H. UEDA KODAI MATH. J. 9 (1986), 245—255

ON MEROMORPHIC FUNCTIONS WITH FEW POLES AND WITH REGIONS FREE OF ZEROS

BY HIDEHARU UEDA

1. Introduction. In this note we improve one of the results of Edrei and Fuchs [3]. We shall adopt the terminology, notations and conventions of [3]. We shall write, for instance, [3, Lemma 4] to denote Lemma 4 of [3].

The aim of this investigation is to prove the following

THEOREM. Suppose that $f(z)$ (\neq const.) is a meromorphic function of lower *order* μ (<+ ∞), and that δ (∞ , f)=1. Let the s B-regular paths

$$
(1.1)\qquad L_t: z = te^{i\alpha_l(t)}
$$

$$
(t \geq t_0 > 0; \ t = 1, \ 2, \ \cdots, \ s \ ; \ \alpha_1(t) < \alpha_2(t) < \cdots < \alpha_s(t) < \alpha_1(t) + 2\pi = \alpha_{s+1}(t))
$$

divide $|z| \geq t_0$ *into s sectors, each of which has opening* $\geq c > 0$.

Let δ (>0) be fixed and let $\bar{n}_{\delta}(r)$ denote the number of distinct zeros of $f(z)$ *which lie in* $t_0 \leq |z| \leq r$ *but outside the s sectors* $\mathcal{E}_l(\delta)$ ($l=1, 2, \dots, s$) defined by

 $\alpha_i(t) - \delta \le \arg z \le \alpha_i(t) + \delta$, $t_0 \le |z| = t < +\infty$.

Assume that for every fixed δ (>0), *we have*

$$
\bar{n}_{\delta}(r) = o(T(r, f)) \qquad (r \to \infty).
$$

Denote by p the number of deficient values of $f(z)$ *other than* 0 and ∞ . Then

$$
p\!\leq\!\min\,\{s\!-\!1,\,2\mu,\,\{2\mu(1\!-\!c/\pi)\!+\!1\}^+\}.
$$

This is an improvement of [3, *Theorem* 3].

2. Proof of Theorem.

2.1. Suppose that the function *f(z)* satisfies the hypotheses of Theorem and it has $\tau_1, \tau_2, \dots, \tau_p(\tau_j \neq 0, \tau_j \neq \infty, j=1, 2, \dots, p)$ among its deficient values.

The paths $L_i(l=1, 2, \dots, s)$ divide the z-plane into s sectors S_i . Let $J_i(r)$ $(r \ge t_0)$ be the set of arguments corresponding to the arc of $|z|=r$ in S_i . Since the τ_j are deficient, there is at least one index $l = l(j, r)$ such that for some

Received November 18, 1985

fixed $\kappa > 0$

$$
(2.1) \t m(r, 1/(f-\tau_j); J_1(r)) > \kappa T(r, f) \t (r \ge r_0 \ge t_0, l=l(j, r), j=1, 2, \cdots, p).
$$

With the equations (1.1) for the L_i , we shall denote by $S_i(\delta)$ ($0 \leq \delta \lt c/16$) the sector

$$
\alpha_{l}(t)+\delta\!<\!\arg z\!<\!\alpha_{l+1}(t)-\delta\,,\qquad t_0\!\leq\!|z|\!=\!t\!<\!+\infty\,;
$$

by $J_l(r, \delta)$ the set of arguments of the arc $|z|=r$ in $S_l(\delta)$ and by $I_l(r, \delta)$ the complement of $J_l(r, \delta)$ _{*in*} $J_l(r, 0) = J_l(r)$.

Let $\{r_m\}^{\infty}$ be a sequence of Pólya peaks of order μ of $T(r, f)$ with as sociated sequences $\{r'_m\}_{1}^{\infty}$, $\{r''_m\}_{1}^{\infty}$ $(r'_m < r_m < r''_m, r'_1 \ge r_0)$. (For the basic properties and existence of Pólya peaks the reader is referred to $[2, p. 82]$.) Using $[3,$ Lemma C], we have for $r_m \leq r \leq 2r_m$ $(m>m_0)$

$$
m(r, 1/(f - \tau_j); I_l(r, 2\delta)) \le 22T(2r, 1/(f - \tau_j))4\delta(1 + \log^+(1/4\delta))
$$

$$
< 89T(2r, f)\delta(1 + \log^+(1/4\delta))
$$

$$
< 90(2r/r_m)^{\mu}T(r_m, f)\delta(1 + \log^+(1/4\delta))
$$

$$
\le 90 \cdot 4^{\mu}T(r, f)\delta(1 + \log^+(1/4\delta))
$$

$$
< (\kappa/2)T(r, f),
$$

provided that $0 < \delta < \delta_1 = \delta_1(\kappa, \mu)$. Further, we may assume that $\delta_1 \leq$ Combining the above estimate with (2.1), we have

(2.2)
$$
m(r, 1/(f - \tau_j); J_l(r, 2\delta)) > (\kappa/2)T(r, f)
$$

$$
(r_m \le r \le 2r_m, m > m_0, 0 < \delta < \delta_1, l = l(j, r), j = 1, 2 \cdots, p).
$$

If $\mu < 1/2$, the condition $\delta(\infty, f)=1$ implies that $p=0$ (See [4].). In what follows we assume that $\mu \ge 1/2$. This gives

$$
(2.3) \t\t \log r = o(T(r, f)) \t (r \to \infty).
$$

A basic fact of Nevanlinna's theory is that

$$
m(r,\:f'/(f-a))\hspace{-0.1cm}=\hspace{-0.1cm}\mathit{o}(T(r,\:f))
$$

as $r \rightarrow \infty$ outside an exceptional set E which has finite measure. It is important to note that *E* occurs in intervals where $T(r, f)$ grows very rapidly; in particular, *E* does not depend on the value α, and consideration of the growth lemma from which it arises shows that it may be taken to be disjoint from the $[1]$ is fixed and $m_0 = m_0(\sigma)$. where $\sigma > 1$ is fixed and $m_0 = m_0(\sigma)$.

Combining (2.2), (2.3), [3, Lemma B] and the estimate

(2.4)
$$
m(r, f'/f) + m(r, f'/(f - \tau_j)) = o(T(r, f))
$$

$$
(r_m \leq r \leq \sigma r_m, r \to \infty, j = 1, 2, \cdots, p),
$$

we obtain

(2.5)
$$
m(r, f/f'; J_i(r, 2\delta)) > (\kappa/3)T(r, f)
$$

$$
(r_m \le r \le 2r_m, m > m_0, 0 < \delta < \delta_1, l = l(j, r), j = 1, 2, \cdots, p).
$$

2.2. We choose now a constant $M(>0)$. For the proof of $p \leq s-1$ we take M=1. For the proof of $p \leq 2\mu$ we shall obtain a contradiction if we assume $p>2\mu$, and if we choose M so large that

(2.6)
$$
e^M > 16A_z^2 = U, \qquad A_z = 5e^{i\pi}/\pi,
$$

and

$$
(2.7) \t\t -K/2 + 6 \cdot 2^{\mu} A_2 e^{-(p/2-\mu)M} + 4A_2 e^{-M/2} < -K/4,
$$

where the positive constant $K=K(\mu, c, s, B, \kappa)$ is defined in (2.33). If $p>2\mu(1-\kappa)$ c/π +1>0, there is a number $c' \in (c/2, c)$ such that

(2.8)
$$
p > 2\mu(1 - (3c + c')/4\pi) + 1.
$$

In this case we choose *M* so large that (2.6) and

$$
(2.9) \quad -K/2 + 6 \cdot 2^{\mu} A_2 \exp\{[-(p-1)/2(1-(3c+c')/4\pi) + \mu\}M\} + 4A_2 e^{-M/2} < -K/4
$$

hold. We shall seek a contradiction from (2.6), (2.8) and (2.9), and deduce $p \leq$ $2\mu(1-c/\pi)+1$.

2.3. By [3, Lemma 4]

$$
(2.10) \t |f'(z)/f(z)| < A\{T(2r, f)\}^A \t (|z|=r>r_0>4\pi sB/\delta_1, z \in \mathcal{R}),
$$

where \Re is a set of discs with sum of radii less than 1. Assume that $r'_m \lt r$ $\langle r^{\prime\prime}_{m}$. It follows from (2.10) and the definition of Pólya peaks that

$$
|f'(z)/f(z)| < A\{(1+o(1))T(r_m, f)(2|z|)^{\mu}/r_m^{\mu}\}^A
$$

<
$$
< 2^{1+\mu A}A|z|^{\mu A}\{T(r_m, f)/r_m^{\mu}\}^A \qquad (r'_m \leq |z| \leq r''_m; m > m_0, z \in \mathbb{R}).
$$

Hence we can find a positive integer *h* such that

$$
(2.11) \t |z^{-h}f'(z)/f(z)| < \{T(r_m, f)/r_m^{\mu}\}^A \t (r'_m \leq |z| \leq r''_m ; m > m_0, z \in \mathcal{R}).
$$

It follows now from [3, Lemma 2] that there is some $\delta \in (\delta_1/2, \delta_1)$ such that (2.11) holds on the boundaries of $S_l(\delta) \cap \left(\bigcup_{i=1}^n\{z\,;\,r'_m/2\lt|x|\lt{r''_m/2}\}\right)$ ($l=1,2,\cdots,s$). **\m=l /** From now on we assume that δ has been chosen in this way and we shall make no further changes in the choice of *δ.* It is also easily seen that there are two circles $|z|=R'_{m}(r_{m}/3e^{M} < R'_{m} < r_{m}/2e^{M})$ and $|z|=R''_{m}(4e^{M}r_{m} < R''_{m} < 6e^{M}r_{m})$ on which (2.11) holds.

Let

$$
P_m(z) = \prod_{\nu=1}^{n_m} \{ (z - a_\nu) / 2R_m'' \}
$$

be the product, taken over all the poles of $f'(z)/f(z)$ which lie in $t_0 \leq |z| \leq R_n^{\prime\prime}$ but outside the sectors $\mathcal{E}_l(\delta)$ $(l=1, 2, \dots, s)$.

Now, we define a sequence of functions ${g_k(z)}_{m_0+1}^{\infty}$. Assume first that there is a subsequence $\{r_{m_k}\}_{k=1}^{\infty}$ of $\{r_m\}_{1}^{\infty}$ such that $T(r_{m_k}, f)/r^{\mu}_{m_k} \leq 1$. In this case we simply write $\{r_k\}_{1}^{\infty}$, $\{R'_k\}_{1}^{\infty}$, $\{R''_k\}_{1}^{\infty}$ and $\{P_k(z)\}_{1}^{\infty}$ instead of $\{r_{m_k}\}_{k=1}^{\infty}$, ${R'}_{m_k}$, $\sum_{k=1}^{\infty}$, ${R''}_{m_k}$, $\sum_{k=1}^{\infty}$ and ${P}_{m_k}(z)$, $\sum_{k=1}^{\infty}$, respectively, and define $g_k(z)$ ($k \ge 1$) by

$$
g_k(z) = z^{-h} P_k(z) f'(z) / f(z).
$$

Assume next that $T(r_m, f)/r_m^{\mu} > 1$ for $m > m_0$. In this case we define $(k>m_0)$ by

$$
g_k(z) = \{r_k''/T(r_k, f)\}^A z^{-h} P_k(z) f'(z) / f(z).
$$

The function $g_k(z)$ $(k>m_0)$ is regular in the intersection of $|z| \leq R''_k$ with every $S_i(\delta)$ ($l=1, 2, \cdots, s$). In $|z|\leq R''_k$

$$
(2.12) \t\t\t |P_k(z)| \leq 1.
$$

By (2.11) , (2.12) and the maximum modulus principle

$$
(2.13) \t\t |g_k(z)| < 1 \t (z \in D_{k, l}),
$$

where $D_{k-l}(k>m_0, l=1, 2, \cdots, s)$ is defined by

$$
R'_k \leq r \leq R''_k, \qquad \alpha_l(r) + \delta \leq \theta \leq \alpha_{l+1}(r) - \delta.
$$

2.4. We first choose $c'' \in (1, 2)$ such that $(c'')'' < 4/3$. Next, we select a positive number *b* such that

(2.14)
$$
b < \min \{(c-c')/144\pi Be^{2M+1}, (c''-1)/24e^{M+1}\}.
$$

By a well-known lemma of H. Cartan

$$
(2.15) \t\t\t |P_k(z)| \ge (b/2)^{n_k}
$$

in $|z| \leq R_k^{\prime\prime}$ but outside circles the sum of whose diameters is less than $4\ell bR_k^{\prime\prime}$. It follows from [3, Lemma 2] and (2.14) that (2.15) holds on the curves $C_{k,l}$ $(k>m_0, l=1, 2, \cdots, s)$ defined by

$$
C_{k,l}: z=z(t)=te^{i(\alpha_l(t)+\gamma_{k,l})} \qquad (R'_k\leq t\leq R''_k)
$$

with $c'/2 < \gamma_{k,l} < c/2$. Further, we deduce from (2.14) that (2.15) holds on a circle $|z|=R_k$ with $r_k \leq R_k \leq c''r_k$ $(k>m_0)$. By (2.12) and (2.5)

(2.16)
$$
m(R_k, 1/g_k; J_l(R_k, 2\delta)) > m(R_k, f/f'; J_l(R_k, 2\delta)) > (\kappa/3)T(R_k, f)
$$

$$
(k > m_0, l = l(j, R_k), j = 1, 2, \cdots, p).
$$

2.5. We note first, by repeating the argument following [3, (3.19)], that the image of $D_{k,l}$ ($k>m_0$, $l=1, 2, \cdots, s$) by

$$
\zeta = \log z + \text{const.}
$$

contains a lens $\Lambda_{k,l}$ whose center line is formed by the vertical segment which is the image of $R_k e^{i\theta}$ ($\theta \in J_l(R_k, \delta)$) and whose boundary is formed by the two circular arcs through the endpoints of this segment making a sufficiently small constant angle *β* with it. We choose *β=*1/405 and apply [3, Lemma 5] with $H(\zeta) = g_k(z), \quad \varepsilon = \delta \in (\delta_1/2, \delta_1), \quad M^* = (\kappa/3)T(R_k, f)$ (See (2.16).), $\alpha = {\alpha_{l+1}(R_k)}$ $\alpha_l(R_k)$ }/2- δ >3*c*/8. This yields

(2.17)
$$
\log |g_k(z)| < -K_1 T(R_k, f) \qquad (z \in \mathcal{B}_k(l))
$$

where $\mathcal{B}_k(l)$ is given by

$$
(2.18) \t z=R_{k}e^{i\theta}, \quad \theta \in J_{l}(R_{k}, 2\delta), \quad l=l(j, R_{k}), \quad j=1, 2, \cdots, p,
$$

and where the constant K_1 may be chosen as

$$
K_1 = (2\kappa/3\pi^3)(\delta_1/4\pi)^{2\pi/\beta}.
$$

Next, we apply [3, Lemma E], first to the part of $D_{k,l}$ in $|z|\ge R_k$ then to the part of $D_{k,l}$ in $|z|\leq R_k$. In both cases $\mathcal{B}_k(l)$ is the arc (2.18) and \mathcal{L} is a portion of the curve $C_{k,l}$. It is easily verified, with the aid of [3, Lemma 1] that for any point ζ on $C_{k, l}$, with

$$
(2.19) \t\t e^{-M} R_k \leq |\zeta| \leq e^M R_k,
$$

we have

$$
\rho(\zeta) > |\zeta|/K_2(c, B).
$$

From now on, we denote by $C'_{k,l}$ the portion of $C_{k,l}$ which satisfies the condition (2.19). By (2.20) and the *B*-regularity of $C_{k,l}$

$$
\int_{w_{k,l}}^z |d\zeta|/\rho(\zeta) \leq BK_2 \left| \int_{R_k}^{z_l} dt/t \right| = BK_2 |\log(|z|/R_k)|
$$

$$
(z \in C'_{k,l}, w_{k,l} = R_k e^{i\theta_{k,l}} \in C'_{k,l}).
$$

Therefore, by (2.13) , (2.17) , $[3,$ Lemma E] and the two-constant theorem

(2.21)
$$
\log |g_k(z)| < -(K_1/2\pi) \exp \{-4BK_2 |\log (|z|/R_k)|\} T(R_k, f)
$$

$$
(z \in C'_{k,l}, k > m_0, l = l(j, R_k), j = 1, 2, \cdots, p).
$$

2.6. We now deduce from (2.17) and (2.21) similar inequalities with g_k replaced by f'/f . Since $\delta(\infty, f) = 1$, $n(r, \infty, f) \leq (\log 2)^{-1} N(2r, \infty, f) = o(T(2r, f))$ $(r\rightarrow\infty)$. It follows from this, (1.2) and the definition of Pólya peaks that

(2.22)
$$
n_k \leq n(R''_k, \infty, f) + \bar{n}_{\delta}(R''_k) = o(T(2R''_k, f))
$$

$$
= o(T(12e^Mr_k, f)) = o(T(r_k, f)) = o(T(R_k, f)) \qquad (k \to \infty).
$$

By the definition of g_k

(2.23)
$$
\log |f'(z)/f(z)| = \log |g_k(z)| + h \log |z| - \log |P_k(z)| + A \log^+ \{T(r_k, f)/r_k'\}.
$$

\nCombining (2.23), (2.17), (2.18), (2.15), (2.3) and (2.22), we have
\n(2.24) $\log |f'(z)/f(z)| < -K_1 T(R_k, f) + h \log R_k + n_k \log (2/b) + A \log T(R_k, f)$
\n $= -K_1 T(R_k, f) + o(T(R_k, f)) < -(K_1/2)T(R_k, f)$
\n $(z \in \mathcal{B}_k(l), k > m_0, l = l(j, R_k), j = 1, 2, \cdots p).$

Similarly, using (2.21) instead of (2.17) , we obtain

(2.25)
$$
\log |f'(z)/f(z)| < -(K_1/7) \exp\{-4BK_z |\log(|z|/R_k)|\} T(R_k, f)
$$

$$
(z \in C'_{k,l}, k > m_0, l = l(j, R_k), j = 1, 2, \cdots, p).
$$

By (2.2) with $r=R_k$, there is a point $z_{k,l} \in B_k(l)$ ($l=l(j, R_k)$, $j=1, 2, \dots, p$) such that $|f(z_{k,l})-\tau_j|<\varepsilon$ for any assigned $\varepsilon>0$, provided that $k>m_0$. If z is any other point of $\mathcal{B}_k(l)$, then by (2.24) and (2.3) $|\log f(z) - \log f(z_k, l)| < 2\pi R_k$ $\exp{-K_1/2}T(R_k, f)$ \rightarrow 0 ($k \rightarrow \infty$), and so for any assigned $\varepsilon \in (0, 1/2)$

(2.26)
$$
|f(z)-\tau_j| \leq |f(z)-f(z_{k,l})| + |f(z_{k,l})-\tau_j| < 2\varepsilon
$$

$$
(z \in \mathcal{B}_k(l), k > m_0, l=l(j, R_k), j=1, 2, \cdots, p).
$$

2.7. Since
$$
r_k \leq R_k \leq c''r_k
$$
 ($k > m_0$), we have for $r'_k \leq r \leq r''_k$

$$
(2.27) \t T(r, f)/T(R_k, f) \leq T(r, f)/T(r_k, f) \leq (1+o(1))(r/r_k)^{\mu}
$$

= $(1+o(1))(R_k/r_k)^{\mu}(r/R_k)^{\mu} \leq (1+o(1))(c'')^{\mu}(r/R_k)^{\mu}$
< $(3/2)(r/R_k)^{\mu} \qquad (k>m_0).$

Let $\Lambda(r) = o(T(r, f))$ be a positive function tending to ∞ as $r \to \infty$. Then the following relation holds:

$$
(2.28) \t\t \sigma_k \equiv \text{meas}\{\theta \text{ ; } \log|f(R_k e^{i\theta})| > A(R_k)\} > \pi/3\mu \quad (k > m_0).
$$

To prove this, we follow Baernstein's procedure in [1, pp. 430-434]. Let $\gamma = 1/2\mu$ and define

$$
v(z)\!=\!T^*(z^r)\qquad (z\!=\!re^{i\theta},\,0\!<\!r\!<\!\infty,\,0\!\leq\!\theta\!\leq\!\pi),
$$

where $T^*(z)$ is the Baernstein characteristic of f. Using (2.27) instead of [1, (4.8)], we obtain

$$
(2.29) \qquad v(R_k^{1/\tau}e^{i\theta}) \leq (3/2)T(R_k, f)\left[\cos{(\pi-\theta)}\gamma\mu + o(1)\right] \qquad (k \to \infty, 0 < \theta < \pi),
$$

where the $o(1)$ term is independent of θ . Clearly

 $T^{*}(R_{k}e^{i\sigma_{k}/2}) \leq T(R_{k}, f) = m(R_{k}, f) + N(R_{k}, \infty, f) \leq T^{*}(R_{k}e^{i\sigma_{k}/2}) + A(R_{k}),$

and hence

(2.30)
$$
\lim_{h \to 0} T^*(R_k e^{i\sigma_k/2})/T(R_k, f) = 1.
$$

Let $N=\{k \mid \sigma_k < \pi \gamma\}$. If N is a finite set then (2.28) holds, so we assume that *N* is infinite. If $k \in N$, $(R_k e^{i\sigma_k/2})^{1/\gamma} = R_k^{1/\gamma} e^{i\sigma_k/2\gamma}$ belongs to the domain of *v*. In this case $T^*(R_k e^{i\sigma_k/2}) = v(R_k^{1/\tau} e^{i\sigma_k/2\tau})$ ($k \in \mathbb{N}$). Combining this, (2.29) and (2.30), we have

$$
T(R_k, f) \sim T^*(R_k e^{i\sigma_k/2}) \leq (3/2)T(R_k, f) [\cos(\pi - \sigma_k/2\gamma)\gamma\mu + o(1)]
$$

($k \to \infty, k \in N$),

from which we deduce that $\sigma_k > \pi/3\mu$ ($k \in \mathbb{N}$, $k > m_0$). If $k \in \mathbb{N}$, then $\sigma_k \ge \pi \gamma =$ $\pi/2\mu > \pi/3\mu$. Thus we have reached (2.28).

2.8. By choosing ε (>0) small enough, we see from (2.26) that the index $l = l(j, R_k)$ ($k > m_0$) cannot have the same value for different values of $j(=1, 2, \cdots, p)$. This implies $p \leq s$. Assume that $p=s$. Then from (2.28), (2.26) and (2.18) it follows that

$$
\pi/3\mu < \sigma_k \leq 4\delta s < 4\delta_1 s \leq \pi/3\mu \qquad (k > m_0),
$$

which is impossible. This proves $p \leq s-1$.

2.9. By integrating f'/f along $C_{k,l}$ ($l=l(j, R_k)$) from the point of intersection. tion $w_{k,l}$ of $C'_{k,l}$ with $\mathcal{B}_k(l)$ to the point *z*, we have, in view of (2.19) and (2.25)

$$
|\log f(z) - \log f(w_{k,l})| < B(e^M - 1)R_k \exp\{-(K_1/7)e^{-4BK_2M}T(R_k, f)\}
$$
\n
$$
(z \in C'_{k,l}, k > m_0, l = l(j, R_k), j = 1, 2, \cdots, p).
$$

Hence, by (2.26) and (2.3) we have, for any assigned ($\varepsilon > 0$)

$$
|f(z)-\tau_j|<\varepsilon \qquad (z\in C'_{k,l},\ k>m_0,\ l=l(j,\ R_k),\ j=1,\ 2,\ \cdots,\ p).
$$

From this and (2.25) it follows that

(2.31)
$$
\log |f'(z)| < -(K_1/8) \exp\{-4BK_z |\log(|z|/R_k)|\} T(R_k, f)
$$

$$
(z \in C'_{k,l}, k > m_0, l = l(j, R_k), j = 1, 2, \cdots, p).
$$

We have already seen that for any fixed $k(>m_0)$ the curves $C_{k,l}$ ($l=l(j, R_k)$, $j=1, 2, \dots, p$ do not intersect, since they lie in different sectors S_t (1 $\leq l \leq s$). Therefore they divide the annulus (2.19) into p different domains.

Let S_k^* be a typical one of these domains and let $t\Theta(t)$ be the length of the arc of $|z|=t$ which lies in S_k^* , and let

$$
Q_{\,\rm k}(z) \! = \! \prod_{\nu=1}^{n_k'} \left\{ (z \! - \! b_{\nu})/2R_k'' \right\}
$$

be the product, taken over all the poles of $f'(z)$ which lie in $|z|\leq R''_k$. By Cartan's lemma

 $|Q_{k}(z)| \ge (b/2)^{n'_{k}}$

in $|z|\leq R''_k$ but outside circles the sum of whose diameters is less than $4ebR''_k$. Without loss of generality, we may assume that (2.32) as well as (2.15) holds on the circle $|z|=R_k$ $(k>m_0)$.

2.10. Let $A_1 = e^{9\pi}$ and let A_2 and $U(>A_1)$ be the quantities which appear in (2.6). Denote by $\Gamma_1(k, *)$ the part of the boundary of S_k^* in $R_k/U < |z| < UR_k$ by $\Gamma_2(k,*)$ the boundary arc of S_k^* on $|z| = e^{+M}R_k$, by $\Gamma_3(k,*)$ the boundary arc of S_k^* on $|z| = e^{-M} R_k$ and by $\Gamma_4(k, *)$ the part of the boundary of S_k^* which does not belong to $\Gamma_1 \cup \Gamma_2 \cup \Gamma_3$.

On Γ_1 and Γ_4 (2.31) holds, so that

(2.33)
$$
\log|f'(z)Q_k(z)| < -KT(R_k, f)
$$

$$
(z \in \Gamma_1(k, *), K = (K_1/8)) \exp\{-4BK_2 \log(16A_2^2)\} = K(\mu, c, s, B, \kappa)),
$$

(2.34)
$$
\log |f'(z)Q_k(z)| < 0 \qquad (z \in \Gamma_4(k, *)).
$$

Since $f'(z)Q_k(z)$ is regular in $|z| \leq R''_k$, the Poisson-Jensen formula gives for $0 < r < R''_k/2$

$$
\log M(r, f'Q_k) \leq 3m(2r, f'Q_k) \leq 3m(2r, f')
$$

$$
\leq 3m(2r, f'/f) + 3m(2r, f).
$$

Therefore by (2.4)

$$
(2.35) \qquad \log |f'(z)Q_k(z)| \leq \log M(e^{-M}R_k, \ f'Q_k) \leq \log M(R_k/2, \ f'Q_k)
$$

$$
\leq o(T(R_k, \ f)) + 3T(R_k, \ f) < 4T(R_k, \ f) \qquad (z \in \Gamma_{\mathfrak{s}}(k, \ast))
$$

and

(2.36)
$$
\log |f'(z)Q_k(z)| \leq o(T(2e^MR_k, f)) + 3T(2e^MR_k, f)
$$

$$
< 4T(2e^MR_k, f) < 6(2e^M)^{\mu}T(R_k, f) \qquad (z \in \Gamma_2(k, *))
$$

Next, we denote by $\omega_q(z, k, *)$ the harmonic measure of $\Gamma_q(k, *)$ with re spect to S_k^* ($q=1, 2, 3, 4$). Then by [3, Lemma 6],

$$
\sum_{q=2}^{4} \omega_q (R_k e^{i\theta}, k, *) \langle A_2 \exp \left\{-\pi \int_{R_k/U}^{R_k} dt/t \Theta(t) \right\} + A_2 \exp \left\{-\pi \int_{R_k}^{UR_k} dt/t \Theta(t) \right\}
$$
\n
$$
\leq 2A_2 U^{-1/2} = 1/2 \qquad (R_k e^{i\theta} \in S_k^*)
$$

since $\Theta(t) \leq 2\pi$. Hence

(2.37)
$$
\omega_1(R_k e^{i\theta}, k, *){>}1/2.
$$

Similarly,

(2.38)
$$
\omega_{3}(R_{k}e^{i\theta}, k, *) < A_{2}e^{-M/2},
$$

and

$$
(2.39) \t\t \t\t \omega_2(R_k e^{i\theta}, k, *) < A_2 \exp\left\{-\pi \int_{R_k}^{e^M R_k} dt / t \Theta(t)\right\}.
$$

We show that for at least one of the sectors, say for S_k^{**} ,

(2.40)
$$
\pi \int_{R_k}^{e^M R_k} dt / t \Theta(t) \geq p M/2
$$

and, say for S_k^{***} ,

(2.41)
$$
\pi \int_{R_k}^{\epsilon^M R_k} dt/t \Theta(t) \geq (p-1)M/2(1-(3c+c')/4\pi).
$$

By Schwarz's inequality and the fact that $\sum_{j=1}^{p} \Theta_j(t) = 2\pi$ (where the index *j* refers to the *p* different sectors S_k^*)

$$
p^2\hspace{-0.1cm}=\hspace{-0.1cm}\Bigl\{\hspace{-0.1cm}\sum_{j=1}^{p}(\Theta_j(t))^{1/2}(\Theta_j(t))^{-1/2}\hspace{-0.1cm}\Bigr\}^2\hspace{-0.1cm}\leq\hspace{-0.1cm}2\pi\sum_{j=1}^{p}1/\Theta_j(t)\hspace{-0.1cm}.
$$

Hence

$$
p^2 M/2 = (p^2/2) \int_{R_k}^{e^M R_k} dt/t \leq \sum_{j=1}^p \pi \int_{R_k}^{e^M R_k} dt/t \Theta_j(t).
$$

This proves (2.40). In the same way, using the facts that $p \leq s-1$ and $c'/2$ $h_{k,l} < c/2$ ($k > m_0$, $l = 1, 2, \cdots, s$), we have

$$
(p-1)^{2} \leq (2\pi - (3c+c')/2) \sum_{j=1}^{p-1} 1/\Theta_{j}(t).
$$

Hence

$$
(p-1)^{s}M/2 = ((p-1)^{s}/2)\int_{R_{k}}^{e^{M_{R_{k}}}} dt/t \leq \sum_{j=1}^{p-1} (\pi - (3c+c')/4)\int_{R_{k}}^{e^{M_{R_{k}}}} dt/t \Theta_{j}(t).
$$

This proves (2.41) . Combining (2.39) with (2.40) or (2.41) , we have

This proves (2.41). Combining (2.39) with (2.40) or (2.41), we have

(2.42) *ω²*

(2.43)
$$
\omega_2(R_k e^{i\theta}, k, ***) < A_2 \exp\{-(p-1)M/2(1-(3c+c')/4\pi)\}
$$

$$
(R_k e^{i\theta} \in S_k^{***}).
$$

2.11. Now, a bounded function, harmonic in S_k^* , with the following boundary values

 $-KT(R_k, f)$ on $\Gamma_1(k, *),$ $6 \cdot 2^{\mu}e^{\mu M}T(R_k, f)$ on $\Gamma_2(k, *),$ *4T*(R_k , *f*) on $\Gamma_3(k, *),$ 0 on $\Gamma_4(k, *)$

dominates the subharmonic function $\log|f'(z)Q_{k}(z)|$ at each point of S_{k}^{*} . This follows from (2.33)-(2.36). Hence, in particular,

$$
(2.44) \quad \log |f'(R_{k}e^{i\theta})Q_{k}(R_{k}e^{i\theta})|
$$

$$
<-\omega_{1}(R_{k}e^{i\theta}, k, *)KT(R_{k}, f)+\omega_{2}(R_{k}e^{i\theta}, k, *)6\cdot2^{\mu}e^{\mu M}T(R_{k}, f)
$$

$$
+\omega_{3}(R_{k}e^{i\theta}, k, *)4T(R_{k}, f) \qquad (R_{k}e^{i\theta} \in S_{k}^{*}, k> m_{0}).
$$

From (2.44), (2.37), (2.42), (2.38), (2.7) and (2.32) we deduce that (2.45) $log|f'(R_{k}e^{i\theta})|$

$$
\langle -K/2 + 6 \cdot 2^{\mu} A_2 e^{-(p/2 - \mu)M} + 4A_2 e^{-M/2} \} T(R_k, f) - \log |Q_k(R_k e^{i\theta})|
$$

$$
\langle -(K/4) T(R_k, f) + n'_k \log (2/b) \langle -(K/5) T(R_k, f) \rangle
$$

$$
(k>m_0, R_k e^{i\theta} \in S_k^{**}),
$$

where we used the estimate

$$
n'_{k} = n(R''_{k}, \infty, f') \leq 2n(R''_{k}, \infty, f) = o(T(2R''_{k}, f)) = o(T(12e^{Mr_{k}}, f))
$$

= $o(T(r_{k}, f)) = o(T(R_{k}, f))$ $(k \to \infty).$

Similarly, from (2.44), (2.37), (2.43), (2.38), (2.9) and (2.32) it follows that (2.46) $\log |f'(R_{k}e^{i\theta})| < {-(K/2)+6\cdot 2^{\mu}A_{2}\times}$

$$
\exp\left[\{-\frac{(p-1)}{2(1-(3c+c')/4\pi)}+\mu\}M\right]4A_{2}e^{-M/2}\}T(R_{k}, f)
$$

$$
-\log|Q_{k}(R_{k}e^{i\theta})| < -(K/4)T(R_{k}, f)+n'_{k}\log(2/b) < -(K/5)T(R_{k}, f)
$$

$$
(k>m_{0}, R_{k}e^{i\theta} \in S_{k}^{***}).
$$

2.12. Let $\zeta_{k,1}$ and $\zeta_{k,2}$ be the endpoints of the arc of $|z|=R_k$ in $S_k^{**}(S_k^{***})$. Then we easily see from (2.26) that

$$
|f(\zeta_{k,1})-f(\zeta_{k,2})|>\min_{\substack{i\neq j\\i,j=1,2,\cdots,p}}|\tau_i-\tau_j|/2 \qquad (k>m_0).
$$

On the other hand, by integrating (2.45) $((2.46))$

$$
|f(\zeta_{k,1})-f(\zeta_{k,2})|\leqq 2\pi R_k \exp\{-(K/5)T(R_k, f)\}
$$

and, in view of (2.3), the right— hand side of this inequality tends to 0 as $k \rightarrow \infty$. This contradicton proves $p \leq 2\mu$ ($p \leq 2\mu(1-c/\pi)+1$). This completes the proof of Theorem.

REFERENCES

- [1] BAERNSTEIN Π, A., Proof of Edrei's spread conjecture, Proc. London Math. Soc. 26 (1973), 418-434.
- [2] EDREI, A., Sums of deficiencies of meromorphic functions, J. Analyse Math. 14 (1965), 79-107.
- [3] EDREI, A. AND FUCHS, W. H. J., On meromorphic functions with regions free of poles and zeros, Acta Math. 108 (1962), 113-145.
- [4] OSTROVSKII, I.V., Deficiencies of meromorphic functions of order less than one, Dokl. Akad. Nauk SSSR 150 (1963), 32-35.

DEPARTMENT OF MATHEMATICS DAIDO INSTITUTE OF TECHNOLOGY DAIDO-CHO, MINAMI-KU, NAGOYA JAPAN