (resp. R") has the
trivial (resp. antipodal) involution. Since the fixed point set of W3yt is S™, we
have a Z,-equivariant homotopy equivalence:

ng:ll —_— Szn+1(n+1) .

This.map can be constructed as follows. Take an equivariant open disk neigh-
borhood U of a fixed point in W=W3Z:#!, and consider the natural collapsing
map

f:W———)W/W—U.

Then W/W—U is Z,-homeomorphic to S*"*(n+1), and f is of degree=1, and
at the fixed point set, f%z is also a degree 1 map. By the result of Matumoto
[8], f is a Z,-homotopy equivalence.

For the Z,-equivariant normal cobordism class of our example, we have

THEOREM 2. Wirht is Z,-equivariantly novmally cobordant to the linear
involution S*"*(n+1). :

Finally, by the Z,-surgery theory, we can classify Wiyt for all q.

THEOREM 3. (Wirh, Toger) and Wiz, Toys) arve diffeomorphic as wnvolu-
tions if ¢=q’ (mod. 4) or ¢g+¢’=3 (mod. 4) holds.

Thus, when n+42 is not a power of 2, WizH and Wiz, are Z,-equivariantly
diffeomorphic if and only if they are diffeomorphic forgetting the involution.
§2. Z,XO(n+1)-action on Wiril,

Let the action of O(n+1) be defined by A(zo, 21, ***, Za+1)=(20, Az, ***, Zns1))
on Wizh and on X+,
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A(x, y)=(Ax, Ay), for A€0(n+1).

The orbit space is the 2-disk D? in either case and the projection maps are
given by

b: W%‘:xl —> D2, p(zo, 21, Zna))=—20/7¢

where 7,>0 satisfies r2+r2*'=1 and

[x|P=|y|*+2<x, y>
[x|?+1y]?

If we give the orbit space D? the complex conjugate involution, these projections
are equivariant.

From the theory of O(n-+1)-manifolds, these two examples are diffeomorphic
as O(n+1)-manifolds ([2], [6]). In our case, the involution commutes with the
O(n+1)-action and the fixed point set of the subgroup O(n—1) (i.e. Wi, or 23)
meets every O(n—+1)-orbit. Therefore, to prove the uniqueness of the involution
which is commutative with the O(n+1)-action, it is enough to prove the unique-
ness of the involution on W3, or on 27%.

The involution r=7, on X} satisfies the following properties :

w2 — DY on(x, y)=

(a) t commutes with the O(2)-action.

(b) = commutes with the projection = onto the orbit space, where the orbit
space D? is given the conjugation involution.

(¢) The fixed point set of r is S* and lies over 1€ D2

LEMMA. The involution on X% which satisfies the three conditions above 1s
unique up to O(2)-sotopy.
Proof. Express the points of Yi=S'xD?|\ ) D?*XS' by pairs of complex
q
numbers (x, y). The projection z:Y3—D? is given by

(x+iy)(2+15)
lx|* 4131

and the attaching map can be written as
U x, y)=(x5)x, (x3)*y).

Let D,=int D?, then the portion over D;,, =~*(D,) is an O(2)-bundle which is
usually called the regular bundle, and the singular bundle z-*(0D?) consists of
the points with orbit type (O(2)/K) where

(x, y)=

K:(é i(l))=0(1>c0(2).

On (29X, the N(K)/K (=Z,)-action is given by (x, y)—(—x, —y). Consider
the total space of the singular bundle:
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2B =02)/KX y) k2.

Identify O(2)/K with S! via the identification :

a: <a _Eb)K%a—}—z'b, e==+1.

b sa
The N(K)/K-action corresponds to a+ib— —(a+:b). The subset X ¥’ of points
having the isotropy type (K) can then be written as X =S5'X,,S", where
(z, w)~(—z, —w). The point [z, w]€2X® can be re-parametrized by the point
(u, v)eS'XS* such that (u, v)=(zw, w?. Then the O(2)-action on X ¥ can be
expressed by
Au, v)=(¢A)u, v) if A=S0Q®) and

Au, v)=(@Aav, v) if A€0(2)—-S0Q2),

where ¢:0(2)—>0(2)/Ki>S‘CC. The projection 7 :Y“®’—a@D? is just the second
projection map (u, v)—wv. We shall consider the involution z on the singular
bundle ¥, Given u<S?, choose A=SO(2) such that ¢(A)=u. Since z com-
mutes with A, we have

(u, v)=7(¢(4) 1, v)=7A({, v)=Ar(, v)
IA(O'v, 17):‘(110'1,, 17) »

where ¢, is an element of S' such that (1, v)=(¢,, 7). Let Be0O(2)—S0(2)
satisfy ¢(B)=1. Then we have

tB(u, v)=t(@v, v)=(@ve,, D) and
Br(u, v)=B(uo,, 0)=(ié,0, D).

Hence ve,=75, must be real, 7.e. ¢,==+7. However at the fixed point set of
the involution, v=1 and ¢, must be 1. This shows that 7(u, v)=(u?, 7) on XX,

Next we shall look at the involution on the regular bundle X3}—2X®—D,.
Similarly as before, we may write

(4, v)=(Apy, D) for (4, v)€0@)XD,.

From the relation r°=id, we have p,0;=/ (the identity matrix). Suppose that
0»=S0(2), then for real v, we have (0,)*=I, and p,==+I. But since r has no
fixed points on the regular bundle, p, cannot be /. On the other, as v
approaches 1, the Z,-equivariant map O(2)—0(2)/K must generate the fixed
point set. Therefore p, cannot be —I. This shows that p,&S0(2), and (p,)*
=] is always satisfied. Since the Z,-equivariant map

0v: D, —> 0(2)—S0(2)

is unique up to homotopy, the involution on X} is unique up to O(2)-isotopy.
This proves Lemma.
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§3. Z,-Normal Cobordism and Surgery.

We shall next consider the normal cobordism class of the Z,-homotopy
equivalence for WizH—S*"+(n+41). By using equivariant deformation or directly
by Theorem 1, we may replace Wirit by a Z,X O(n+1)-diffeomorphic manifold

%g:ll.e={(20’ 21y zn+‘)ES2n+3 Ifd(z()) 21 "t Zn+1):$},

(abbreviated W,) where ¢ is a small positive real number and d=2¢+1. W, is
the boundary of the manifold

F§n+2={(201 21y Z’IL+1)ED27H.4 [fd(z()) Zyy ttt, Zn+1):5},
which also has the Z,X0O(n+1)-action. Define
g: F§n+2 - DZ"”(?Z—I—I)

by g(zo, 21, =, Znw))=(Wy, We, =+, Waes), Where wp=2z,/vV1=|zI%, (k=1,2, -,
n+1). Then degree(g)=d and degree(g??)=1. The normal bundle vy of the
embedding of F. in C?*? is Z,-isomorphic to C.,XF.. Here, C, is the one
dimensional complex vector space with the conjugation as the Z,-action. The
Z-real vector bundle isomorphism tp, X C,=7(C?*?) | F. (tF,: tangent bundle of
F.) shows that

Tp X C; —> CPX D**+3(n+1)

I, |

Fo =  D"#n+D)

is a Z,-normal map of degree=d=2¢+1. We shall convert this normal map to
the one with degree=1.

Let w=exp(2ni/d) be the primitive d-th root of unity and p,=
(e'é@™, 0, ---, 0) (m=0, 1, ---, 2¢g=d—1) be the d points in F. which constitute
the inverse image g0, ---, 0). Then the involution fixes p, and maps p, to
pa-m for m=1, ---, 2q. Let D,, (m=0,1, -, 2q) be a (2n+2)-disk which is
mapped diffeomorphically to

n+1
Dy={(w,, -, war) € D" +1) | S w4l *S8},
where 0 is a small positive real number. Then put
2q
F'=F.—\Jint D, .
m=0

Since its boundary dF’ is the disjoint union of dF. and 0D,, m=0, 1, ---, 2q),
F’ is a cobordism between

0-F'=0D, and
0.F'=(—0D)\ - U(—aqu)Uan .
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Next, remove 2¢g 1-handles from F’ to obtain a cobordism F” between 0-F”=
2
0-F'=0D, and 0,F"= \_jl(—aDm)#an. To be precise, for m=1, .-+, 2q take 2¢

curves
Ln={(te ™, ni(et*—1))"?,0, -+, 0) | ts=t=t},

where p=1 (m=1, -+, ¢q) or —1 (m=q+1, -+, 2¢), and #; ¢, are real numbers
>1 satisfying
(¢ —1)=0(1—t;2e?' %) and

s(t0—1)=1—1,%",

Again the involution maps L, to Ls-n. L, connects D, to dF.. Remove 2g
l-handles with core L, equivariantly and we obtain the cobordism F”. By
construction it is easy to see that 9.F” is diffeomorphic to 0F.=W3kit.. As
for the map, g restricted to F/ maps F’ into D****(n+1)—int D;=S*"*(n+1)XI,
where we identify dD; with S?"**(n-+1)X 0 and 0D**+*(n+1) with S?"*(n+1)X 1.
g maps 0-F’ to S*+(n+1)X0, but does not map 0D,MN0+F’ to S+ (n+1)x1
for m=1.

To make g a correct normal map, we can move g by homotopy relative to
(0F.N0+F")Ud-F” to get a map (denoted by g’) with g/(6.F")CS***(n+1)X1.
Moreover since the original map g maps each core L, of the 1-handle to a line
in D**2(n-+1) and hence to a point in S***!(n-+1), this homotopy can be chosen
to preserve this property. Thus we obtain a Z,-normal map g’ of degree=1:

g/ : F// — Szn+l(n+l)xl ,
between 9-F"=S*"*(n+1) and 8.F"=Wi}..

Proof of Theorem 3.

We begin with the case ¢’=0. To apply the Z,-surgery theory of Dovermann
[4], we must check three invariants for the normal cobordism F” constructed
above.

(1) At the fixed point set, the cobordism is already a product cobordism. Hence

the Z, homology obstruction ¢z, vanishes.
(2) r=rankzz, Ken:(F”, Z) (mod. 2)

=rankzK,n+:(F”, Z)/2 (mod. 2)

=(d—1)/2 (mod. 2)=¢ (mod. 2)
(3) The abstract Kervaire obstruction ¢ (forgetting the Z,-action) is well

known:

{O if 2¢g+1==+1 (mod. 8)
C:

1 if 2¢+1=43 (mod. 8).
From (2) and (3), if ¢=0 (mod. 4), then all these obstructions vanish. On

the other, when ¢=3 (mod. 4), only r does not vanish. However, this case can
be handled in the following manner. Consider the involution (x, ¥)—(y, x) on
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Sm+ix S*+1, Form a connected sum of F” with S™*'xS"*! around a fixed point
in the interior of F”. This procedure does not change (1) and (3), but changes
r by one. Therefore surgery is possible when the abstract Kervaire obstruction
¢ vanishes. Thus by the equivariant s-cobordism theorem of Rothenberg [10],
we have proved Theorem 3 when ¢’=0. For the general case, consider the
Z,-normal cobordism between S*"*'(n41) and W3rty . and glue it to F” along
S*"+1(n41) to obtain the Z,-normal cobordism between Wizhl. and Wi ..
Then apply the same argument.

There is an alternative proof of Theorem 3 not using the result of Theo-
rem 2:

For two values of ¢, say ¢ and ¢/, take F, for each ¢ denoted by F(q) and
F(q’) respectively. Then F(g) and F(q’) are Z,-quivariantly parallelizable and
hence their connected sum along the boundary around a fixed point F(q)# F(q’)
is also equivariantly parallelizable. Consider the equivariant surgery problem
of killing the homotopy groups of F(g)# F(q’) relative to the boundary. As before,
we must examine the three invariants. The first obstruction ¢Zz vanishes since
the connected sum of the fixed point sets, each diffeomorphic to S*, is also
diffeomorphic to S®. If ¢ and ¢’ satisfies the condition of Theorem 3, then the
third obstruction (abstract Kervaire obstruction) also vanishes. For the obstruc-
tion », the argument goes similarly as before.
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