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VOLUME-PRESERVING GEODESIC SYMMETRIES

ON FOUR-DIMENSIONAL 2-STEIN SPACES

BY K. SEKIGAWA AND L. VANHECKE

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold such that all local
geodesic symmetries are volume-preserving (up to sign). Locally symmetric
spaces, naturally reductive homogeneous spaces and commutative spaces are ex-
amples of such manifolds. (See [14] for more details.) To our knowledge an
example which is not locally homogeneous is not known and there is some sup-
port for an affirmative answer to the following question:

Are Riemannian manifolds such that all local geodesic symmetries are volume-
preserving, locally homogeneous manifolds?

For two- and three-dimensional manifolds this is indeed the case [10], but for
?2^4, it is still an open problem.

In [12], we started our research about this question for four-dimensional
manifolds and proved that four-dimensional Kdhler manifolds with volume-
preserving geodesic symmetries are locally symmetric. (See also [11].) On the
other hand, a well-known theorem of G. R. Jensen [8] states that any four-
dimensional locally homogeneous Einstein space is locally symmetric. In view
of this result, it is worthwhile to consider the open problem for the class of
Einstein spaces.

In this paper we study this problem for a particular subclass of Einstein
spaces, namely the so-called 2-stein spaces [2]. In this way we answer the
problem stated at the end of [12]. More precisely, we prove:

MAIN THEOREM. Let (M, g) be a connected four-dimensional 2-steιn space
with volume-preserving local geodesic symmetries. Then (M, g) is locally flat or
locally isometric to a rank one symmetric space.

This theorem is a generalization of the theorem of Lichnerowicz and Walker
about four-dimensional harmonic spaces (see for example [1], p. 166).

The paper is organized as follows. In section 2 we first consider general
Riemannian manifolds with volume-preserving local geodesic symmetries. Then,
in section 3, we write down some useful facts about the special geometry of
four-dimensional Einstein spaces. Finally, the proof of the Main Theorem is
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given in section 4.

2. Volume-Preserving Geodesic Symmetries

Let (M, g) be an n-dimensional Riemannian manifold of class C°°, m a point
of M and TmM the tangent space of M at m. For a unit vector ξ^TmM we
denote by γ: n—>exρm (rξ) the geodesic of M with arc length r. We always
suppose r<i(m), the injectivity radius at m.

Next, let {elf i—l, •••, n} be an orthonormal frame at m and let (xlf •••, x j

be a system of normal coordinates centered at m and such that -^—{m)—eι for

/ = 1 , •••, n. Then the volume density function θm of expm is given by

w h e r e glJ=
3 3

Let />=expm(rf). Then we have the following Taylor expansion [3], [6],
[7]:

where the ak are completely determined by the Riemann curvature tensor and
its covariant derivatives. In particular we have

(1) aim, ξ)=j^(-j ^

b—-JT Σ
14 α,δ=i

1616 2 2

^5~ Σ RξaξbRξbξcRξcξaJr~7ΓPξξ Σ Rξaξb
Do α,δ, c=l o α,δ=l

Here 7 denotes the Levi Civita connection, R is the Riemann curvature tensor
and p the corresponding Ricci tensor. aΊ is still more complicated but it can be
given by the following formula (see [14]):



VOLUME-PRESERVING GEODESIC SYMMETRIES 217

( 2) 2α7(m, ξ)= Σ-^§T(7i.T4aO(m, ξ).

The /oca/ geodesic symmetry <pm at m is defined by φm : expm(r£>->expTO(—rξ)
and it is a local diffeomorphism. It preserves the volume (up to sign) if and
only if

{rξ))=θm{expm {-rξ))

for allunit vectors f e T m M . (See [4].) Hence, we have

LEMMA 1. Let (M, g) be a Riemannian manifold of class C°° such that all
local geodesic symmetries are volume-preserving {up to sign). Then we have at
each m^M and for any

( 3 ) Λί*+i(τn, £ ) = 0 ,

Note that the conditions (3) are also sufficient when (M, g) is analytic. The
first condition is equivalent to

( 4 )

J. L. Kazdan has communicated to the second author that a Riemannian manifold
of class C°°, satisfying (4), is always analytic in geodesic normal coordinates.
(See [5] for the Einstein case.) So, there is no restriction when we suppose the
manifold to be analytic.

(4) is always satisfied for Einstein spaces. Next, we consider the second
condition, taking into account the condition (4). Then, aδ(m, ξ)=0 is equivalent to

n

( 5 ) Σ RξaξbVξRξaξb — O>
<x, 6 = 1

To derive a condition from this, and in the rest of this paper, we shall adapt
the following notation:

F(ξ)= Σ Rϊaξb, G(ξ)= Σ RξaξbVζRξaξϊ,
a,b=i a,b=i

for all ζ<BTmM and all m^M. Then we may regard F and G as differentiate
functions on the tangent bundle. Next, we identify, for each m^M, the tangent
space TmM with an n-dimensional Euclidean space Rn via an orthonormal basis
of TmM. Then we may regard the restrictions of F and G to m as homogeneous
polynomials of degree 4 and 5 respectively. Finally, we denote by D the
Laplacian of Rn. Then we have [12]

LEMMA 2. Let (M, g) be a Ricci-parallel manifold {i.e. Vρ—0). Then we
have at each point m<=M

(6) {D*G){ξ)=12ξ\\R\\2
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Hence we obtain
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COROLLARY 3. Let (M, g) be a connected Einstein space such that all local
geodesic symmetries are volume-preserving. Then ||i?||2 is constant on (M, g).

Finally, it is worthwhile to note the following

PROPOSITION 4 [3]. Let (M, g) be an n-dimensional (n>2) reducible manifold
such that for each m<=M, F(ζ) is independent of ξ, for all unit vectors ξ(=TmM.
Then (Λf, g) is locally flat.

3. Einstein Manifolds of Dimension Four

Before we consider the third condition (aΊ=0), we suppose that (M, g) is a
four-dimensional Einstein spacef and we write down some well-known facts about
the special features of the geometry on such manifolds.

Following [1], [13] we can connect with any fixed point m e M a so-called
Singer-Thorpe basis {eu e2, e3, eά} of TmM. This is an orthonormal basis such
that all the components of the curvature tensor R are given by the following
formulas:

D D Λ D D V. D D . r>
^1212 — -**-3434— U , -**-1313— ^2424 — "> -*M414 — -** 2323 — ^f

/ n \ Γ) . fv D Ω D v

Rιjkl=0 whenever just three of the indices /, j , k, I are distinct.

Note that a+β+r—ΰ (the first Bianchi identity) and

(8) a+b+c=

where τ denotes the scalar curvature. Moreover it is always possible to choose
a Singer-Thorpe basis such that a^maxσ and c=mιnσ, where σ denotes the
sectional curvature function at m.

Further we write down some useful expressions for some curvature invariants
of order 2 and 3 with respect to a Singer-Thorpe basis. We have (see [9])

(9)

Further, we have

(10)

and (see [7])

<ΔR, R>=j



(11)

VOLUME-PRESERVING GEODESIC SYMMETRIES 219

-~

Next, let W^C°°(EnάΛ2M) be the Weyl conformal tensor. Then we have
the following unpublished result of A. Derdziήski:

PROPOSITION 5. Let (M, g) be a four-dimensional Einstein manifold such that
) has constant eigenvalues. Then (M, g) is locally symmetric.

It is clear ^that W has constant eigenvalues if and only if a, b, c, a, β, γ are
constant. As we noted in [12] this is equivalent to the curvature homogeneity
of {My g). So, Proposition 5 may be formulated as

PROPOSITION 6. Let (M, g) be a four-dimensional curvature homogeneous
Einstein manifold. Then (M, g) is locally symmetric.

In what follows we shall only consider the subclass of 2-stein spaces. Such
manifolds are defined in [2] as Einstein spaces satisfying the additional condition

"F(x)= 2 R%axb is independent of the unit vector x^TmM for all wieM."
a,b=l

For 4-dimensional 2-stein spaces we have [12]

LEMMA 7. Let (M, g) be a four-dimensional Einstein space. Then (M, g) is
a 2-stein space if and only if

(12) ±a=a~, ±β=b-~, ±7=C-J-,

for each m<E.M.

For this class of manifolds we also have some important and useful freedom
in the choice of a Singer-Thorpe basis. Indeed, let /, /, K be a quaternionic
structure on TmM adapted to the given Singer-Thorpe basis. This means, for

we put
Ix = — a2e1

Jτa1e2— aA

Kx = — aie1—ase2-\-a2e3+a1eΛ.

Then we have [9], [12]

LEMMA 8. For any unit vector x^TmM, {x, Ix, Jxy Kx\ is a Singer-Thorpe
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basis if and only if (Λf, g) is a 2-stein space.

Finally we note that on any 4-dimensional Einstein space we have

(13) Σ Rlabc=^\\R\\2

a,b,c=l 4

for any unit vector ξ^TmM. (See [1] or use a Singer-Thorpe basis to check
(13).) For 2-stein spaces we have more. Indeed, using (12) and Lemma 8, we
obtain

(14)
Σ

i.j.k.l.p

Σ i
\ l,J, k, I, p

1 /?

l ^
t=ΊR

for all unit vectors ξ(=TmM.

4. Proof of the Main Theorem

Now we suppose that (M, g) is a four-dimensional connected 2-stein space
with volume-preserving geodesic symmetries. Using the fact that ||iv?||2 is con-
stant (Corollary 3) and (8), (9), (10), (11), (12), we obtain

τ

T'
(15)

In what follows we will prove that ||Vi?||2 is constant. Then, (15) implies
that a, b, c are constant, and hence also a, β, γ. So, (M, g) is curvature homo-
geneous. Proposition 6 then implies that (M, g) is locally symmetric. The re-
quired result finally follows as in [1], [9].

To prove that ||7i?||2 is constant, we consider the condition

(16) α7(m, ξ)=0.

We get from (2) and (5) that this is equivalent to

or

(17) Σ
a,b

a,b

-^Γ Σ
ό a,b,c
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Using again (5), (17) becomes

/1 Q\ O VΛ in D T72 D . 1 (2 VΛ 7~) Γ) Tj Γ)

a,b a.b.c

or

(19)

where

aTb ς "

£ ( ? ) — Σ RέbξcRξcεaVεRεaZb,
a, b, c

for all ξe:TmM and all raeM.
Using again the Laplacian on TmM, we get from (19)

(20) 3(D*K)(ξ)=16(D*L)(ξ)

First we compute (D*L)(ξ). Using a Singer-Thorpe basis and Lemma 8,
we get

α, b, c

for all ξ^TmM and with (15) this becomes

(21)

Hence, we have from (21)

(22)

for all ξ<ETmM and all m^M. By direct calculation we obtain from (22)

The computation of DSK is much more complicated. We shall need several
formulas which we write down in the following lemma. They may be obtained
by using the Bianchi identities, (10), (11), (13), (14). We omit the long and
tedious calculations.

LEMMA 9. Under the hypotheses of the Main Theorem, we have the follow-
ing identities:

(24) j \ ^

7 J Λ f | | 7 Λ | | + ^(25) j j j

(26) ΣVRΨR ζ\\τ7R\\2+ξR
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(27)

(28)

(29)

(30)

(31)

(32)

(33)

for all ξeTmM and all

Using Lemma 9 we then obtain

LEMMA 10. Under the hypotheses of the Main Theorem, we have

(DΛΓ)(f)={2/1+2/2+10/s+4/4+4/5+2/6}(f)

where

1

1

and

(34)

44

/or αW ξeTmM and all m<=M.
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Now we can finish the proof. Indeed, from Lemma 10, we obtain

(35) (D'

Hence, (19), (23) and (35) give

or

Since (M, g) is connected, ||Viv?||2 is constant. So, we obtain the required result.
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