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ON THE CONVOLUTION OF L, FUNCTIONS
BY SABUROU SAITOH

1. Introduction.

For the convolution F*G of FE L ,(—oo, oo)(p=1) and Ge& L,(—oo, ), we
know the fundamental inequality

(L1) IF*Gl,=IFll5I Gl

See, for example, [8, p.3]. Note that for F, G€ L,(—oo, o), in general, F*G e
Ly(—oo, c0). In this paper, we will give an identification of a Hilbert space
spanned by the convolutions F*G and establish fundamental inequalities in the
convolution. Note that when the space is L,(0, o), the results are very simple
and quite different from the present case L,(—co, o). See [7].

2. The case of functions with compact supports.

We first consider the case of the convolution F*G of FE Ly(a, b) and Ge&
Ly(c, d). Without loss of generality we assume that a+d=<b+c. Of course, in
the convolution we regard Fand G as zero in the outsides of the intervals [a, b]
and [c¢, d], respectively. We consider the integral transform, for Fe L.(a, b)
and z=x-+iyelC

_ 1 cast
@1 Fl2)= ZﬂSaF(z‘)e dt.
As we see from the general theory [5, 6] of integral transforms, the images
f(z) form the Hilbert space H, , admitting the reproducing kernel on C

(2 2) K ( —)_LSD -zt iutdt
. (a,)\Z, U)= o ae e .

Since the family {e-***; z&C} is complete in L,(a, b), we further have the
isometrical identity

1 (o
23) e LGRS

Hence, by using the Fourier transform for (2.1) in the framework of the L,
space, we have
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. N 2
l.1.m.S_N fx)ewtdz| dr.

N oo

1 (e
2.4 1 V= 5).

We consider similarly the integral transform, for G& L,(c, d)

25 — 1 ¢ -1zt
2.5) g(z)——Z;Sc ClH)e-+dt

and the Hilbert space H 4, admitting the reproducing kernel

Kee.wle, B)= | erte™dt
(¢, d)\K» 271'_ ¢ .
Then, we have

(2.6) f(2)g(z)=

1 (bo+a
ot S (F*G)(Be-4dt,
where

[ Pedcu—tyan,  for atestza+d
(F*G)(f)= S::ZF(tl)G(t—tl)dtl for add<t<b-+c
S: JFE)Gu—t)dt,  for bte=t=htd.

The product f(z)g(z) belongs to the Hilbert space [Hq, 0@ H ., ay]r Which is the
restriction of the tensor product H, »&H, 4, to the diagonal set C of CXxC.
Here the norm is given by

(2-7) Hfg”gﬁ(a,b)®H(c,d)]R: min ]421 kgl (f]r fk)H(a»b)(g]’ gk)H(c-d) N

The minimum is taken over all functions Z”fj(zl)gj(zz) on CxC satisfying
=1

2.8) f(z)g(z)zg)lfj(z)gj(z) on C

for f,€Hu and g;€H.a. Moreover, the Hilbert space [H 5&@H, a)]1r
admits the reproducing kernel K, »(z, @)K 4)(z, #) and is characterized by this
property ([1, pp. 357-362 and p. 344]).

In order to realize the norm in [He, 5»Q@He )1z, We compute the kernel
K0z, @)K a)(z, @) in a reduced form; that is,

2.9) Ko, (2, W) K, ay(2, %)

b(d
— 412S § e—zztleiutle—thzezutzdtldtg
" Jale
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a

1 +d )
:‘4_77-'—2-Sa+c {t_(a+c)}e‘”telupdt
1 (o+e N
+‘4_7r2'Sﬂ-:-d(d_—c)e_1’Ztelutdt
1 b+d .
+ S {(b+d)'—t}8_1”elutdt'

472 Jo+

We denote, in general, the characteristic function of [a, b] by X(t; [a, b]) such
that

1 for t<[a, b]

x@; La, b]>={

0 for t<a, or b<t.
We set
Viy={t—(a+)}X(t; [a+c, at+dD+(d—)XE; [a+d, b+c])
+b+d—)X(t; [b+c, b+d]).
Then, any member ¢(z) of [Hq,5&H, 4, r is expressible in the form
.__1_ « -2t
2.10) @)=z POV @Ot
for a uniquely determined function @ satisfying

@.11) SZ | D) |2V (E)dt<oo.

Moreover, the norm is given by, as in (2.4)

| o
2.12) 1618 0o ain= gz | QD1 Ot

| N-oo

o N 2
:S l.i.m.g_vgﬁ(x)e”‘dx Wdt,
where
Lt;Late, a+d])  X@;[a+d, b-+c]) At [b+c, b4+d])

—(ateo d—c T brd—t

See [5, 6]. From the property of (2.7), we, in particular, obtain the following
inequalities.

W)=

THEOREM 2.2. For any f€H 4 n and g€ H, 4),, we have the inequality

2.13) S“d

a+c

Li S” f(x)g(x)estd [2W<t>dt
dm.  f(x)glx)etdx
1 ¢»
20
RS

'277:5:

N 2
l.i.m.S_Nf(x)e“”dxt dt

N -

l.i.m.gl_vN g(x)e“tdx ! ’ dt

N -
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or, for any Fe Ly(a, b) and G& L,y(c, d)

b+d b d
2.14) SW L(F*G)(8)] 2W(t)dtgga |F() ZdtSc |G| 2dt .

As a property of the convolution F*G, we have

COROLLARY 2.1. The convolution F*G of Fe Ly(a, b) and G Ly(c, d) is ex-
pressible in the form

(2.15) (F*G))=PM)V )
for a function @ satisfying

2.16) S‘: [0V (H)dt<oo.

Conversely, for any @ satisfying (2.16), the right hand in (2.15) is expres-
sible in the form, for F;= Ly(a, b) and G;< Ly(c, d)

@(t)V(t)=]Z=Jl(FJ*Gf)(t)
in the sense of the strong convergence in the norm (2.16).
Further, when G=1 on [0, d], we have

COROLLARY 2.2. For any F= Ly(a, b) and for any d such that a+d=<b, we
have the inequality

2
dt

2 1o
7 s

@.17) [ - [ Pear,

St Ft)dt,
t-d

S" F(t)dt,
t-d

re__1 *ar=d\" 1P 2
+§b b+d—t = Sal ( I :

Further, when a=c=0 and b=d>0, we have
2 2 1
dH_Sb 2

e1e)  ((rea, oot

S" F(t,)dt,
t-b

2 b
dtgbgo |F()|2dt.

Corollay 2.2 will give a natural relationship between the magnitudes of the
integrals

[ Pepa,

2 b
and S |F()|%dt

in a sense. Cf. Hardy-Littlewood-Polya [3, pp. 239-246].
In particular, when (a, b)=(—a, a), we have

sin (az—aiwt)

K-a,0)(2, )= 2(z—7)
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and
00 1 a
2 —_ 2
" rerde= " 1F@1at.
See, for example, de Branges [2, pp. 46-48]. Hence, we have

COROLLARY 2.3. For any f and g€ Hq, 4y, we have the inequality
@19) (o fuim (" rmgmestax| a=(" 01| a1
. cea o] )y 0)gxetdx| di=) 1f(0)I*dx| lglx)|*dx.
Further, for any F and G& Ly(—oo, o) and for any a>0, we have the inequality

2e 1 2 @ 2 2
(2.20) I gz lowras( 1Foral’ 1601,

3. Equality problems.

We will consider the equality problems for the inequalities obtained in §2.
Note that there does, in general, not exist a general treatment for the equality
problem in (2.7). See [4] for some general discussions for this equality problem.
But, in the present case we obtain directly

THEOREM 3.1. In the inequality (2.14), equality holds for Fe& Ly(a, b) and
GeLy(c, d) if and only if F and G are expressible in the form

3.1) Ft)=C.e®® on [a, b] and G@)=C.e*** on [c, d]

for some constants C, and C,, and for some point usC.
Hence, further, equality holds in (2.13) for feHyq v and g€Hy o) if and
only if f and g are expressible in the from

3.2) J@)=CiKwn(z, &) and g@)=C.Kc a)(z, ).

Proof. We will consider the equality problem in the inequality (2.14). Note
that the inequality (2.14) is directly derived as follows:

> " mexorwoa= " — | [T Peca-tdn| ar

6y (iEemwodn=] = |l ety
b+e 1 t-c .

+Sa+d d—c }St_dF(l‘l)G(t—tl)dt1 dt

b+d 1 13 FOG d zd
+Sb+c b"l“d’__t’SL-d (E)GE—t)dt) dt

=" 1Padcu—t1san)ar

a+c
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a+d t-

o ipece—tra)a

+S”<Sf_d | F(t)G(t—1y)] Zdtl)dt

b+c
b d
=Sa lF(t)|2dtgc |G| 2t .

Hence, equality holds here if and only if

F<t1>G(t_t1):H(t)
or

3.4 F@)G(t)=H(t,+t;) on [a, b]X[c, d]
for some function H on [a+c, b+d]. Hence, from this functional equation, we
have the desired result (3.1).

4. The case of L,(—oo, o).

Next, we will consider the case of F, GE Ly(—co, o). Then, for any a >0
and for the restriction of F and G to [—a, a] we can consider the functions

_.__1_ e -1zt __,L @ -2t
falD)=75 S_GF(t)e dt and go(2)=r5- g Glt)e-dt.
Then, we note that the norms

”fagll“EH(-a,a)®H(—a,a)JR

do not decrease for a>0 and so the limit

tim [ —I——I(F*G)(t)lzdt=£i£r°1°{go 1 | FeoGa—toan|a

a=w J-20 20— || ~2a t42a |J)-a
2
dt}
exists.

In order to show this fact, we consider the expression, for any 0<a<b

el e

-a 1 o
F(t)e“”‘dt—l——g Ft)e-tdt
b 27 Ja

@D fl=oe | Fetdit |

::fa(z)‘I‘f(—b,—a)(z)‘|’f(a,b)(z)
and the corresponding reproducing kernels
4.2) Koz @)=K o, 0z, @)+Ks -0z @)+Ka. 0z, @).

These mean that
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4.3) H(—b,b):H<—a,a)@H<—b,-a>®H(u,b)
and
4.4) 1ol g =W allZr oq 0 TS -t -as U <, gy TN carmrllBr gy -

Note that in this case the sum is a direct sum. See [1, pp. 352-354]. From
(4.2), we have the identity

4.5) K-v,00(2, #)*=(K(-a,0)(2, @)+ K-0,-0)(z, @)+ K(a,0)(2, #))*
=K-0,0)(2, B)K(-a,0)(z, W)+ +Ka, (2, DK a,00(2, @)
and the corresponding expression
(4.6) (@) gn(@)=(f (D) + f -b.-0) @)+ [ @, 0(2))(ga(2) + & (-0, - 0)(2) + G (0, 00(2))
=fu(2)ga(2)+ -+ [ a.0(2) 80, 0(2).

From these identities we obtain conversely the corresponding identities to (4.3)
and (4.4).

4.7 (Heo.0@H 0,0 1e=[H-a,0;QH -0,0) 1D " BlHe,n ®H 2,1 ]z -
and
4.8) Ifo&0 et (. 0y ~5,0232

=)fageltu -0, weH -0, 12T T @08t 0 0t @ 0rIR"

Hence, in particular, we obtain the desired result

(4-9) ”faga”[H(_a,a)®H(-a,a)]R§ ”fbgb”EH(-b,b)®H(-b,b)]R .

Hence, in the inequality (2.20), we obtain the fundamental

THEOREM 4.1. For any F and G& L,(—o0, ), we have the inequality

@10 tm{” ﬁ (G 0ra=" PO 1Gw)d,

0o

Equality does not hold here for F, G+0 as functions of Ly(co, oo).

The equality statement in this theorem follows from the proof of Theorem 3.1.
Of course, we can obtain the corresponding results for iterated convolutions by
a similar method, but the results are more complicated than the case of

L0, o). See [7].
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