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ON THE NUMBER OF BRANCHES OF
A PLANE CURVE GERM

By TaAakuo FukupA, KENJI AOKI AND WEI-ZHI SUN

1. Introduction

The topology of the zero locus f-*(0) of a smooth map-germ f: (R?, 0)—(R?, 0)
is one of the most important and interesting problems in singularity theory.
Moreover it determines the homological type of f (see §3). In this note we
study the simplest case of smooth functions of two variables.

Let f:(R? 0)—(R, 0) be a C* function with an isolated critical point 0. For
a small positive number ¢>0, set

B.={(x, y): x*+y*s¢}
Si={(x, y): x*+y*=¢}.

The connected components of the set B.Nf~}(0)—{0} are called branches of
f-%0). We adopt this definition for our convenience, though it might differ
from the usual one, (if it exists.) The number of branches of f-(0) coincides
with the number of the connected components of S!Nf-!(0), and it determines
not only the topological type of f-'(0) but also the topological type of f. In
this note we give an algebraic formula for the number of branches of a plane
curve germ fY(0).
Given a function f:(R?, 0)—(R, 0), set

_|0f/ox of/ay| _

l H 2 2
x y . 2Jac0b1an(f,x+y).

Jr
Then our first result is

THEOREM 1. Let f:(R?% 0)—(R,0) be a function germ with an isolated
critical point O such that O is also an isolated critical point of J;. Then we have
the number of branches of f~(0)=2|deg(f, J;)|, where |deg(f, J;)| denotes the
absolute value of the topological degree of the mapping (f, Jo)/I(f, Jpl: Si—S.

Thanks to Eisenbud and Levine’s theorem ([1]), we can calculate |deg(f, /)|
in terms of J. Mather’s local algebra Q(f, J,;) associated to the map germ

(f) ]f) : (RZ: O)—)(RZ) 0) :
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|deg(f, J,) | =dimrQ(f, J,)—2dimeI(f, J),

where I=I(f, J,) is an ideal of Q(f, J;) which.is maximal with respect to the
property I?=0. Thus we have

THEOREM 2. If f:(R?% 0)—(R,0)is a C* function germ with an isolated
critical point such that dimgQ(f, J;)<oo, then the number of branches of
FH0)=2{dimzQ(f, J,)—2dimgI(f, J/)}.

Our motivation of this study was a desire to discover a generalization of
Eisenbud and Levine’s beautiful theorem. If one wants to define degree of a
map germ f : (R™, 0)—(R?, 0) for a general pair (n, p) of dimensions, there seems
to be two ways, the homological one and the homotopical one. In § 3 we discuss
the homological version and the importance of the number of connected compo-
nents of f-*0)N\S?-! is emphasized.

It should be noted that C. T.C. Wall ([3]) proved implicitly that for a C=
function germ f:(R", 0)—(R, 0) with an isolated critical point 0, we have

XSz [ (0))=—deg(df )+(—1)""'deg(df )+2—X(S"™),

where df=(df/0x,, ---, 0f/0x,): (R™, 0)—(R", 0) and X denotes the Euler char-
acteristic.

In the case where n=2, the Euler characteristic of S!Nf-*0) is the number
of branches of f-!(0) in our sense. Therefore ours is not the first formula for
the number of branches of plane curve germs. Moreover it is often easier to
calculate the degree of (9f/dx, df/dy) than the degree of (f, J,). However our
result possibly has the merit of generalizing in another direction, that is to a
formula for the number of branches of f-'(0) for a map germ f:(R", 0)—
(R™-1, 0); from our experiments on examples, the following conjecture seems
likely to be true.

CONJECTURE. Let f=(fy, -, fn-1): (R™, 0)—=(R™", 0) be a map germ with a
generic condition. Set

Jr=the jacobian determunant of the map germ
(fh Tty fn-u x%+ o x%z) . (Rn’ O)_,(Rn, 0) .
Then the number of branches of f='(0) is equal to twice the absolute value of the
degree of (f; jf) H (Rn’ 0)_’(Rny 0)
2. Proof of theorem 1.

Theorem 1 follows from the following two lemmas.

LEMMA 2.1. Let f, g:(R% 0)—(R, 0) be C~ function germs with isolated
critical points such that f-20)Ng-'0)={0}. Suppose that for any two adjacent
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branches of f~X0), g7*(0) has an odd number of branches between them. Then
we have the number of branches of f~'(0)=2|deg(f, 2)I.

LEMMA 2.2. Let f:(R? 0)—(R, 0) be a C* function with an isolated critical
point 0. Suppose that

J=y-0f/0x—x-0f/dy

has 0 as an isolated critical point. Then J=*(0) has an odd number of branches
between any pair of adjacent branches of f~*(0).

Proof of Lemma 2.1. Take any branch, say a,, of f-*(0). Let a, be the
one next to a, anticlockwisely and a; the one next to a,. From the hypothese,
there are an odd number of branches of g=%(0), say by, -+, byzs1, between a,
and a,; and also an odd number of branches of g=*(0), say ¢, -**, Com+1s
between a, and a,. For simplicity, we give a proof for the case where k=1
and m=0. The proof for the general case is similar. Let D,, D,, ---, D, be the
regions between the branches of f-*(0) and g-%(0). (See Figure 2.1.)

(Figure 2.1)

Let ¢ be a sufficiently small positive number. Since 0 is an isolated critical
point of f, the function f.(8)=/f(scos §, ¢sin §) changes the sign of its value
when the path ee?’=(ecos 8, esin §) passes through a branch of f-%0). Ditto
for g(ecos @, esin ). Without losing generality, we may suppose f>0 and
g>0in D,. Then we have the following table of the signs of values of f
and g.
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€e*® | a, |D,| b, |Dy| by | Dy| by | Dy| @y | Ds| ¢i | Ds | as
X=f| 0 |+ |+ |+|+|+|+|+]|0|=|=|=]0
Y=g|+|+]0|—=|0|+|0f—|—|—]0]|+]|+

From the table, we have the following figure which shows the image of the
map (f(ecos @, esin §), g(e cos 8, ¢ sin §)).

Y

(Figure 2.2)

From the above figure, we see that as the path (e cos 8, ¢sin §) goes from
a, to a; via a,, the degree of (f, g) increases by —1. In the above argument
it does not matter how many branches g-'(0) has, so long as it has an odd
number of branches between each two adjacent branches of f-*(0).

Q.E.D. of Lemma 2.1.
Proof of Lemma 2.2. Now we use the polar coordinates (7, 8):
x=rcosf, y=rsinf.
For a small positive number », we set

f{@)=f(rcos@, rsin@).
Then we have
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df,/d0=0af/dx-d(r cos 8)/dG+-0f /0y -d(r sin §)/dE
=—rsin @-df /0x+r cos 6-3f /dy
=—y-0f/0x+x-0f [0y=] ;.
Since 0 is a common isolated critical point of f and J,, f.(6) is a Morse

function of the variable # and f,(f) changes its sign when the path (»cos 4,
v sin @) passes through a branch of f-!(0). Thus we have

Jr=—df./d6+#0 on f~Y0).
Let
a,=(rcos @, rsinf,) and a,=(rcos @, »sin §,)

be any two points of f~*(0)"{x*+y*=r?} which are next to each other.

f(6)>0

f+(6)<0

(Figure 2.3)

Since 0 is an isolated critical point of f, the sign of value-of f,(#) changes
at ¢, and 6, and it does not change between them. We may suppose without
losing generality that f.(6)>0 if 8,<#<8#,. Thus we have

df,/d6(0,)>0 and df,/d6(6:)<0.

Since f.(0) is a Morse function, it has an odd number of critical points between
0, and 6,. (See the figure below.)
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graph of f.(8)

f0) /\/\/\
— N

(Figure 2.4)

Since
{critical points of f.(0)}=1{0]df,/d6=0}

{J=0, x*+-y*=r"},

the number of branches of /-*(0) between a pair of adjacent branches of f-*(0)
is odd. Q.E.D. of Lemma 2.2.

i

3. Homological behaviors of a map germ

In this section, we attempt to generalize the notion of degree of map germs:
(R™, 0)—(R", 0) to the case of map germ: (R", 0)—(R?, 0) with n>p from a
homological view point. We propose here to define the absolute value |deg f|
of the homological degree of f to be the number of connected components of
fH0)NS?-1,

In the case where n=p5, a map germ f:(R", 0)—(R™, 0) such that f~%(0)={0}
induces a homomorphism

fe: Hyoo(RP—{0}; Z)=Z — H,-(R*—{0}; Z)=Z.

The induced homomorphism f, may be regarded as multiplication in Z by some
integer d; fi(a)=d.a. The integer d thus associated to fy is the degree of
f:(R™ 0)—(R", 0) (see [1]). So, if we want to generalize it to the general
case, first we should observe the homology groups of R™*—f-*0) and R?— {0}
and the homomorphisms fy between them.

Let f:(R™ 0)—(R?, 0) be a C* map germ such that 0 is an isolated singular
point of f-%(0). Let D? and S™-! be the closed n-disk and the (n—1)-sphere in
R™ centered at 0 with radius ¢ respectively. Then we must observe the homo-
morphisms

fx: H(D?—fX0): Z) > H(R?—{0}: Z), 1=0,1, -, p—1.
Here we choose a representative mapping of f and denote it also by the same

notation f.
Since

1) H(R?P—{0}; Z)= Z for =0 and :1=p—1
ZPZ for i=0 and p=1

0 otherwise,
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the homomorphisms
[ H(D?—f%0); Z) — H(R?—{0} ; Z)
are O-homomorphisms for 7#0, p—1. Hence it suffices to observe

fs: H(D2—f%0); Z) - H(R?—{0}; Z)
and
fot Hpel(D2—f7Y0); Z) = Hp-(RP—{0}; Z)  for p>1.

Now, using the Alexander-Pontrjagin duality and the Poincaré duality, we
can express homology groups H,(D*—f-*0); Z) in terms of H,(S?'Nf-%0); Z),
in particular we have

2) if n—p—1>0 and p>1, then
Hypei(D2—f-0); Z)=Hp-(S2'—f0); Z)

=H(StNf0); Z)
3) if n—p—1=0 and p»>1, then

Hp (D2 —f0); Z)YDZ = Hp-o(ST—[710); 2)DZ
= Hy(S2'Nf0); Z)

Thus the homology groups we want to know turn out to be
Hy(S?'Nf0); Z2) and Hy(S?'—f~%0); Z)

which are completely determined by the number of connected components of
SN f-1(0) and S?-'—f-(0) respectively.
Now let us observe

fx: H(DE—f7%0); Z) — Hy(R?—{0}; Z).
This homomorphism is rather trivial in the following sense:
a) If p>1, then D?— f-*(0) is connected and hence
fx; H(DP—f40); Z)=Z — H(R?P—{0}; Z)=Z
may be regarded as the identity map of Z.
b) If p=1, then
fx: H(D2—f~10); Z) > H(R—{0}; Z)=ZDZ

is completely determined by the number of connected components of D? f~%(0)
and the sign of values of f on each component.
Now let us observe
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fo: Hpo(DE—fY0); Z) = Hp-(RP— {0} ; 2)=Z .

Let K,, i=1, 2, m, ---, k, be the connected components of S?-!Nf-0). Since 0
is an isolated singular point of f-%(0), the restricted mapping f|S?-!:S?-!'—-R?
is submersive in a neighbourhood of K,. Hence K, has a tubular neighbourhood
T, in S*-*' which is diffeomorphic to K,xX D% for a small positive number .
Identifying T, with K,X D3, the restricted mapping f|K, X D% : K, X D3—D3C R?
becomes the canonical projection.

Thus and from the above duality isomorphisms 2) and 3), letting ¢, be a
point of K,, we see that the homology class

[{gi} X0DBle Hp(SE—f710); Z)
=H, (Dt —f40); 2)
are the generators of H,_,(D?—f-%0); Z) and also that
f+([{gs} X0DF)=+[0D5]=+1€ H,(R*—{0}; Z).

The sign in the above equality depends only on the choice of orientation of
{g:} x@D?. Thus we have

PROPOSITION. The homological behavior of f 1s completely determined by the
homology groups of SE'Mf~Y0) and the orientations. In particular the homo-
morphism

[t Hpi(DF—f710); Z) = Hpo(RP—{0}; Z)  p>1

is completely determined by the number of connected components of SP*Mf-0)
and the orientations.

As a conclusion of this section, we emphasize the importance of the number
of connected components of S?-*Mf-*(0) which can be regarded as the absolute
value |deg f| of the degree of f:(R" 0)—(R? 0). In particular in the case
where p=n—1, the homological behaviour of f is completely determined by the
number of connected components of S?-!\f-(0) which is equal to the number
of branches of f-(0). Thus we are interested in the conjecture given at the
end of §1.
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