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ON MEROMORPHIC FUNCTIONS WITH FEW POLES

AND WITH REGIONS FREE OF ZEROS

BY HIDEHARU UEDA

1. Introduction. In this note we improve one of the results of Edrei and
Fuchs [3]. We shall adopt the terminology, notations and conventions of [3].
We shall write, for instance, [3, Lemma 4] to denote Lemma 4 of [3].

The aim of this investigation is to prove the following

THEOREM. Suppose that f(z) ( ^ const.) is a meromorphic function of lower
order μ(<+°°), and that δ(oo, /) = 1. Let the s B-regular paths

(1.1) L ι : z = t e ι β * ( ί )

0; / = l , 2, - . , s; a1(t)<a2(t)< ••• <as(t)<a1(t)Jr2π=-as+1(t))

divide \z\^t0 into s sectors, each of which has openιng^c>Q.
Let δ(>0) be fixed and let nδ(r) denote the number of distinct zeros of f(z)

which lie in to^\z\^r but outside the s sectors €ι(S) (1=1, 2, •••, s) defined by

t 0 ^ \z\ = ^

Assume that for every fixed δ(>0), we have

(1.2) nδ(r)=o(T(r, /)) ( r - o o ) .

Denote by p the number of deficient values of f(z) other than 0 and oo. Then

#gmin{s-l, 2μ, {2^(l-^)+l}+}.

This is an improvement of [3, Theorem 3].

2. Proof of Theorem.

2.1. Suppose that the function f(z) satisfies the hypotheses of Theorem and
it has τlf τ 2, •••, τp(τjφθ, Tjφco, j=l, 2, •••, p) among its deficient values.

The paths Lt(l=l, 2, •••, s) divide the z-plane into s sectors Sh Let Jt(r)
(r^t0) be the set of arguments corresponding to the arc of \z\—r in Si. Since
the Tj are deficient, there is at least one index /=/(/, r) such that for some
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fixed fc>0

(2.1) m(r, l/(f-τj); Jι(r))>κT(r, f) (r^r^U, /=/(/, r), /=1, 2, - , p).

With the equations (1.1) for the Lu we shall denote by St(δ) (0^δ<c/16) the
sector

aι(t)+δ<argz<aι+1(t)-δ, to^\z\=t<+&>

by / f (r , <5) t h e se t of a r g u m e n t s of t h e a r c \z\—r in St(δ) a n d by Iι(r, δ) t h e

complement of Mr, δ)in Jι(r, 0)=Jι(r).
Let {rm}T be a sequence of Pόlya peaks of order μ of T(r, f) with as-

sociated sequences {r'm}cΐ, W l ? frί<?'m<?'i, r[^rQ), (For the basic properties
and existence of Pόlya peaks the reader is referred to [2, p. 82].) Using [3,
Lemma C], we have for rm^r^2rm (m>m0)

m(r, l / ( / - r , ) ; 7,(r, 2d))fg

<89T(2r,

<(/c/2)T(r, / ) ,

provided that 0<δ<δ1=δ1(κy μ). Further, we may assume that δ^
Combining the above estimate with (2.1), we have

(2.2) m(r, l / (/-r , ) Mr, 23))>(c/2)T(r, /)

(rm^r^2rm, m>m0, 0<δ<δlf /=/(;, r), / = 1 , 2

If μ<ll2y the condition β(oo, / ) = 1 implies that />=0 (See [4].). In what
follows we assume that μ^l/2. This gives

(2.3) logr=o(T(r,f)) (r->oo).

A basic fact of Nevanlinna's theory is that

m(r, f'/(f-a))=o(Wr, /))

as r—>oo outside an exceptional set E which has finite measure. It is important
to note that E occurs in intervals where T(r, f) grows very rapidly in par-
ticular, E does not depend on the value α, and consideration of the growth
lemma from which it arises shows that it may be taken to be disjoint from the
intervals [rm, oτ m ] (m>m0), where σ>l is fixed and mo=mQ(σ).

Combining (2.2), (2.3), [3, Lemma B] and the estimate

(2.4) m(r, f'/f)+m(r, f'/(f-Tj))=o(T{r, /))

r->oo, y = l , 2, •••, p),
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we obtain

(2.5) m(r, flff /,(r, 23))>(*/3)T(r, f)

(rm^r^2rm, m>mOf 0<δ<δly l=l(j, r), / = 1 , 2, •••, p).

2.2. We choose now a constant M(>0). For the proof of p^s — 1 we take
M = l . For the proof of p^2μ we shall obtain a contradiction if we assume
p>2μ, and if we choose M so large that

(2.6) eM>16A2

2=U, A2=5eiπ/π,

and

(2.7)

where the positive constant K=K(μ, c, s, B, K) is defined in (2.33). If p>2μ(l—
c/π)+l>0, there is a number C'<Ξ(C/2, C) such that

(2.8) p>2μ{l-&c+c')/Aπ)+l.

In this case we choose M so large that (2.6) and

(2.9) -K/2+6'2vA2exp{l-(p-l)/2a-(3c+c')/4π)+μW}+4A2e-M/2<--K/4:

hold. We shall seek a contradiction from (2.6), (2.8) and (2.9), and deduce pS
2μ(l-c/π)+l.

2.3. By [3, Lemma 4]

(2.10) \f'(z)/f(z)\<A{T(2r, f)}A (\z\=r>r*>AπsB/δl9

where 31 is a set of discs with sum of radii less than 1. Assume that r'7ίl<r
< r ^ . It follows from (2.10) and the definition of Pόlya peaks that

\f\z)/f{z)\<A{{l+oiX))T{rm, f){2\z\V/rUA

<21+^AA\z\^{T(rmf f)/r&}Λ (r'm^\z\Sr/ϊι; m>m0,

Hence we can find a positive integer h such that

(2.11) \z-hf'(z)/f(z)\<{T(rn, f)/rί}A (r'n£\z\£rί; m>m0}

It follows now from [3, Lemma 2] that there is some δe(δi/2, δi) such that

(2.11) holds on the boundaries of Sι(δ)n(0 \z\r'J2<\z\<r^l2)) ( / = l , 2 , - , s ) .
\m=l /

From now on we assume that δ has been chosen in this way and we shall make
no further changes in the choice of δ. It is also easily seen that there are two
circles \z\=R'm(rm/3eM<R'm<rm/2eM) and \z\=R'n(4eMrn<R&<6eMrn) on
which (2.11) holds.

Let
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be the product, taken over all the poles of f\z)/f{z) which lie in to^L\z\^Rί
but outside the sectors εt(δ) {1=1, 2, •••, s).

Now, we define a sequence of functions {gk(z)}Z0+i Assume first that
there is a subsequence {rmk}%=i of {rm}? such that T(rmk, f)/r^k^l. In this
case we simply write {rk}°ΐ, {#*}?, {#*'}? and {P*(z)}? instead of {rmfc}~=1,
{R'mJU, {Rmk}U and {Pmjk(*)}t lf respectively, and define gk(z) (fe^l) by

Assume next that T(rm, /)/r&>l for m>m0. In this case we define
(k>m0) by

The function ^Λ(z) (k>m0) is regular in the intersection of Ul^i?? with
every S^^) (/=1, 2, •••, s). In \z\S-R'ί

(2.12)

By (2.11), (2.12) and the maximum modulus principle

(2.13) \gk(z)\<l

where Dk ι(k>m0, 1=1, 2, •••, s) is defined by

2.4. We first choose c*e(l, 2) such that (c//)//<4/3. Next, we select a
positive number b such that

(2.14) b< min {(c-c/)

By a well-known lemma of H. Cartan

(2.15) |P*(s)|

in 1^1^/?* but outside circles the sum of whose diameters is less than l
It follows from [3, Lemma 2] and (2.14) that (2.15) holds on the curves CkΛ

(k>m0, 1=1, 2, •••, s) defined by

with c'/2<γkιι<c/2. Further, we deduce from (2.14) that (2.15) holds on a
circle \z\=Rk with rk^Rk^c"rk (k>m0). By (2.12) and (2.5)

(2.16) m(Rk, l/gk;Jι(Rk, 2δ))>m{Rk, f/f')URk,

(k>m0, l=ί(j, Rk), j = l, 2, •••, p).
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2.5. We note first, by repeating the argument following [3, (3.19)], that the
image of DkΛ (k>m0, 1=1, 2, •••, s) by

ζ=log z-\- const.

contains a lens Λk,ι whose center line is formed by the vertical segment which
is the image of Rke

ίθ (θ<^Jι(Rk, δ)) and whose boundary is formed by the two
circular arcs through the endpoints of this segment making a sufficiently small
constant angle β with it. We choose β=1/405 and apply [3, Lemma 5] with
H(ζ)=gk(z), ε = δ E ( V 2 , « , M*=(κ/3)T(Rk9f) (See (2.16).), a={aι+1(Rk)-
at(Rk)}/2-δ>3c/8. This yields

(2.17) loglsfcWK-ffJX/?*, /)

where &k(l) is given by

(2.18) z=Rke
ίθ, 0*ΞMRk,2£)9 /=/(/,

and where the constant Kλ may be chosen as

Next, we apply [3, Lemma E], first to the part of DkΛ in \z\^Rk then to
the part of Dk>ι in \z\^Rk. In both cases &k(ΐ) is the arc (2.18) and X is a
portion of the curve CkΛ. It is easily verified, with the aid of [3, Lemma 1]
that for any point ζ on Ck>ι, with

(2.19) e'*Rk^\

we have

(2.20) p{ζ)>\ζ\/Kt{c,B).

From now on, we denote by C'kΛ the portion of Ck>t which satisfies the condi-
tion (2.19). By (2.20) and the ^-regularity of CkΛ

Γ \dζ\/p(ζ)^BK2\[2{dt/t\=BK2\\og(\z\/Rk)\
JWk}i JRk

Therefore, by (2.13), (2.17), [3, Lemma E] and the two-constant theorem

(2.21) ϊog\gk(z)\<-(K1/2π)exp{-4BK2\\og(\z\/Rk)\}T(Rk> f)

ί.,, k>m0, l=l(J, /?*) , j=l, 2, - , / > ) .

2.6. We now deduce from (2.17) and (2.21) similar inequalities with gk

replaced by / '//. Since ί(oo,/)=l, n(r,oo,/)^(log2)-1JV(2r,oo,/)=β(T(2r,/))
(r->oo). It follows from this, (1.2) and the definition of Pόlya peaks that
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(2.22) nkSn{R'ί, oo, f)+nδ(R>ί)=o{T(2R'ί, /))

=o{T(\2eMrk, f))=o(T(rk> f))=o(T(Rk, /)) (k -> oo).

By the definition of gk

(2.23) log |/^)//(^) |-log |^,(z) |+/ιlogk|-log |P,(z) |+^log + {T(r

Combining (2.23), (2.17), (2.18), (2.15), (2.3) and (2.22), we have

(2.24) \og\f'(z)/f(z)\<-K1T(Rk, f)+hlogRk + nhlog{2/b)+AlogT(Rk, f)

= -K1T(Rkf f)+o(T(Rk, f))<-{KJ2)T{Rk) f)

U e j j ( ί ) , k>mo,l=lU, /?*), ; = 1, 2, •••£).

Similarly, using (2.21) instead of (2.17), we obtain

(2.25) \og\f\z)/f{z)\<-{KJΊ)exv{-±BK2\\og{\z\/Rk)\mRk,f)

ί,ι, k > m O y / = / ( ; , Λ Λ ) , ; = 1, 2 , . . . , / > ) .

By (2.2) with r=Rk, there is a point zk>ι^^Bk(l) (/=/(;, i?*), ; = 1, 2, •••, /?) such
that I/Uife.i)—Tj\ <ε for any assigned ε>0, provided that k>m0. If z is any
other point of Bk{l\ then by (2.24) and (2.3) \\ogf(z)-\ogf(zk,ι)\<2πRkX
ex${-KJ2)T{Rk, /)}->0 (£->oo), and so for any assigned ee(0, 1/2)

(2.26) \f(z)-τj\

{ztΞ<Bk(l), k>mQ, /=/(/, ΛA), y = l , 2, ••

2.7. Since rk^Rk^cffrk (k>m0), we have for r'k^r^r'k
f

(2.27) T(r, /)/Γ(ΛΛ> /)^T(r, f)/T(rk, f)^

<(3/2)(r/Rky (k>m0).

Let Λ(r)—o{T(r, /)) be a positive function tending to oo as r->oo. Then the
following relation holds:

(2.28) σk=meas{θ;log\f(Rke
iθ)\>A(Rk)}>π/3μ (k>m0).

To prove this, we follow Baernstein's procedure in [1, pp. 430-434]. Let
γ—\l2μ and define

T*(zr) (z=reiθ, 0<r<oo, O^θ^π),

where T*(z) is the Baernstein characteristic of /. Using (2.27) instead of [1,
(4.8)], we obtain

(2.29) v{Rψeiθ)^{2>/2)T(Rk, f)ίcos(π-θ)γμ+0(1)1 (k-+oo, 0<θ<π),
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where the 0(1) term is independent of θ. Clearly

T*{Rke"»*)^T{Rk, f)=m(Rk, f)+N(Rk, oo, f)£T*{Rke"*'*)+Λ(Rk),

and hence

(2.30) \imT*(Rke
tσ*'2)/T(Rk, / ) = 1 .

Let N={k σk<πγ}. If iV is a finite set then (2.28) holds, so we assume that
AT is infinite. If k<ΞN, {Rke

xσ^2)ιlr=Rι

k

lrexσ^2r belongs to the domain of v. In
this case T*(Rke

xσ*/2)=v(Rl/retσ*i2r) (k(=N). Combining this, (2.29) and (2.30),
we have

T(Rk, f)

from which we deduce that σk>π/3μ (feeJV, k>m0). If k&N, then σk^πγ—
π/2μ>π/3μ. Thus we have reached (2.28).

2.8. By choosing ε(>0) small enough, we see from (2.26) that the index
/=/(/, Rk) (k>m0) cannot have the same value for different values of j(=l, 2, •••, p).
This implies p^s. Assume that p=s. Then from (2.28), (2.26) and (2.18) it
follows that

(k>m0),

which is impossible. This proves p^

2.9. By integrating / ' / / along Ck,ι (/=/(;, Rk)) from the point of intersec-
tion wk)ι of C'k,ι with <Bk{l) to the point z, we have, in view of (2.19) and (2.25)

\\ogf(z)-\ogf(wk,ι)\<B(eM-l)Rkexp{~(K1/7)e-'BK^T(Rkff)}

(z<=Cl,ι, k>m0, /=/(/, Rk), j=h 2} ...,/>).

Hence, by (2.26) and (2.3) we have, for any assigned (ε>0)

\f{z)-τj\<ε {zsΞC'ktl, k>m0} 1=10, Rk), / = 1 , 2, . » , / > ) .

From this and (2.25) it follows that

(2.31) \og\f/(z)\<-(K1/S)Qxp{-4ίBK2\\og(\z\/Rk)\}nRk>f)

(z<=C'k,l9 k>m0, /=/(;, Rk), ; = 1, 2, •••, p).

We have already seen that for any fixed k(>m0) the curves Ck,ι (l=l(j, Rk),
y = l , 2, •••, p) do not intersect, since they lie in different sectors St (1^/^s).
Therefore they divide the annulus (2.19) into p different domains.

Let Sf be a typical one of these domains and let tθ(t) be the length of the
arc of | z | = ί which lies in S*, and let
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be the product, taken over all the poles of f'{z) which lie in \z\^R'ί. By
Cartan's lemma

(2.32) \Qk(z)\^{b/2)»i

in \z\^R! but outside circles the sum of whose diameters is less than AebR'£.
Without loss of generality, we may assume that (2.32) as well as (2.15) holds
on the circle \z\=Rk (k>m0).

2.10. Let Ax=e9x and let Λ2 and ί/(>Λ) be the quantities which appear
in (2.6). Denote by Γ^k, *) the part of the boundary of Sf in Rk/U< \z\<URkf

by Γ2(k, *) the boundary arc of Sf on \z\=e+MRk, by ΓΆ(k, *) the boundary
arc of St on \z\—e~MRk and by Γ4(k, *) the part of the boundary of St which
does not belong to Γ1KjΓ2uΓs.

On Λ and Γ 4 (2.31) holds, so that

(2.33) \og\f\z)Qk(z)\<-KT{Rk, f)

(ztΞΓ^k, *), /C=(/Ci/8))exp{-4BA:ίlog(16i4ϊ)}=/i:(/ι, c, s, B, *)),

(2.34) log\f'(z)Qk(z)\<0 (zεΞΓ4(k, *)).

Since f\z)Qk(z) is regular in \z\^R'it the Poisson-Jensen formula gives for
0<r</?i72

logM(r, / /

r,/V/)+3m(2r,

Therefore by (2.4)

(2.35) log\f'(z)Qk(z)\^\ogM(e-MRk, f'Qk)^\ogM{Rk/2, f'Qk)

k, f))+3T(Rk, f)<4T(Rk, f)

and

(2.36) log I f\z)Qk{z) I ^o(T(2eMRk, f))+3T(2eMRk, f)

<AT(2eMRk, f)<6(2eMyT(Rk, ί)

Next, we denote by ωq(z, k, *) the harmonic measure of Γq(k, *) with re-
spect to St (tf=l, 2, 3, 4). Then by [3, Lemma 6],

θ, k, *)<A2exp\-π[** dt/tθ(t)\+A2exp\-π[U*kdt/tθ(t)\
I JRk/U J I jRk >5=2

~1/2=l/2 (Rke
iθ<=St)

since θ(t)^2π. Hence
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(2.39) ω2{Rke
ιθ, k, *)<^ 2 exp|-π\ dt/tθ(t)j.
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(2.37) ωάRue", k, *)>l/2.

Similarly,

(2.38) ωs(Rke
iθ, k, *)<A2e~M/\

and

eMRu

We show that for at least one of the sectors, say for S£*,

(2.40) π\ dt/tθ(t)^pM/2
JRk

and, say for S£**,

(2.41) π[eM*kdt/tθ(t)^(p-l)M/2(l-(3c+c')/iπ).
JRk

p
By Schwarz's inequality and the fact that Σ θj(t)~2π (where the index j refers

3 = 1

to the p different sectors Sf)

Hence

p2M/2=(p2/2)[eMRk dt/t^ Σ π[βMRk dΐ/ΐθj(t).
JRk 3=ι JRk

This proves (2.40). In the same way, using the facts that p^s—1 and c'/2<
γkΛ<c/2 (k>m0, 1=1, 2, •••, s), we have

Hence

S tMRb P-1 CeMRk

dt/tS Σ (π-(3c+c')/4) dt/tθ
Rk . 7 = 1 JRk

This proves (2.41). Combining (2.39) with (2.40) or (2.41), we have

(2.42) ω2(Rke
iθ, k, **)<A2e-pM/2

and

(2.43) ω2(Rke
ίθ, k, ***)<^ 2 exp{-( ί

{Rke
iθ<=St**).

2.11. Now, a bounded function, harmonic in Sf, with the following
boundary values
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-KT(Rk, f) on Γ1{k, *), β^e^TiR,, /) on Γ2(k, *),

4T(Rk, f) on Γz(k, *), 0 on ΓA{k, *)

dominates the subharmonic function log|/'(z)Q*(z)| at each point of S*. This
follows from (2.33)-(2.36). Hence, in particular,

(2.44) \og\f'(Rke
i9)Qk(Rke

iβ)\

<-ω1{Rke
iβ, k, *)KT{Rk, f)+ω,{Rke

iθ, k, *)&-2"e^T{Rk, f)

+ωz(Rke
iθ, k, *)4T(Rk, f) (Rke

ie^Sf, k>m0).

From (2.44), (2.37), (2.42), (2.38), (2.7) and (2.32) we deduce that

(2.45) log\f'(Rke
iβ)\

<{-K/2+6-2"A2e-W2-">M+4A2e-M>*}T(Rk, /)-log|Qh{Rke
tβ)\

<-(K/4)T(Rk, f)+n'k\og(2/b)<-(K/5)T(Rk> f)

where we used the estimate

n'k=n(RS, oo, f')g.2n(R'i, oo, f)=o{T{2R'h', f))=o{T{\2eMrk, /))

=o(T(rk, f))=o(T(Rk, /)) (* ->oo).

Similarly, from (2.44), (2.37), (2.43), (2.38), (2.9) and (2.32) it follows that

(2.46) log |/ / (Λ*e") |<{-( ί f/2)+6.2M I x

, f)+n'k\og(2/b)<-(K/5)T(Rk, f)

(k>mo,Rke
i$eSt**).

2.12. Let ζkΛ and ζ*,2 be the endpoints of the arc of \z\=Rk in Sf* (Sf**).
Then we easily see from (2.26) that

l/(C*.i)-/(ζ*.i)l> min 1^-^1/2 (k>m0).

On the other hand, by integrating (2.45) ((2.46))

\f(ζk>1)-f(Ck,2)\^2πRkexp{-(K/5mRk,f)}

and, in view of (2.3), the right— hand side of this inequality tends to 0 as &-»co.
This contradicton proves p^2μ (p^2μ(l—c/π)+l). This completes the proof
of Theorem.
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