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§1. Introduction.

The purpose of this paper is to study the group ¢(X) of homotopy classes
of self-homotopy equivalences for the total space of a S*-principal bundle over
S™ (n=6). Since this group acts on the set of all homotopy invariants it must
be useful in the homotopy theory to clarify the group structure and it’s action.
However, as stated in [1], any finite group can be realized as a subgroup of
e(X) for suitablly chosen space X, so it seems to be difficult that we clarify
them in general. Many authors have computed the group ¢(X) for various type
of spaces. Especially J. W. Rutter has determined ¢(X) in our case of n=7 in
[4] and also N. Sawashita and M. Mimura treated our case under some addi-
tional conditions in [6] J. W. Rutter’s results were complete except one sub-case
because he could use the speciality of n=7, however, our results are weaker
compared with his ones because of generality. In our theorem the group
structure of ¢(X) is only clarified up to extension, and to determine extensions
is left as problems.

§2. Method and Theorem.

Let p: X—S™ be a S*-principal bundle over S® with the characteristic class
£(er,-1(S%), and let Y* be the space of continuous maps from X to Y with
compact-open topology. Then we have a fibring p¥ : X*—S** in the sence that
the map p* satisfies the homotopy lifting condition for CW-complexes. If we
take the identity map 1y and the projection p as the base points of X* and Sn¥
respectively then the following exact sequence can be obtained as usual

T(X¥, 1x) —> m(S™, p) —> 7(p¥ 7 (P), 1x) —> mo(X ¥, 1x) —> mo(S™7, P).
Since, using the free action of S® on X, we can easily obtained a homeomorphism
$: (S, 0 —> (p*7(p), L) (HX)=D)
defined by @(f)(x)=xf(x) for f: X—S?, the pair (p¥'(X), 1x) may be identified
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with the pair (S**, ). Now it is clear that the space X¥ forms a topological
semi-group with unit element 1y under the multiplication defined by composition
of maps and also we can give the space S** the same structure with unit ele-
ment * by defining multiplication :

fHg(x)=f(xg(x))g(x).

Since these structures are inherited by the set mo(S**,*)=m,(pX (P), 15) and
(X%, 1x), which we may regard as semi-groups, and then the map

7o(S, *) — (X%, 1)

is homomorphic by definitions. For any semi-group G we denote by reg.G the
group consisting of regular elements of G. Since it follows from definitions that
e(X)=reg.mo(X%, 15) and that the boundary

T(S™, p) —> m(PFTH(P), Ly)=my(S*%, %)

is homomorphic, the preceeding sequence can be transformed into the exact
sequence

(XX, 1x) —> 1, (S™F, p) —> reg. mo(S*¥, ¥) —> &(X) —> m,(S™F, p).
Thus our purpose is to study

the image of the map &(X) —> 7,(S™*, p) and
the image of the homomorphism 3y : 7,(S**, p) —> reg. mo(S**, *).

Off course these require describing z,(S™*, p) and reg. 7,(S**, *) by comparablly
well-known concepts. These problems shall be treated in §3 and §4. Let
f:K—L be a map and suppose that H,(K) and H,(L) are both isomorphic to
integers Z. Since the degree of fy: H,(K)—H,(L) is defined as usual we denote
by d.(f) the degree of fi. Since our space X has Hy(X)=H,(X)=Z ds(f) and
d,(f) are defined. Clearly if f is a homotopoy equivalence we have dy(f)==+1
d.(f)==+1. We denote by ¢,(X) the kernel of the homomorphism d=(ds, d,):
e(X)—~Z,XZ,, i.e. we have an exact sequence:

d
1—e,(X) —eX) — Z,XZ,.

Remark. d is equivalent to the usual representation e(X)—Aut H*(X). Let
7 be the Blaker-Massey map S°—S%. Then we have

THEOREM A. Assume that t-E¢=0 mod om,.(S™" 1), then we have
d: e(X)—>Z,XZ, 1s onto if 26=0 and
d: e(X)— {(—=1, —1)} s onto 1f 26+0.
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Remark. If the order of & is odd it can be shown that 4 is trivial in the
case of 7oFE3%£0 mod &om,4o(S™71).
Let 7 be the essential map of 7,.,(S™) (n=3),

THEOREM B. If §.9=0 there exists an exact sequence
0 —> 70(S) X Tass(SY)/He —> e+(X) —> G¢ —>0,
and if &.p+0 we have an exact sequence

00— Z; —> ma(S) X mnsa(SY)/ He —> €4(X) —> G —> 0
except the case Eenp=mn°Ef where G¢ and H, are defined in §5.

Remark. We could not get similar results in the exceptional case, but I
think that the cases must be determined by z°E*$-»=0 or not. Indeed, I can
prove that if o E*¢ey=0 (=n-v-E‘¢=t-y°E*) we have the first sequence in the
exceptional case.

§3. The set z,(S™*, p)

X may be regard as a CW-complex of a form S*Ue™\Ue™*®, so we denote by
A the subcomplex S"gje". Since S°® can be considered as a fibre we have the

fibring which is obtained from the restriction of maps p: Sn¥gnS° (r(p)=x).
On the other hand, using dim X=n-+3 and the homotopy cellular approximation,
we know that any map X—S™"VS"*® can be uniquely determined up to homotopy
by a pair of maps: X—S® and X—S"*%. Let ¢: X—>S"VvS*** be the map cor-
responding to the pair, p: X—S™ and the collapsing X—S"*%, and define the map
Y SuS™S_,GuX by W(f)=feq for a map f:S*VS***—S". Then it is easy
that ¥ gives rise a homeomorphism from the space S»$"VS$™*® onto the fibre
r~1(*) of the above fibring. Since it follows from the assumption n=6 that
7.(S75%, £)=m,(S"5*, *)=0 we have the bijection

[S, SMIX[S™*3, S*]=m,(S»S™V5™** (1, 0)) — m(S™¥, p)=[X, S™].

Now we define a multiplication in the set [S™, S™]x[S"*%, S*] by the formula:
(m, a)N(n, B)=(mn, mB+na). Clearly this multiplication gives an abelian semi-
group structure with unit element (1, 0). Especially we have

LEMMA L. reg. {[S”, S*]XS™*, S*]} = Z,B 7 nes(S™)

Proof. Since (m.a)V(n, f)=(1,0) implies mn=1 and mB+na=0 we have m=
+1, n==+1 and a4 8=0. Conversely (+1, @) clealy regular for any @« and the
imbedding a—(1, @) is an injective homomorphism and then the decomposition
is trivial. These show the proof.
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Let f, g be maps X—X. Then, by the above bijectivity, we have
pef=(mVa)eq and peg=(nVf)eq
for some integers m,n and @, B(Em,4+5(S™).
LEMMA 2. p(gef)=(mn, (na+d,(f)mpP))-q

Proof. Consider the following diagram

f g
X —> X > X
S NN
SrySnts —————> G --—mm- - > Sny/ Sn+s3 —a L
mVa nvpg

Since we have
p(gefl=mVP)eqef and gof={mVa), 0, dnss(fD}-a
the proof follows from
(mVEH{(mVa), (0, dnss(fN} =(mn, (na+da.s(f)B)
=(mn, (na+ds(f)mp)).

Now, from lemma 1 and 2, we can obtain the commutative diagram :

1—> e,(X) —> e(X) %> Z,% 2,

NN\

0 I 7Tn+3(sn) —— ZZXﬂ.n-}—a(Sn) —_—> Zg _—> 0

Let 74: A—X and 7;: S*—>A (CX) be inclusion maps.

LEMMA 3. Let 2 be the attaching map of the (n+3)-cell of X. For a map
h: A=A of type (—1,—1), i.e. d(h)=(—1, —1) we have

1 gs(hoA)=(s+1)is(z- E%¢)
where s is an integer satisfying 2sE*6=0.

Proof. Using the commutative diagram :
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{[8-, l3]r} @é"ﬂ'nw(Dn, S‘n.-l>

Tn+2(S?) - Tn+e(A) —> myea(A, S°)
R TR VL
Tp12(S?) —> Tppe(A) —> Tayse(4, SP)
lE 13, lE J*
T EA, SY) _é—> Tn+s(SH) - Toes(EA)

Ix
{[Eg, talst @S°ﬂn+4(D"H, S™)
and Hopf map v,:S™—S* we have

he(Q)=2A+1,,(I") for some element I of m,,,(S?)
and
E(ho(Q)=(Eh)e(ED)=(Eh)(i+(v,°E*%)) by (3.1) of [5]

=iy {(—e)ovie B} =iu(—vit ey, u])-E'S
=g (=t 20+ E7) e E*6 =iy (vso E*E) 14 (Er- E*)=EA+1. E(z- E*).
These show that 7, (EI")=1,E(c-E*¢), i.e. E(I'—7-E3%) is contained in the 0-image.
Since the
0-image=FE&om,.5(S") \U{[EE, ¢,]}
=E&mq45(S™) U {Qvy+ E7) E*E}
we have, for some integer s and yem,,(S®?),
E(I'—t-E*§)=E(°7)+5(2vs° E*6)+sE(z- E’E).
On the other hand, we know the decomposition :
7(SY=En,_«(S)Pviom,(S7).
Hence we have that 2sE*%¢=0 and I'=(s+1)c-E*¢+£&oy, i.e.
14 (2)=(s+1Dis,(z-E).

Thus the proof is completed.

Next, let 2: A—A be another map of type (—1, —1) and let Q: A—>AVS™ be
a map collapsing the equator of the n-cell of A to a point. Then it is well-
known that 2 can be represented as a composion :

A AvS® X (cerm,X)).
Q hVo

By using Q.«(A)=2+[0,¢], we can know that
La(ke )= (s+1)is(z- E*¢)—[0, t5].
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On the other hand, since S® acts on X we have [g,7,]=0 for all ¢. Hence the
proof of Theorem A follows from the above formula and lemma 3 if we note that
the existence of a map of type (I, —1) implies 26=0. Moreover if 26=0 there
exists a bundle map g: X.—X_.. Then the composition

Xe X._¢ X

& |» |7

N S N
vd —id

is clearly of type (1, —1).
Now we must determine the image e.(X)—r,.,(S™) in the preceeding dia-
gram.

LEMMA 4. In the following diagram

[

Snvsn+3 Sn

idva

(I1Va)eq has a lifting f of and only if there exists a map ¢:A—S* satisfying
(D) =0a where A 1s the complex S"‘L€je" and X=A\}}e"+3.

Proof. Consider the diagram

,,,,,, 35X
A';—"'.—‘—* AUDn+s___X____.>Sn
la 2 f
ql 1Va
Sry St (a-f=plA)

Let g be a lifting of 7,of. Then there exists a map ¢ : A—S*® satisfing
g)=pliax), $(x)) (x€A)

where p denote the action of S° Clearly the converse is also true, i.e. we
have a one to one correspondence

{liftings of 74°f} <— {¢p: A —> S?}.

For a map ¢: A—S*® we take an extension g:X—X of the map g defined as
above. Off course g exists if and only if g«(1)=0. Since
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g*<7~>:#*(¢*(2)+lA*(Z)):#*(Sb*(/z))‘i',u*u'(z)
=4 (D)) F1 4(A)=14(4())

g%x(A)=0 is equivalent to ¢4()=0c for some sEn,.5(S™). Let & be the element
of m,44(X, S®) satisfying p«(6)=0c, and define a map g by

gus: X=AUD"?® — X,

This is well defined. Then the above diagram shows ¢=a. Thus the proof is
completed.

LEMMA 5. The map f=(1Va)eq: X—S" has a lifting f: X—>X with ds(f)=1
and d,(f)=1 if and only 1f 0a=0, i.e. E-E-'a=0.

Proof. The former condition is equivalent by lemma 4 to the condition:
there exists a map ¢: A—S® with dy(¢)=0, and ¢«(2)=0a because we have

ds(f)=d3(¢°l.4) :ds(¢)+ds(iA) :d3(¢)+ 1.

This implies that ¢ is represented as a composition we(p|A) for some w: S*—S?.

Then we have
Gx(A)=wx(p| A)x(2)=wx(0)=0.

Thus the proof is completed.
From lemma 4 and lemma 5 we have

PROPOSITION 6. a<m,.+s(S™) s contained n the image

e+(X) —> mhae(S™)
tf and only if §-E'a=0.

§4. reg.[X, S*]

LEMMA 7. For fereg.[X,S%], it holds that ds(f)=0 or —2 if 26=0 and
tE36=0, di(f)=0 otherwse.

Proof. By definition there exists a map g: X—S? such that
fxg(x))g(x)=1=g(xf(x)) f(x).
Restricting each map we have
plg+D+g=0=¢(p+D+qg  (p=ds(f), ¢=ds(g))

i.e. (p+1)g+1)=1. This shows that p=¢=0 or p=¢g=—2. If p=—2 the ex-
tendability of f|S® over A gives 26=0. And moreover the extendability over X
gives (—2¢,)J(§)=0, i.e. 7-E3¢=0. These complete the proof.

Let f: X—S® be a map with dy(f)=0. Then it is clear that there exist two
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maps f,:S"—S?% and f,:S"**—S® such that

f=(f1V foeq: X ———> S"V S S8
q f1V[e

LEMMA 8. Let g:X—S*® be another map with dy(g)=0. Then we have

Fg=(f1V f2)oq#(g:1V g2)oq={(f1+ g0V (fotg2)} °q, i. e. this means that if dy(f)=0
then f s belonging to reg.[X,S*] and

@x : Ta(S*) X 7 54a(SH)=[S"V S 2, §*] —> [X, S°]
1s an eprmorphism onto d3*(0)Creg. [ X, S*].

Proof. From the diagram:

Sn+8
X—i>S"\/S"+3 (g &) o8 e / T
13 X —> X—g—» S?y/ S+t ———— G8

X > X R l (fhfz)
Sn

we can obtain that f(xg(x))=(f,V f.)¢(x)=f(x). Hence we have fég=f(gV1x)-g
=fo 8= {(fl\/fz) ° (]} {(g1\/g2) ° q} = {(fx\/fz) ° (gl\/gz)} °q= {(f1+g1)\/(f2+gz)}q.
Thus the proof is completed.

Now applying lemma 7 and 8 to Puppe sequence for the cofibring S*—X—
SV S**? we have an exact sequence, i.e.

PROPOSITION 9. Z,=r,(S?) —a—> (S X T 0ps(S?) —> reg-[ X, S%] T Z,
3

1s exact and the following holds

(1) On=(nEE, n-J))=(n°EE, neveE6)=(n-Ef, topVE§)=(n-E§, t-E*¢y)
and
(2) ds is onto of 26=0=tE3¢ and ds;=0 otherwise.

Remark. Lemma 7 shows that d;(f)=0 or —2 for fereg.[X, S*]. Let f be
a map: X—S? with dy(f)=—2. Then dy(f$/)=0 is clear, so f#f is an element
of reg.[X,S*] by lemma 7. This shows fereg.[X,S%] i.e. fereg.[X,S*] is
equivalent to ds(f)=0 or —2.

§5. The homomorphism P{
LEMMA 10. 7,(S"%, p)=Z,.

Proof. Consider a part of the homotopy exact sequence associated with the
fibring ; S»S"VS™0_,GaX _,Gas?
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7SS, ) —> m,(SP%, D)Xy (SP™, 4) —> m(SnE, p) —> 7, (S, )

|

ms(SM=0 Tr+(S™=0 m(S™)=0

Then the proof follows from =,(S*¥, p)=r,(S»5",1)=Z,. For studying the homo-
morphism pf we use the following diagram

ﬂn(Sa)
}o=¢E" X
) T(X*, 1) — %, 2(57%, p)=2,

T Dx l 24 =
Tar(X) ——T (X4, i) —— 7,(S™, p| A)=2,

BT

Zasi(S?) —— > 7(SH %) ©
@ v
®l T (XS i)=Zl7]
ZLyl=m(s", ) = ®

v
@l / 7a(X) i EE
nEtem,(SY g

where = denotes the homomorphism induced by the map S* —X¥ defined by
F(»)=vf(») for Y=A or S* and three sequences with gothic arrows are exact.
First we consider the case of §-+0, This means that 7 :7,4,(S?)—m, (X) is
onto. Thus we have that

(1) if poEfe {7} then pi is zero because m,.i(X)—n (X417, is onto.

(2) if pEE=0 then p# is zero because 7,(S**,*)—mr,(X4,1,) is onto.

(3) if pE&=Ey then p4 is onto because there exist an element of 7,(X4,1,)
which is not contained in the image 7,(S**, 4)—7r(X4,17,).

Secondly we suppose £7=0. This means that there exists an element pye
7a+1(X) such that pu(nx)=%. Then from the commutativity of the diagram

Zy=m4(S™) ——> ﬂl(SnA, PlA=Z,
T D« = T pi
Px ETnr(X) ———> m (X4, i)«
it follows that p¢ is onto. Thus pf is onto if 7y is contained in the image
T (X¥, 1y)—m (X4, i)

LEMMA 11. 4y is contained in the image m (X%, 1x)—=m (X4 14).
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Proof. Let @ beamap: S'XA—S"*1\Vv(S*X A) which is obtained from pinch-
ing the equator of the (n+1)-cell of S'XA, and let L be the subcomplex
ST AU*X X of S'XX=L\Je™**. Our problem is to determine the extendability

over S*X X of the map: L—X defined as follows:

L= (S’XA)U*XX-———-—)(S"“V(S‘XA))U*XX SV ——s X

\ 7)XVP"°J
Gty L /

where L’ denotes the complex L/S'x*. Now we use the decomposition
Ta4s(S"V L) 2 104 o(S™ DT n4s(L)BZ 141, 5] -

The first and second terms of @.(w) are both zero because there exist a map:
EX—>EX/S4;S"+IVS"+4———6>X and the projection: S*X X—X and, from the
nxV
cohomology structure of S*X X it follows that the third term is Whitehead pro-
duct [9x,75]. Since [x;(X),7,]=0 for all 7. The proof is completed.
From (1), (2), (3) and lemma 11 we have

PROPOSITION 12. If &ey=0 then pf is onto and if E-p+#0 pg is zero except
the case n-E&=Eo-y).

Remark. In the exceotional case we know that p4 is onto. However we
could not determine whether p§ is onto or not. Thus, for theorems, it suffices
to define subgroups G; and H,. We define 7,+,(S" )DG=£3'(0) if 26+0 and

¥ (zoE%¢) if 26=0, and

(S X T n4s(S) D He= {(xEE, xJ(£)), xEmi(S*)}

where £y Tn12(S™ N> 1,4.(S?) is induced by &.

REFERENCES

[1] M. Arxowitz anp C. CurjJEL, The group of homotopy equivalences of a space,
Bull. Amer. Math. So., 70 (1964), 293-296.

[2] Barcus. W.D. anp M.G. BArRrRAaTT, On the homotopy classification of the exten-
sions of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.

[3] M. MimMUuRA aND N. SawasHITA, On the group of self-homotopy equivalences of
H-spaces of rank 2, Jour. of Math. Kyoto Univ., 21 (1981), 331-349.

[4] J.W. RurTeEr, The group of self-homotopy equivalences of principal three sphere
bundles over the seven sphere, Math. Proc. Camb. Phil. Soc., 84 (1978), 303-
311.

[5] LM. James, On sphere bundles over spheres, Comm. Math. Helv. 35 (1961).,
126-135.



ON SELF-HOMOTOPY EQUIVALENCES 295

[6] M. MiMmurRa AND N. SawasHiTA, On the group of self-homotopy equivalences
of principal S®bundle over spheres., Hiroshima Math. J. 14 (1984), 415-424.

DEP. OF MATH.

Toxyo InsT. TECH.
OHHOKAYAMA MEGURO-KU
Tokyo Jaran





