AN EXTREMAL PROBLEM ASSOCIATED
 WITH THE SPREAD RELATION II

By Hideharu Ueda and Yoji Noda

Introduction. One of the authors published in 1982 a paper with the same title [6], in which the following result was proved:

TheOrem A. Let $f(z)$ be meromorphic in the plane of order $\rho \in(0, \infty)$. Further, suppose that $T(r, f)$ varies regularly in the sense of Karamata, i.e.,

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{T(k r, f)}{T(r, f)}=k^{\rho} \quad(0<k<\infty) \tag{1}
\end{equation*}
$$

holds uniformly for k in any interval $A^{-1} \leqq k \leqq A, A>1$. Let $\Lambda(r)$ be a nonnegative function satisfying $\Lambda(r)=o(T(r, f))(r \rightarrow \infty)$. Then, if

$$
\begin{equation*}
\delta(\infty, f)>0 \tag{2}
\end{equation*}
$$

and
(3) $\quad \limsup _{r \rightarrow \infty} \operatorname{meas}\left\{\theta ; \log \left|f\left(r e^{i \theta}\right)\right|>\Lambda(r)\right\} \leqq \frac{4}{\rho} \sin ^{-1} \sqrt{\frac{\delta(\infty, f)}{2}} \equiv 2 \beta<2 \pi$,
there exist a very long set G and a function $L(r)$ varying slowly on $(0, \infty)$ such that $T(r, f)=r^{\rho} L(r)(0<r<\infty)$ and

$$
\begin{equation*}
\frac{T^{*}\left(r e^{i \theta}, f\right)}{T(r, f)} \rightarrow \cos \rho(\beta-\theta) \quad(r \rightarrow \infty, r \in G ; \text { uniformly for } \theta \in[0, \beta]) \tag{4}
\end{equation*}
$$

where $T^{*}(z)$ denotes the Baernstein characteristic of $f(z)$.
In the present paper we first discuss an improvement of Theorem A. The assumption (1) can be rewritten as $T(r, f)=r^{\rho} L_{1}(r)(0<r<\infty)$ with a function $L_{1}(r)$ varying slowly on $(0, \infty)$. Baernstein [3] proved that all the assumptions of Theorem A except (1) imply the existence of a very long set G and a function $L(r)$ varying slowly on G such that $T(r, f)=r^{\rho} L(r)(0<r<\infty)$ and

$$
\begin{equation*}
\frac{N(r, \infty, f)}{T(r, f)} \rightarrow \cos \beta \rho \quad(r \rightarrow \infty, r \in G) \tag{5}
\end{equation*}
$$

We prove that in Theorem A the assumption (1) is unnecessary. (Therefore the
above conclusion (5) is contained in (4).) Next, we determine under the assumptions (2) and (3) the asymptotic behavior of $\log |f(z)|$ for values of z whose absolute values lie in a suitable set G_{0} having logarithmic density 1 and of the arguments of almost all the zeros and the poles of $f(z)$ in $\left\{z ;|z| \in G_{0}\right\}$. The clue to our investigation is the following fact:

A Principal Lemma. Let $\rho \in(0, \infty)$ and $L(r)$ be given, where $L(r)$ is a slowly varying function on a very long set G_{1} such that $H(r) \equiv r^{\rho} L(r) \neq O(\log r)(r \rightarrow \infty)$ is a convex, increasing function of $\log r$. Then there exists a very long set G_{2} $\left(\subset G_{1}\right)$ with the property that any increasing unbounded sequence in G_{2} is a sequence of Pólya peaks of order ρ of $H(r)$.

Let $f(z)$ satisfy the assumptions (2) and (3). Then the spread relation [2] implies that $f(z)$ has regular growth and Theorem 2 in [3] yields that $T(r, f)$ $=r^{\rho} L(r)$ with a very long set G_{1} and a function $L(r)$ varying slowly on G_{1}. Using our principal lemma, we find a very long set $G_{2}\left(\subset G_{1}\right)$ with the property that any increasing unbounded sequence $\left\{r_{m}\right\} \subset G_{2}$ is a sequence of Pólya peaks of order ρ of $T(r, f)$. Here we use the spread relation again to obtain

$$
\lim _{m \rightarrow \infty} \operatorname{meas}\left\{\theta ; \log \left|f\left(r_{m} e^{i \theta}\right)\right|>\Lambda\left(r_{m}\right)\right\}=2 \beta .
$$

Hence $f(z)$ is a meromorphic function of lower order $\rho \in(0, \infty)$ satisfying the hypotheses ES at a sequence $\left\{r_{m}\right\}$ of Pólya peaks of order ρ of $T(r, f)$ (For the definition of the hypotheses ES, see [4, p. 69.]), and so we conclude that all the results in [4] and [5] are applicable to our $f(z)$ with any increasing unbounded sequence $\left\{r_{m}\right\} \subset G_{2}$.

1. Statement of our theorems.

Theorem 1. Suppose $f(z)$ is meromorphic in the plane of order $\rho \in(0, \infty)$. Let $\Lambda(r)$ be a nonnegative function satisfying $\Lambda(r)=o(T(r, f))(r \rightarrow \infty)$. Then, if the assumptions (2) and (3) are fulfilled, there exist two very long sets G_{1}, G_{2} $\left(G_{2} \subset G_{1}\right)$ and a function $L(r)$ varying slowly on G_{1} such that $T(r, f)=r^{\rho} L(r)$ ($0<r<\infty$),

$$
\frac{T^{*}\left(r e^{i \theta}\right)}{T(r, f)} \rightarrow \cos \rho(\beta-\theta) \quad\left(r \rightarrow \infty, r \in G_{2} ; \text { uniformly for } \theta \in[0, \beta]\right)
$$

and

$$
\frac{n(r, \infty, f)}{T(r, f)} \rightarrow \rho \cos \beta \rho \quad\left(r \rightarrow \infty, r \in G_{2}\right) .
$$

Theorem 2. Let the assumptions and notations of Theorem 1 be unchanged. It is then possible to find two sets G_{3}, J_{1} on the positive real axis and a realvalued function $\varphi(u)$ satisfying the following conditions (i)-(vi).
(i) $G_{3}\left(\subset G_{2}\right)$ is a very long set.
(ii) J_{1} has density zero.
(iii) $\log M(u, f)=\{\pi \rho \sin \beta \rho+o(1)\} u^{\rho} L(u) \quad\left(u \rightarrow \infty, u \in G_{3}-J_{1}\right)$.
(iv) $\left|f\left(u e^{\imath \varphi(u)}\right)\right|=M(u, f) \quad\left(u \in G_{3}-J_{1}\right)$.
(v) $\lim _{\substack{u \rightarrow \infty \\ k u, G_{3}-J_{1}}}[\varphi(k u)-\varphi(u)]=0(0<k<\infty)$ holds uniformly for k in any interval
$A^{-1} \leqq k \leqq A, A>1$.
(vi) Let $s>0$ and $\eta(0<\eta<\beta)$ be given. Denote by $p(u)=p(u ; s, \eta, \varphi(u))$ the number of poles of $f(z)$ in the sector

$$
\left\{t e^{i \theta} ; e^{-s} u \leqq t \leqq e^{s} u, \quad \eta \leqq|\theta-\varphi(u)| \leqq \pi\right\}
$$

and by $z(u)=z(u ; s, \eta, \varphi(u))$ the number of zeros of $f(z)$ in the sector

$$
\left\{t e^{i \theta} ; e^{-s} u \leqq t \leqq e^{s} u,|\theta-\varphi(u)| \leqq \beta-\eta\right\} .
$$

Then

$$
p(u)+z(u)=o\left(u^{\rho} L(u)\right) \quad\left(u \rightarrow \infty, u \in G_{3}-J_{1}\right) .
$$

Theorem 3. Let the assumptions and notations of Theorems 1 and 2 be unchanged. It is then possible to find two sets G_{4} and J_{2} on the positive real axis satisfying the following properties (i)-(iii).
(i) $G_{4}\left(\subset G_{3}\right)$ is a very long set.
(ii) J_{2} has density zero.
(iii) Let $\eta(0<\eta<(1 / 2) \min (\beta, \pi-\beta))$ be given. If $u \in G_{4}-J_{1}-J_{2}$, then

$$
\begin{aligned}
\log \left|f\left(u e^{2(\theta+\varphi(u))}\right)\right| & \leqq o(T(u, f)) \\
& (u \rightarrow \infty ; \text { uniformly for } \theta, \beta+\eta \leqq|\theta| \leqq \pi),
\end{aligned}
$$

and

$$
\begin{aligned}
&|\log | f\left(u e^{\imath(\theta+\varphi(u))}\right) \mid- \pi \rho \sin \rho(\beta-|\theta|) T(u, f) \mid=o(T(u, f)) \\
&(u \rightarrow \infty ; \text { uniformly for } \theta, \eta \leqq|\theta| \leqq \beta-\eta) .
\end{aligned}
$$

Theqrem 4. Let the assumptions and notations of Theorems 1 and 2 be unchanged, and assume that $\pi-\beta>\pi / 2 \rho$. Then it is possible to find four sets G_{5}, G_{6}, J_{3} and J_{4} on the positive real axis satisfying the following properties (i)-(iv).
(i) G_{5} and $G_{6}\left(G_{6} \subset G_{5} \subset G_{2}\right)$ are very long sets.
(ii) J_{3} and J_{4} have density zero.
(iii) Let $\eta(0<\eta<(1 / 2) \min (\beta, \pi-\beta))$ and $s>0$ be given. Denote by $\tilde{z}(u)=$ $\tilde{z}(u ; s, \eta, \varphi(u))$ the number of zeros of $f(z)$ in the sector

$$
\left\{t e^{i \theta} ; e^{-s} u \leqq t \leqq e^{s} u, \quad \beta+\eta \leqq|\theta-\varphi(u)| \leqq \pi\right\} .
$$

Then

$$
\tilde{z}(u)=o(T(u, f)) \quad\left(u \rightarrow \infty, u \in G_{5}-J_{3}\right) .
$$

(iv) Let $\eta(0<\eta<(1 / 2) \min (\beta, \pi-\beta))$ be given. Then, if $u \in G_{6}-J_{3}-J_{4}$,

$$
\begin{aligned}
\log \left|f\left(u e^{2(\theta+\varphi(u))}\right)\right| & \geqq-o(T(u, f)) \\
& (u \rightarrow \infty ; \text { unıformly for } \theta, \beta+\eta \leqq|\theta| \leqq \pi) .
\end{aligned}
$$

TheOrem 5. Let the assumptions and notations of Theorem 4 be unchanged. Then
(i) $\frac{n(r, 0, f)}{T(r, f)} \rightarrow \rho \quad\left(r \rightarrow \infty, r \in G_{6}-J_{3}-J_{4}\right)$.
(ii) Given $\eta(0<\eta<\beta)$, denote by $z^{+}(z)$ the number of zeros of $f(z)$ in the sector

$$
0<|z| \leqq u, \quad \varphi(u)+\beta-\eta \leqq \arg z \leqq \varphi(u)+\beta+\eta
$$

and denote by $z^{-}(u)$ the number of zeros of $f(z)$ in the sector

$$
0<|z| \leqq u, \quad \varphi(u)-\beta-\eta \leqq \arg z \leqq \varphi(u)-\beta+\eta
$$

Then we have for $t \in(0, \sin \eta)$

$$
\begin{aligned}
& \frac{z^{+}(u(1+t))-z^{+}(u(1-t))}{T(u, f)} \frac{\rho}{2}\left\{(1+t)^{\rho}-(1-t)^{\rho}\right\} \\
& \quad\left(u \rightarrow \infty ; u(1+t), u(1-t), u \in G_{6}-J_{3}-J_{4}\right) .
\end{aligned}
$$

This relation still holds if z^{+}is replaced by z^{-}.
In $\S \S 2-4$ we assume and use the assertion of our principal lemma.
In $\S 2$ we deduce Theorem 1 from Theorems 1 and 2 in [4].
In $\S 3$ we prove Theorem 2 using Theorem 1 and the same reasoning as in the proof of Theorem 3 in [4].

In §4 we deduce Theorem 3 from Theorem 2 (v) and the first part of Theorem 4 in [5].

Finally, in $\S 5$ we prove our principal lemma.
Remarks. (i) If the hypotheses of Theorem 3 are satisfied and $\pi-\beta \leqq \pi / 2 \rho$ holds, then the conclusions (iii) and (iv) of Theorem 4 need not be true. (See [5, p. 144].)
(ii) Theorem 4 is proved using Theorem 5 in [5] and the similar arguments as in $\S \S 2-3$, so we omit the proof.
(iii) Theorem 5 is derived from Theorems 1,3,4 and the same reasoning as in $\S 13$ in [5], so we omit the proof.

2. Proof of Theorem 1.

Let $f(z)$ satisfy the assumptions (2) and (3). Then as we saw in the introduction $T(r, f)=r^{\rho} L(r)$ holds with a very long set G_{1} and a function $L(r)$ varying slowly on G_{1}, and further Theorems 1 and 2 in [4] are applicable to $f(z)$ with any increasing unbounded sequence $\left\{r_{m}\right\} \subset G_{2}$, where $G_{2}\left(\subset G_{1}\right)$ is a
suitable very long set. Hence we deduce

$$
\frac{T^{*}\left(r e^{i \theta}, f\right)}{T(r, f)} \rightarrow \cos \rho(\beta-\theta) \quad\left(r \rightarrow \infty, r \in \tilde{G}_{2} ; \text { uniformly for } \theta \in[0, \beta]\right)
$$

and

$$
\frac{n(r, \infty, f)}{T(r, f)} \rightarrow \rho \cos \beta \rho \quad\left(r \rightarrow \infty, r \in \tilde{G}_{2}\right),
$$

where $\tilde{G}_{2}=\bigcup_{m=1}^{\infty}\left[e^{-1} r_{m}, e r_{m}\right]$. A suitable choice of $\left\{r_{m}\right\} \subset G_{2}$ implies that $G_{2} \subset \tilde{G}_{2}$. This completes the proof of Theorem 1.

3. Proof of Theorem 2.

3.1. Construction of G_{3} and J_{1}. We write $G_{2}=\bigcup_{j=1}^{\infty}\left[a_{j}^{\prime}, b_{j}^{\prime}\right] \quad b_{j}^{\prime}<a_{j+1}^{\prime}$; $a_{j}^{\prime} \rightarrow \infty, b_{j}^{\prime} \rightarrow \infty, b_{j}^{\prime} / a_{j}^{\prime} \rightarrow \infty$ as $\left.j \rightarrow \infty\right)$. Dropping, if necessary, a finite number of intervals and renumbering the remaining intervals $\left[a_{j}^{\prime}, b_{j}^{\prime}\right.$] we may assume that $b_{j}^{\prime} / a_{j}^{\prime} \geqq e(j=1,2,3, \cdots)$. Let $\left\{\varepsilon_{n}\right\}_{1}^{\infty} \downarrow 0$ be given. Choose $\sigma_{n} \in(0,1)(n=1,2,3, \cdots)$ small enough to imply

$$
\begin{equation*}
\rho \cos \beta \rho\left(8 e^{2 \gamma+1}+2 \gamma \log \frac{1}{\sigma_{n}}\right)\left(e^{2 \sigma_{n} \rho}-e^{-\sigma_{n} \rho}\right)<\varepsilon_{n} / 5 \quad(\gamma \equiv \pi / \beta) . \tag{3.1}
\end{equation*}
$$

For each $\sigma_{n}(n=1,2,3, \cdots)$, define a sequence $\left\{m_{j}\right\}_{0}^{\infty}\left(0=m_{0}<m_{1}<m_{2}<\cdots ; m_{j}=\right.$ $\left.m_{j}\left(\sigma_{n}\right)\right)$ of integers such that $b_{j}^{\prime} / a_{j}^{\prime}=e^{\left(m_{j-m} m_{j-1}+\alpha_{j}\right) \sigma_{n}}\left(\alpha_{j}=\alpha_{j}\left(\sigma_{n}\right) \in[0,1)\right)$, and then $\left\{\left(r_{n}\right)_{m}\right\}_{m=1}^{\infty}$ by

$$
\begin{array}{ll}
\left(r_{n}\right)_{m_{\jmath-1}+1}=a_{j}^{\prime} & (j=1,2,3, \cdots), \tag{3.2}\\
\left(r_{n}\right)_{m+1} /\left(r_{n}\right)_{m}=e^{\sigma_{n}} & \left(m_{\jmath-1}+1 \leqq m \leqq m_{j}-1 ; j=1,2, \cdots\right) .
\end{array}
$$

If $f(z)$ satisfies the assumptions (2) and (3), Theorem 1 is valid. Hence we are able to find sequences $\left\{\left(R_{n}\right)_{m}^{\prime}\right\}^{\infty}{ }_{m=1},\left\{\left(R_{n}\right)_{m}^{\prime \prime}\right\}_{m=1}^{\infty}(n=1,2,3, \cdots)$ such that

$$
\begin{align*}
& \left\{1+\left(\xi_{n}\right)_{m}\right\}^{-1}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho}<T(t) / T\left(\left(r_{n}\right)_{m}\right)<\left\{1+\left(\xi_{n}\right)_{m}\right\}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho}, \tag{3.3}\\
& \left\{\rho \cos \beta \rho-\left(\eta_{n}\right)_{m}\right\}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho}<n(t, \infty) / T\left(\left(r_{n}\right)_{m}\right) \tag{3.4}\\
& \quad<\left\{\rho \cos \beta \rho+\left(\eta_{n}\right)_{m}\right\}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho},
\end{align*}
$$

and

$$
\begin{align*}
&\left\{\cos \beta \rho-\left(\zeta_{n}\right)_{m}\right\}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho}<N(t, \infty) / T\left(\left(r_{n}\right)_{m}\right) \tag{3.5}\\
&<\left\{\cos \beta \rho+\left(\zeta_{n}\right)_{m}\right\}\left\{t /\left(r_{n}\right)_{m}\right\}^{\rho}
\end{align*}
$$

hold for $\left(R_{n}\right)_{m}^{\prime} \leqq t \leqq\left(R_{n}\right)_{m}^{\prime \prime}$, where

$$
\begin{array}{ll}
\left(R_{n}\right)_{m}^{\prime} \rightarrow \infty, & \left(r_{n}\right)_{m} /\left(R_{n}\right)_{m}^{\prime} \rightarrow \infty, \\
\left(\xi_{n}\right)_{m}(>0) \rightarrow 0, & \left(\eta_{n}\right)_{m}^{\prime \prime} /\left(r_{n}\right)_{m} \rightarrow \infty \\
(>0) \rightarrow 0, & \left(\zeta_{n}\right)_{m}(>0) \rightarrow 0
\end{array}
$$

as $m \rightarrow \infty$. Now, for each ε_{n} and $\sigma_{n}(n=1,2,3, \cdots)$ we select a positive integer
$m_{k_{n-1}}\left(1 \leqq k_{1}<k_{2}<\cdots<k_{n}<\cdots\right)$ such that $m \geqq m_{k_{n-1}}+1$ implies

$$
\begin{align*}
& \begin{aligned}
&\left(\xi_{n}\right)_{m} \pi \rho \cos \beta \rho \tan \frac{\beta \rho}{2}+\left(\eta_{n}\right)_{m}\left\{4 e^{\gamma}+\left(e^{2 \rho}+1\right) \log \frac{2 e^{\gamma}}{\gamma}+4\right. \\
& \quad+\left(1+e^{2 \rho}\right) \log \frac{1}{\sigma_{n}}+2 \gamma\left(\frac{e^{2 \gamma+\rho}}{\gamma-\rho}+\frac{e^{\gamma-\rho}}{\gamma+\rho}\right) \frac{1}{e^{2 \sigma} \rho}-1
\end{aligned}<\varepsilon_{n} / 5, \tag{3.6}\\
& \quad\left(\eta_{n}\right)_{m}\left(e^{2 \rho}+1\right)\left(8 e^{2 \gamma+1}+2 \gamma \log \frac{1}{\sigma_{n}}\right)<\varepsilon_{n} / 5, \\
& \left\{1+\left(\xi_{n}\right)_{m}\right\}\left\{\left(\left(R_{n}\right)_{m}^{\prime} /\left(r_{n}\right)_{m}\right)^{\rho+\gamma}+2^{\rho} e^{\gamma}\left(\left(r_{n}\right)_{m} /\left(R_{n}\right)_{m}^{\prime \prime \prime}\right)^{\gamma-\rho}\right\}<\varepsilon_{n} / 5, \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
\left(\zeta_{n}\right)_{m}(1-\cos \beta \rho)(\pi \rho / \sin \pi \rho)<e_{n} / 5 \tag{3.9}
\end{equation*}
$$

We then define G_{3} by

$$
G_{3}=\bigcup_{n=1}^{\infty}\left\{\left(\bigcup_{m \geq m_{k n-1}+1}\left[\left(r_{n}\right)_{m},\left(r_{n}\right)_{m} e^{\sigma_{n}}\right]\right) \cap\left(\bigcup_{\jmath=k_{n}}^{k_{n+1}^{-1}}\left[a_{\jmath}^{\prime}, b_{\jmath}^{\prime}\right]\right)\right\} .
$$

To construct J_{1} we proceed as follows: Let $\left\{b_{j}\right\}$ be the poles of $f(z)$ and put

$$
\Sigma_{1}(u)=\sum_{\left(r_{n}\right)_{m} e^{-\sigma}} \sum_{n<\left|b_{j}\right| \leqslant\left(r_{n}\right)_{m} e^{2 \sigma} \sigma_{n}} H\left(\left|b_{j}\right|, u\right) \quad(u>0),
$$

where

$$
H(t, u)=\log \frac{|t|^{r}+u^{r}}{\left.| | t\right|^{r}-u^{r} \mid}
$$

Using Cartan's lemma, it is possible to exclude, from the interval $\left(r_{n}\right)_{m} \leqq u \leqq\left(r_{n}\right)_{m} e^{\sigma_{n}}$, an exceptional set $\mathcal{E}_{n}(m)$ such that

$$
\begin{equation*}
\text { meas } \mathcal{E}_{n}(m)<\left(r_{n}\right)_{m} \sigma_{n}^{2} \tag{3.10}
\end{equation*}
$$

and such that, for $u \in\left[\left(r_{n}\right)_{m},\left(r_{n}\right)_{m} e^{\sigma_{n}}\right]-\mathcal{E}_{n}(m)$,

$$
\begin{equation*}
\Sigma_{1}(u) \leqq\left(8 e^{2 \gamma+1}+2 \gamma \log \frac{1}{\sigma_{n}}\right)\left\{n\left(\left(r_{n}\right)_{m} e^{2 \sigma_{n}}, \infty\right)-n\left(\left(r_{n}\right)_{m} e^{-\sigma_{n}}, \infty\right)\right\} . \tag{3.11}
\end{equation*}
$$

Using $\mathcal{E}_{n}(m)$, we define J_{1} by

$$
J_{1}=\bigcup_{n=1}^{\infty}\left\{\left(\bigcup_{m \geq m_{k n-1}+1}^{\cup} \mathcal{E}_{n}(m)\right) \cap\left(\bigcup_{\jmath=k_{n}}^{k_{n+1}^{-1}}\left[a_{\jmath}^{\prime}, b_{\jmath}^{\prime}\right]\right)\right\} .
$$

By the construction of G_{3} and J_{1}, it is easily verified that $G_{3}\left(\subset G_{2}\right)$ is a very long set and J_{1} has density zero.
3.2. A further consequence of the assumptions (2) and (3). Let $f(z)$ be a meromorphic function satisfying the assumptions (2) and (3). Assume that the quantities $\sigma_{n},\left(r_{n}\right)_{m},\left(R_{n}\right)_{m}^{\prime},\left(R_{n}\right)_{m}^{\prime \prime},\left(\xi_{n}\right)_{m},\left(\eta_{n}\right)_{m},\left(\zeta_{n}\right)_{m}$ have been selected as in 3.1. The aim of this section is to show that $u \in\left[\left(r_{n}\right)_{m},\left(r_{n}\right)_{m} e^{\sigma}\right]-\mathcal{E}_{n}(m)$
($m \geqq m_{k_{n}-1}+1$) implies
(3.12) $\quad\left(Q_{n}\right)_{m}(u) \equiv \sum_{\left(R_{n}\right)_{m}\langle | b_{j} \leq\left(R_{n}\right)_{m}^{\prime}} H\left(\left|b_{j}\right|, u\right) \leqq T(u)\left(\pi \rho \cos \pi \rho \tan \frac{\beta \rho}{2}+\frac{3}{5} \varepsilon_{n}\right)$,
where $\left\{b_{j}\right\}$ denote the poles of $f(z)$. Note that if $\Sigma_{0}(u), \Sigma_{2}(u)$ are given by

$$
\begin{aligned}
& \Sigma_{0}(u)=\sum_{\left(R_{n}\right)_{m}^{\prime}<b_{j} \mid \leqslant\left(r_{n}\right)_{m} e^{-\sigma_{n}}} H\left(\left|b_{j}\right|, u\right), \\
& \Sigma_{2}(u)=\sum_{\left(r_{n}\right)_{m} e^{2 \sigma_{n}} \sum_{n<\left|b_{j}\right| \leq\left(R_{n}\right)_{m}^{\prime}} H\left(\left|b_{j}\right|, u\right),},
\end{aligned}
$$

then $\left(Q_{n}\right)_{m}(u)=\Sigma_{0}(u)+\Sigma_{1}(u)+\Sigma_{2}(u)$ holds.
First, we prove that

$$
\begin{align*}
\Sigma_{0}(u)+\Sigma_{2}(u) \leqq & T(u)\left(\pi \rho \cos \beta \rho \tan \frac{\beta \rho}{2}+\varepsilon_{n} / 5\right) \tag{3.13}\\
& \left(u \in\left[\left(r_{n}\right)_{m},\left(r_{n}\right)_{m} e^{\sigma_{n}}\right], m \geqq m_{k_{n}-1}+1\right) .
\end{align*}
$$

From (3.4) we deduce

$$
\begin{align*}
& n(t, \infty)-\rho \cos \beta \rho T\left(\left(r_{n}\right)_{m}\right)\left(t /\left(r_{n}\right)_{m}\right)^{\rho} \tag{3.14}\\
& \quad=\left(\eta_{n}\right)_{m}(t) T\left(\left(r_{n}\right)_{m}\right)\left(t /\left(r_{n}\right)_{m}\right)^{\rho}=\left(\tilde{\eta}_{n}\right)_{m}(t)
\end{align*}
$$

with $\left|\left(\eta_{n}\right)_{m}(t)\right|<\left(\eta_{n}\right)_{m}\left(\left(R_{n}\right)_{m}^{\prime} \leqq t \leqq\left(R_{n}\right)_{m}^{\prime \prime}\right)$. Using Stieltjes integrals and (3.14), we obtain

$$
\begin{align*}
\Sigma_{2}(u)= & \int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n+}}}^{\left(R_{n}\right)_{m}^{\prime}} H(t, u) d n(t, \infty) \tag{3.15}\\
= & \rho^{2} \cos \beta \rho L\left(\left(r_{n}\right)_{m}\right) \int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n}}}^{\left(R_{n}\right)_{m}^{*}} H(t, u) t^{\rho-1} d t \\
& +\int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n}}}^{\left(R_{n}\right)_{+}^{\prime}} H(t, u) d\left(\tilde{\eta}_{n}\right)_{m}(t) .
\end{align*}
$$

An integration by parts yields

$$
\begin{align*}
& \left|\int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n+}}}^{\left(R_{n}\right)_{m}^{\prime}} H(t, u) d\left(\tilde{\eta}_{n}\right)_{m}(t)\right|<\left(\eta_{n}\right)_{m} T\left(\left(r_{n}\right)_{m}\right)\left\{\left(\left(R_{n}\right)_{m}^{\prime \prime} /\left(r_{n}\right)_{m}\right)^{\rho} H\left(\left(R_{n}\right)_{m}^{\prime \prime}, u\right)\right. \tag{3.16}\\
& \left.+e^{2 \sigma_{n} \rho} H\left(\left(r_{n}\right)_{m} e^{2 \sigma_{n}}, u\right)+\int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n}}}^{\left(R_{n}\right)_{m}^{*}}\left(t /\left(r_{n}\right)_{m}\right)^{\rho}\left|\frac{\partial H}{\partial t}\right| d t\right\}
\end{align*}
$$

Since

$$
\frac{\partial H}{\partial t}=-\frac{2 \gamma t^{\gamma-1} u^{\gamma}}{t^{2 \gamma}-u^{2 \gamma}} \quad(t \neq u),
$$

we have

$$
\left|\frac{\partial H}{\partial t}\right| \leqq \frac{2 \gamma}{1-e^{-2 \sigma_{n} \gamma}} \cdot \frac{u^{\gamma}}{t^{\gamma+1}} \quad\left(u \leqq t e^{-\sigma_{n}}\right) .
$$

Hence

$$
\begin{align*}
& \int_{\left.\left(r_{n}\right)\right)_{m} e^{2 \sigma \sigma_{n+}}}^{\left(R_{n}\right)^{\prime}}\left(t /\left(r_{n}\right)_{m}\right)^{\rho}\left|\frac{\partial H}{\partial t}\right| d t \tag{3.17}\\
& \quad \leqq \frac{2 \gamma u^{\gamma}}{1-e^{-2 \sigma_{n} \gamma}}\left(r_{n}\right)_{m}^{-\rho} \int_{u}^{\infty} t^{\rho-\gamma-1} d t \leqq \frac{2 \gamma}{\gamma-\rho} \cdot \frac{e^{2 \gamma+\rho}}{e^{2 \sigma_{n} \gamma}-1} .
\end{align*}
$$

Taking into account the obvious estimates

$$
\begin{array}{ll}
0<H\left(\left(R_{n}\right)_{m}^{\prime \prime}, u\right) \leqq 4\left(u /\left(R_{n}\right)_{m}^{\prime \prime}\right)^{\gamma} & \left(u \leqq\left(R_{n}\right)_{m}^{\prime \prime} / 2\right), \\
0<H(t, u) \leqq \log \frac{1}{\sigma_{n}}+\log \frac{2 e^{\gamma}}{\gamma} & \left(u \leqq t e^{-\sigma_{n}}\right),
\end{array}
$$

we deduce from (3.16) and (3.17) that

$$
\begin{aligned}
& \left|\int_{\left(r_{n}\right)_{m} e^{2 \sigma_{n+}}}^{\left(R_{n}\right)_{m}} H(t, u) d\left(\tilde{\eta}_{n}\right)_{m}(t)\right| \\
& \quad<\left(\eta_{n}\right)_{m} T(u)\left\{4 e^{\gamma}+e^{2 \rho} \log \frac{1}{\sigma_{n}}+e^{2 \rho} \log \frac{2 e^{\gamma}}{\gamma}+\frac{2 \gamma}{\gamma-\rho} \cdot \frac{e^{2 \gamma+\rho}}{e^{2 \sigma_{n} \gamma}-1}\right\} .
\end{aligned}
$$

Returning to (3.15), we obtain

$$
\begin{align*}
& \Sigma_{2}(u) \leqq \rho^{2} \cos \beta \rho L\left(\left(r_{n}\right)_{m}\right) \int_{u}^{\infty} H(t, u) t^{\rho-1} d t \tag{3.18}\\
& \quad+\left(\eta_{n}\right)_{m}\left\{4 e^{\gamma}+e^{2 \rho} \log \frac{1}{\sigma_{n}}+e^{2 \rho} \log \frac{2 e^{\gamma}}{\gamma}+\frac{2 \gamma}{\gamma-\rho} \cdot \frac{e^{2 \gamma+\rho}}{e^{2 \sigma_{n} \gamma}-1}\right\} T(u) .
\end{align*}
$$

In the same way, we have

$$
\begin{align*}
& \Sigma_{0}(u) \leqq \rho^{2} \cos \beta \rho L\left(\left(r_{n}\right)_{m}\right) \int_{0}^{u} H(t, u) t^{\rho-1} d t \tag{3.19}\\
& \quad+\left(\eta_{n}\right)_{m}\left\{4+\log \frac{1}{\sigma_{n}}+\log \frac{2 e^{\gamma}}{\gamma}+\frac{2 \gamma}{\gamma+\rho} \cdot \frac{e^{\gamma-\rho}}{e^{2 \sigma_{n} \gamma}-1}\right\} T(u) .
\end{align*}
$$

Since

$$
\int_{0}^{\infty} H(t, u) t^{\rho-1} d t=\frac{\pi u^{\rho}}{\rho} \tan (\beta \rho / 2),
$$

(3.13) follows from (3.18), (3.19), (3.3) and (3.6).

Next, we estimate $\Sigma_{1}(u)$ for $u \in\left[\left(r_{n}\right)_{m},\left(r_{n}\right)_{m} e^{\sigma_{n}}\right]-\mathcal{E}_{n}(m) \equiv \mathscr{H}_{n}(m) . \quad$ By (3.4)

$$
\begin{aligned}
& n\left(\left(r_{n}\right)_{m} e^{2 \sigma_{n}}, \infty\right)-n\left(\left(r_{n}\right)_{m} e^{-\sigma_{n}}, \infty\right) \\
& \quad<\rho \cos \beta \rho\left(e^{2 \sigma_{n} \rho}-e^{-\sigma_{n} \rho}\right) T\left(\left(r_{n}\right)_{m}\right)+\left(\eta_{n}\right)_{m}\left(e^{2 \sigma_{n} \rho}+e^{-\sigma_{n} \rho}\right) T\left(\left(r_{n}\right)_{m}\right) \\
& \quad<\rho \cos \beta \rho\left(e^{2 \sigma_{n} \rho}-e^{-\sigma_{n} \rho}\right) T(u)+\left(\eta_{n}\right)_{m}\left(e^{2 \rho}+1\right) T(u) .
\end{aligned}
$$

Then from (3.11), (3.1) and (3.7) we deduce that

$$
\begin{equation*}
\Sigma_{1}(u)<\frac{2}{5} \varepsilon_{n} T(u) \quad\left(u \in \mathscr{H}_{n}(m)\right) . \tag{3.20}
\end{equation*}
$$

Thus (3.12) follows from (3.13) and (3.20).
3.3. Completion of proof. If $f(z)$ satisfies (2) and (3), then as we saw in the introduction, $f(z)$ is a meromorphic function of lower order ρ satisfying the hypotheses ES at a sequence $\left\{r_{m}\right\}$ (, where $\left\{r_{m}\right\}$ is any increasing unbounded sequence in G_{2},) of Pólya peaks of order ρ of $T(r, f)$. Applying Lemma 15.1 in [4] to $f(z)$, we obtain

$$
\begin{equation*}
\pi \rho \sin \beta \rho \leqq \liminf _{\substack{r \rightarrow \infty \\ r \in G_{2}}} \frac{\log M(r, f)}{T(r, f)} \tag{3.21}
\end{equation*}
$$

On the other hand, using the same reasoning as in [4, § 16], we deduce from (3.8), (3.9) and (3.12) that

$$
\begin{align*}
\log M(u, f)+K_{1} z(u)+K_{2} p(u) & \leqq\left\{\pi \rho \sin \beta \rho+\varepsilon_{n}\right\} T(u, f) \tag{3.22}\\
& \left(u \in \mathscr{G}_{n}(m), m \geqq m_{k_{n}-1}+1\right),
\end{align*}
$$

where K_{1}, K_{2} are positive constants depending only on $s(>0), \gamma$ and $\eta(>0)$. Hence the proofs of (iii) and (vi) follow at once from (3.21) and (3.22). Finally, assertion (v) is derived easily from (vi).

4. Proof of Theorem 3 .

We write $G_{3}=\bigcup_{n=1}^{\infty}\left[a_{n}^{\prime \prime}, b_{n}^{\prime \prime}\right]\left(b_{n}^{\prime \prime}<a_{n+1}^{\prime \prime} ; a_{n}^{\prime \prime} \rightarrow \infty, b_{n}^{\prime \prime} / a_{n}^{\prime \prime} \rightarrow \infty\right.$ as $\left.n \rightarrow \infty\right)$. Dropping, if necessary, a finite number of intervals and renumbering the remaining intervals $\left[a_{n}^{\prime \prime}, b_{n}^{\prime \prime}\right]$ we may assume that $b_{n}^{\prime \prime} / a_{n}^{\prime \prime} \geqq e^{2}(n=1,2,3, \cdots)$. Define a sequence $\left\{m_{j}\right\}_{0}^{\infty}\left(0=m_{0}<m_{1}<m_{2}<\cdots\right)$ of integers such that $b_{n}^{\prime \prime} / a_{n}^{\prime \prime}=e^{2\left(m_{n}-m_{n-1}+\beta_{n}\right)}$ $\left(\beta_{n} \in[0,1)\right.$), and then $\left\{\tilde{r}_{m}\right\}$ by $\tilde{r}_{m_{n-1}+1}=e a_{n}^{\prime \prime}, r_{m+1} / r_{m}=e^{2}\left(m_{n-1}+1 \leqq m \leqq m_{n}-1\right)$. Now, we define G_{4} by

$$
G_{4}=\bigcup_{m=1}^{\infty}\left[e^{-1} \tilde{r}_{m}, e \tilde{r}_{m}\right] .
$$

It is easily verified that $G_{4}\left(\subset G_{3}\right)$ is a very long set. Next, choose a sequence $\left\{u_{m}\right\}_{1}^{\infty}$ such that $u_{m} \in\left[e^{-1} \tilde{r}_{m}, e \tilde{r}_{m}\right]-J_{1}$ and let $\left\{\varepsilon_{n}\right\}_{1}^{\infty} \downarrow 0$ be given. Then by Theorem 4 in [5] we are able to find sets $\mathscr{I}_{m}\left(\varepsilon_{n}\right) \subset\left[e^{-1} \tilde{r}_{m}, e \tilde{r}_{m}\right]$ such that

$$
\begin{equation*}
\text { meas } \mathscr{I}_{m}\left(\varepsilon_{n}\right)<\varepsilon_{n} e^{-1} \tilde{r}_{m} \tag{4.1}
\end{equation*}
$$

and such that for $u \in\left[e^{-1} \tilde{r}_{m}, e \tilde{r}_{m}\right]-\mathscr{I}_{m}\left(\varepsilon_{n}\right)\left(m \geqq m_{l_{n}-1}+1 ; 1 \leqq l_{1}<l_{2}<l_{3}<\cdots\right)$

$$
\begin{array}{r}
\log \left|f\left(u e^{2\left(\theta+\varphi\left(u_{m}\right)\right)}\right)\right| \leqq \varepsilon_{n} T(u) \quad(\beta-\eta / 2 \leqq|\theta| \leqq \pi), \\
|\log | f\left(u e^{2\left(\theta+\varphi\left(u_{m}\right)\right)}\right)|-\pi \rho \sin \rho(\beta-|\theta|) T(u)| \leqq \varepsilon_{n} T(u) \\
\quad(\eta / 2 \leqq|\theta| \leqq \beta-\eta / 2) .
\end{array}
$$

Further by Theorem 2 (v) we may assume that for $u \in\left[e^{-1} \tilde{r}_{m}, e \tilde{r}_{m}\right]-\mathscr{I}_{m}\left(\varepsilon_{n}\right)-J_{1}$ ($m \geqq m_{l_{n-1}}+1$)

$$
\left\{\begin{array}{l}
\log \left|f\left(u e^{\imath(\theta+\varphi(u))}\right)\right| \leqq \varepsilon_{n} T(u) \quad(\beta-\eta \leqq|\theta| \leqq \pi) \tag{4.2}\\
|\log | f\left(u e^{\imath(\theta+\varphi(u))}\right)|-\pi \rho \sin \rho(\beta-|\theta|) T(u)| \leqq \varepsilon_{n} T(u) \\
\quad(\eta \leqq|\theta| \leqq \beta-\eta)
\end{array}\right.
$$

Using (4.1), it is easy to check that the set

$$
J_{2}=\bigcup_{n=1}^{\infty}\left\{\left\{_{m_{l_{n-1}+1 \leq m \leq}} \bigcup_{l_{n+1}^{-1}}^{\infty} \mathcal{I}_{m}\left(\varepsilon_{n}\right)\right\},\right.
$$

has density zero, and the assertion (ii) follows from (4.2).

5. Proof of the principal lemma.

5.1. Preliminaries.

Lemma 1. ([7]) Let $H(r)$ be given by

$$
H(r)=\text { const. }+\int_{\alpha}^{r} \psi(t) t^{-1} d t \quad(r \geqq \alpha>0),
$$

where $\phi(t)$ is nonnegative, nondecreasing, and unbounded. Then there exists a function $\phi(t)(t \geqq 1)$ satisfying the following conditions (i)-(iv).
(i) $\phi(t)$ is a continuous function which is continuously differentiable off a discrete set D (where D has no finite accumulation points.).
(ii) $\phi(t)$ is strictly increasing and unbounded.
(iii) $\phi(1)=0$.
(iv) $H_{1}(r) \equiv \int_{1}^{r} \phi(t) t^{-1} d t=H(r)+O(\log r) \quad(r \rightarrow \infty)$.

Lemma 2. Let $\rho(0<\rho<\infty)$ and $L(r)$ be given, where $L(r)$ is a slowly varying function on a very long set G such that $H(r) \equiv r^{\rho} L(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Corresponding to $H(r)$, define $\phi(t)(t \geqq 1)$ and $H_{1}(r)$ $(r \geqq 1)$ as in Lemma 1. Then

$$
\begin{equation*}
\lambda(r) \equiv \frac{d \log \left(H_{1}(r)+1\right)}{d \log r}=\frac{\phi(r)}{H_{1}(r)+1} \rightarrow \rho \quad(r \rightarrow \infty, r \in G) . \tag{5.1}
\end{equation*}
$$

Proof. Put

$$
\begin{equation*}
H_{1}(r)=r^{\rho} L_{1}(r) . \tag{5.2}
\end{equation*}
$$

Then $L_{1}(r)$ is a slowly varying function on G such that $H_{1}(r) \neq O(\log r)$ is a convex, increasing function of $\log r$. Define $h(r)$ by

$$
\begin{equation*}
\lambda(r)=\rho+h(r) . \tag{5.3}
\end{equation*}
$$

By the definition of $\lambda(r)$ and the properties of $\phi(r), \lambda(r)$ is a positive, continuous function for $r>1$, which is continuously differentiable off a discrete set D, where
D has no finite accumulation points. By (5.1), (5.2) and (5.3)

$$
\begin{equation*}
H_{1}(r)+1=r^{\rho} L_{1}(r)+1=\exp \left(\int_{1}^{r} \lambda(t) t^{-1} d t\right)=r^{\rho} \exp \left(\int_{1}^{r} h(t) t^{-1} d t\right) . \tag{5.4}
\end{equation*}
$$

Since $H_{1}(r)$ is a convex, increasing function of $\log r$, we deduce from (5.3) and (5.4) that

$$
\begin{equation*}
(\lambda(r))^{2}+r h^{\prime}(r) \geqq 0 \quad(r \notin D) . \tag{5.5}
\end{equation*}
$$

First, we prove $\{h(r)\}^{+} \equiv \max \{h(r), 0\} \rightarrow 0(r \rightarrow \infty, r \in G)$. Suppose that there exists a sequence $\left\{r_{n}\right\}(\subset G) \uparrow \infty$ such that $h\left(r_{n}\right)=\delta$ for some $\delta>0$. Since $L_{1}(r)$ is a slowly varying function on G, (5.4) implies

$$
\begin{equation*}
\int_{r}^{\sigma r} h(t) t^{-1} d t \rightarrow 0 \quad(r \rightarrow \infty, r \in G, 0<\sigma<\infty) . \tag{5.6}
\end{equation*}
$$

Thus for any fixed $\sigma>1$ there is an $s_{n} \in\left(r_{n}, \sigma r_{n}\right)$ such that $h\left(s_{n}\right)=\delta / 2\left(n \geqq n_{0}(\sigma)\right)$.
Now, for each $r_{n}\left(n \geqq n_{0}\right)$ we define r_{n}^{\prime} by $r_{n}^{\prime}=\inf \left\{s>r_{n} ; h(s)=\delta / 2\right\}$. By the continuity of $h(r)$, we easily see that $h\left(r_{n}^{\prime}\right)=\delta / 2$ and $h(r)>\delta / 2\left(r_{n} \leqq r<r_{n}^{\prime}\right)$. It follows from this and (5.6) that

$$
\begin{equation*}
r_{n}^{\prime} / r_{n} \rightarrow 1 \quad(n \rightarrow \infty) . \tag{5.7}
\end{equation*}
$$

Using the mean value theorem to $\lambda(r)$, we deduce from (5.5) and (5.3) that

$$
\begin{array}{r}
-\delta / 2=\lambda\left(r_{n}^{\prime}\right)-\lambda\left(r_{n}\right)=h\left(r_{n}^{\prime}\right)-h\left(r_{n}\right) \geqq-\left\{\lambda\left(r_{n}^{\prime \prime}\right)\right\}^{2}\left(r_{n}^{\prime \prime}\right)^{-1}\left(r_{n}^{\prime}-r_{n}\right) \tag{5.8}\\
\left(r_{n}<r_{n}^{\prime \prime}<r_{n}^{\prime}\right) .
\end{array}
$$

By (5.7) and (5.8), $\lambda\left(r_{n}^{\prime \prime}\right) \rightarrow \infty(n \rightarrow \infty)$, which implies

$$
\begin{equation*}
h\left(r_{n}^{\prime \prime}\right)>2 \delta \quad\left(n \geqq n_{1}(\delta)\right) . \tag{5.9}
\end{equation*}
$$

(5.9) and the fact that $h\left(r_{n}^{\prime}\right)=\delta / 2$ yield the existence of $u_{n} \in\left(r_{n}^{\prime \prime}, r_{n}^{\prime}\right)$ satisfying $h\left(u_{n}\right)=\delta$. Here, define $r_{n}^{(3)}$ by $r_{n}^{(3)}=\sup \left\{u<r_{n}^{\prime} ; h(u)=\delta\right\}$. Then it is easily seen that $h\left(r_{n}^{(3)}\right)=\delta$ and

$$
\begin{equation*}
\delta / 2<h(r)<\delta \quad\left(r_{n}^{(3)}<r<r_{n}^{\prime} ; n \geqq n_{1}(\delta)\right) . \tag{5.10}
\end{equation*}
$$

On the other hand, as we stated above, the mean value theorem gives the existence of $r_{n}^{(4)} \in\left(r_{n}^{(3)}, r_{n}^{\prime}\right)$ such that $h\left(r_{n}^{(4)}\right)>2 \delta$ for $n \geqq n_{1}$. This contradiction gives

$$
\begin{equation*}
\{h(r)\}^{+} \rightarrow 0 \quad(r \rightarrow \infty, r \in G) . \tag{5.11}
\end{equation*}
$$

Next, we prove

$$
\begin{equation*}
\{h(r)\}^{-} \equiv \max \{-h(r), 0\} \rightarrow 0 \quad(r \rightarrow \infty, r \in G) . \tag{5.12}
\end{equation*}
$$

Suppose that there exists a sequence $\left\{R_{n}\right\}(\in G) \uparrow \infty$ such that $h\left(R_{n}\right)=-\delta^{\prime}$ for some $\delta^{\prime}>0$. Using (5.6), we see that $I_{n} \equiv\left\{s<R_{n} ; h(s)=-\delta^{\prime} / 2\right\}$ is not empty
for $n \geqq n_{2}\left(\delta^{\prime}\right)$. Then, if we put $R_{n}^{\prime}=\sup I_{n}, h\left(R_{n}^{\prime}\right)=-\delta^{\prime} / 2$ and $R_{n} / R_{n}^{\prime} \rightarrow 1(n \rightarrow \infty)$. It follows from these and (5.5) that for some $R_{n}^{\prime \prime} \in\left(R_{n}^{\prime}, R_{n}\right)$

$$
\begin{equation*}
\left\{\lambda\left(R_{n}^{\prime \prime}\right)\right\}^{2}>\left(\delta^{\prime} / 2\right)\left(R_{n} / R_{n}^{\prime}-1\right)^{-1} \rightarrow \infty \quad(n \rightarrow \infty) \tag{5.13}
\end{equation*}
$$

Since $\lambda(r)>0(r>1), \lambda\left(R_{n}^{\prime \prime}\right)=\rho+h\left(R_{n}^{\prime \prime}\right) \rightarrow \infty(n \rightarrow \infty)$ by (5.13). However, the definition of R_{n}^{\prime} implies that $h(r)<-\delta^{\prime} / 2$ for $R_{n}^{\prime}<r \leqq R_{n}$. This contradiction proves (5.12). Combining (5.11) and (5.12), we have the desired result.
5.2. Completion of proof. We write $G=\bigcup_{n=1}^{\infty}\left[a_{n}, b_{n}\right]\left(b_{n}<a_{n+1}, a_{n} \rightarrow \infty\right.$, $\left.b_{n} / a_{n} \rightarrow \infty\right)$, and put $a_{n}^{\prime}=\lambda_{n} a_{n}, b_{n}^{\prime}=b_{n} / \lambda_{n}$, where $\lambda_{n}=\min \left(a_{n}^{\delta_{n}},\left(b_{n} / a_{n}\right)^{\delta_{n}}\right)$ with a positive sequence $\left\{\delta_{n}\right\}$ satisfying $\delta_{n}(<1 / 2) \rightarrow 0, a_{n}^{\delta_{n}} \rightarrow \infty,\left(b_{n} / a_{n}\right)^{\delta_{n}} \rightarrow \infty(n \rightarrow \infty)$. Then $G^{\prime}=\bigcup_{n=1}^{\infty}\left[a_{n}^{\prime}, b_{n}^{\prime}\right](\subset G)$ is a very long set. Now, let $\left\{r_{m}\right\} \subset G^{\prime}$ be any increasing, unbounded sequence. We prove that $\left\{r_{m}\right\}$ is a sequence of Pólya peaks of order ρ for $H_{1}(r)+1$. To do this, we follow Bearnstein's procedure in [1, p. 94].

If $h(t)=0$ for all sufficiently large $t \in G$, this assertion is trivial. Otherwise, $\delta(x)=\sup _{\substack{t \geq x \\ e^{t} \in G}}\left|h\left(e^{t}\right)\right|(h(u) \equiv \lambda(u)-\rho)$ is strictly positive and nonincreasing for $x \geqq 0$. Further, by Lemma 2, $\delta(x) \rightarrow 0$ as $x \rightarrow \infty$. Define sequences $\left\{B_{m}\right\}$ and $\left\{b_{m}\right\}$ by

$$
\begin{gathered}
\log B_{m}=\int_{\log r_{m-1}}^{\log r_{m}} \delta(x)^{-1 / 2} d x, \\
\log b_{m}=-\min \left(\int_{\frac{1}{2} \log r_{m}-1}^{\frac{1}{2} \log r_{m}} \delta(x)^{-1 / 2} d x, \frac{1}{2} \log r_{m}\right) .
\end{gathered}
$$

It is easily verified that

$$
\lim _{m \rightarrow \infty} b_{m}=0, \quad \lim _{m \rightarrow \infty} B_{m}=\lim _{m \rightarrow \infty} b_{m} r_{m}=+\infty .
$$

For each m, define n by $a_{n} \leqq r_{m} \leqq b_{n}$, then $n \rightarrow \infty$ as $m \rightarrow \infty$. Assume that $b_{m} r_{m}$ $\leqq r \leqq B_{m} r_{m}, \quad a_{n} \leqq r \leqq b_{n}$. Then

$$
\begin{aligned}
& \left|\int_{r_{m}}^{r} \frac{h(u)}{u} d u\right|=\left|\int_{\log r_{m}}^{\log r} h\left(e^{t}\right) d t\right| \leqq\left|\int_{\log r_{m}}^{\log r} \delta(t) d t\right| \\
& \leqq \max \left(\int_{\log r_{m}}^{\log B_{m} r_{m}} \delta(t) d t, \int_{\log b_{m} r_{m}}^{\log r_{m}} \delta(t) d t\right) \\
& \leqq \max \left(\left(\log B_{m}\right) \delta\left(\log r_{m}\right),\left(-\log b_{m}\right) \delta\left(\log b_{m} r_{m}\right)\right) \\
& \leqq \max \left(\frac{1}{\sqrt{\delta\left(\log r_{m}\right)}} \delta\left(\log r_{m}\right), \frac{1}{\sqrt{\delta\left(\frac{1}{2} \log r_{m}\right)}} \delta\left(\frac{1}{2} \log r_{m}\right)\right) \\
& =\sqrt{\delta\left(\frac{1}{2} \log r_{m}\right)} \equiv \log \left(1+\varepsilon_{m}\right) .
\end{aligned}
$$

Hence

$$
\frac{H_{1}(r)+1}{H_{1}\left(r_{m}\right)+1}=\left(r / r_{m}\right)^{\rho} \exp \left(\int_{r_{m}}^{r} h(u) u^{-1} d u\right)<\left(1+\varepsilon_{m}\right)\left(r / r_{m}\right)^{\rho}
$$

$$
\left(b_{m} r_{m} \leqq r \leqq B_{m} r_{m}, \quad a_{n} \leqq r \leqq b_{n}\right),
$$

which is the defining inequality for Pólya peaks of order ρ for $H_{1}(r)+1$. However, since $H(r)=H_{1}(r)+O(\log r)=(1+o(1))\left(H_{1}(r)+1\right)(r \rightarrow \infty),\left\{r_{m}\right\}$ is also a sequence of Pólya peaks of order ρ for $H(r)$. This completes the proof of our principal lemma.

References

[1] Baernstein II, A., A nonlinear tauberian theorem in function theory, Trans. Amer. Math. Soc., 146 (1969), 87-105.
〔2 Baernstein II, A., Proof of Edrei's spread conjecture, Proc. London Math. Soc., (3) 26 (1973), 418-434.
[3] Baernstein II, A., Regularity theorems associated with the spread relation, J. Analyse Math., 31 (1977), 76-111.
[4] Edrei, A. and Fuchs, W. H. J., Asymptotic behavior of meromorphic functions with extremal spread I, Ann. Acad. Sci. Fenn. Ser. A.I. 2 (1976), 67-111.
[5] Edrel, A. and Fuchs, W.H. J., Asymptotic behavior of meromorphic functions with extremal spread II, ibid., 3 (1977), 141-168.
[6] Ueda, H., An extremal problem associated with the spread relation, Kodaı Math. J., 5(1) (1982), 71-83.
[7] Ueda, H., On entire functions extremal for the $\cos \pi \rho$ theorem having prescribed asymptotic growth, Kodai Math. J., 5(3) (1982), 360-369.

Department of Mathematics	Department of Mathematics
Daido Institute of Technology	Tokyo Institute of Technology
Daido-cho, Minami-ku, Nagoya	Oh-okayama, Meguro-ku, Tokyo
Japan	Japan

