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AN EXTREMAL PROBLEM ASSOCIATED

WITH THE SPREAD RELATION II

BY HIDEHARU UEDA AND YOJI NODA

Introduction. One of the authors published in 1982 a paper with the same
title [6], in which the following result was proved:

THEOREM A. Let f{z) be meromorphic in the plane of order |OG(0, OO).
Further, suppose that T(r, f) varies regularly in the sense of Karamata, i. e.t

(1) \im™r'£=k' (0<k<cχ>)
1 [r J)

holds uniformly for k in any interval A~1^k^A, A>1. Let Λ(r) be a nonneg-
ative function satisfying Λ(r)—o(T(r, /)) (r—>oo). Then, if

(2) 3(oo,

and

(3) limsup meas{θ ;\og\f(reiθ)\>Λ(r)}^—sm-\ -

there exist a very long set G and a function L(r) varying slowly on (0, oo) such
that T(r, f)=rPL(r) (0<r<oo) and

(4) ^ 'f)
J)->cosp(β-θ) (r-*oo, r€ΞG; uniformly for 0e[O, βl),

where T*(z) denotes the Baernstein characteristic of f{z).

In the present paper we first discuss an improvement of Theorem A. The
assumption (1) can be rewritten as T(r, f)=rpL1{r) (0<r<oo) with a function
Li(r) varying slowly on (0, oo). Baernstein [3] proved that all the assumptions
of Theorem A except (1) imply the existence of a very long set G and a func-
tion L{r) varying slowly on G such that T(r, f)—rpL{r) (0<r<oo) and

(5) ErL^JL^wβp ( r - o o , r e G ) .

We prove that in Theorem A the assumption (1) is unnecessary. (Therefore the
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above conclusion (5) is contained in (4).) Next, we determine under the assump-
tions (2) and (3) the asymptotic behavior of log\f(z)\ for values of z whose
absolute values lie in a suitable set Go having logarithmic density 1 and of the
arguments of almost all the zeros and the poles of f(z) in {z; \z\^GQ). The
clue to our investigation is the following fact:

A PRINCIPAL LEMMA. Let p^(0, oo) and L(r) be given, where L(r) is a slowly
varying function on a very long set d such that H(r)=rpL(r)Φ0 (logr) (r-»oo)
is a convex, increasing function of log r. Then there exists a very long set G2

(cGi) with the property that any increasing unbounded sequence in G2 is a
sequence of Pόlya peaks of order p of H(r).

Let f(z) satisfy the assumptions (2) and (3). Then the spread relation [2]
implies that f(z) has regular growth and Theorem 2 in [3] yields that T(r, f)
=rpL(r) with a very long set d and a function L(r) varying slowly on Gx.
Using our principal lemma, we find a very long set G2 (cGx) with the property
that any increasing unbounded sequence {rm}dG2 is a sequence of Pόlya peaks
of order p of T(r, /) . Here we use the spread relation again to obtain

lim meas {θ log | f(rmeίθ) \ > Λ(rm)} =2β .
m-oo

Hence f(z) is a meromorphic function of lower order p^(0, oo) satisfying the
hypotheses ES at a sequence {rm} of Pόlya peaks of order p of T(r, f) (For
the definition of the hypotheses ES, see [4, p. 69.]), and so we conclude that
all the results in [4] and [5] are applicable to our f(z) with any increasing
unbounded sequence {rm}ciG2.

1. Statement of our theorems.

THEOREM 1. Suppose f(z) is meromorphic in the plane of order p^(Q, oo).
Let Λ{r) be a nonnegative function satisfying Λ(r)—o(T(r, /)) (r—>oo). Then, if
the assumptions (2) and (3) are fulfilled, there exist two very long sets d, G2

(G 2cGi) and a function L(r) varying slowly on Gx such that T(r, f)=rpL(r)
(0<r<oo),

T*{reiθ)

T(r, f)

and

cosp(β-θ) (r-*oo, Γ G G 2 ; uniformly for 0GΞ[0, £]) ,

THEOREM 2. Let the assumptions and notations of Theorem 1 be unchanged.

It is then possible to find two sets Gz, /i on the positive real axis and a real-

valued function φ(u) satisfying the following conditions (i)-(vi).

( i ) Gs (CG2) is a very long set.
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(ii) J1 has density zero.
(iii) \ogM(u, f)={πp sin βp+o(l)}uPL(u) (u->oo, W G ^ - J J .
(iv) |/(w^ ( w ) ) |=M(w,/) (κeG 8-/i).
(v) lim [ω(iktt)—tt)(tt)]=0 (0<&<oo) /w/ds uniformly for k in any interval

(vi) Let s>0 and 77 (0<η<β) be given. Denote by p(u)=p(u; s, η, φ(u)) the
number of poles of f(z) in the sector

{teiθ e-su^t^esu, 7)^\θ-φ(u)\^

and by z{u)—z{u s, η, φ{u)) the number of zeros of f{z) in the sector

{teid e-u^t^e'u, \θ-φ(u)\ ^β-η}.

Then

p(u)+z(u)=o(ut>L(u)) (u-+oo, M G G B - / I ) .

THEOREM 3. Let the assumptions and notations of Theorems 1 and 2 be
unchanged. It is then possible to find two sets G4 and J2 on the positive real axis
satisfying the following properties (i)-(iii).

( i ) G4 (dGΆ) is a very long set.
(ii) / 2 has density zero.
(iii) Let η (0<^<(l/2)min(/3, π—β)) be given. If u^GA-Jλ-J^ then

(w->oo; uniformly for θ7 β+η^ \θ \ ̂
and

\log\f(ue%<e+*™>)\-πpsinp(β-\θ\mu, f)\=o(T(u, /))

(u->oo; uniformly for θ, 7j^\θ\^β — η).

THEOREM 4. Let the assumptions and notations of Theorems 1 and 2 be
unchanged, <ind assume that π—β>π/2ρ. Then it is possible to find four sets Gδ,
GQ, JB and / 4 on the positive real axis satisfying the following properties (i)-(iv).

( i ) Gδ and G6 (G 6 cG 5 CG 2 ) are very long sets.
(ii) / 3 and / 4 have density zero.
(iii) Let η (0<η<(l/2)mm(β, π—β)) and s>0 be given. Denote by
z(u s, η, φ(u)) the number of zeros of f(z) in the sector

{teiθ ;e~

Then

(iv) Let η (0<^<(l/2)min(/3, π-β)) be given. Then, if W G G 6 - / 3 - / 4 )
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(u—>oo uniformly for β, β+rjS \θ \ ̂

THEOREM 5. Let the assumptions and notations of Theorem 4 be unchanged.
Then

(i) nτ[r'f) " p (r~*°°'
(ii) Given η (0<η<β), denote by z+(z) the number of zeros of f(z) in the sector

0< \z\Su , φ(u)+β—η^argz^φ(u)+β + η

and denote by z~(u) the number of zeros of f{z) in the sector

0< \z\Su, φ{u)-β-η^Άrgz^φ(u)-β + η .

Then we have for ίe(0, sin η)

z+(uq-t))^p_
T{u, f) 2 i U + j U } j

This relation still holds if z+ is replaced by z~.

In §§2-4 we assume and use the assertion of our principal lemma.
In §2 we deduce Theorem 1 from Theorems 1 and 2 in [4].
In §3 we prove Theorem 2 using Theorem 1 and the same reasoning as in

the proof of Theorem 3 in [4].
In §4 we deduce Theorem 3 from Theorem 2 (v) and the first part of

Theorem 4 in [5].
Finally, in § 5 we prove our principal lemma.

Remarks, (i) If the hypotheses of Theorem 3 are satisfied and π—β^
holds, then the conclusions (iii) and (iv) of Theorem 4 need not be true. (See [5,
P. 144].)
(ii) Theorem 4 is proved using Theorem 5 in [5] and the similar arguments
as in §§2-3, so we omit the proof.
(iii) Theorem 5 is derived from Theorems 1, 3, 4 and the same reasoning as in
§ 13 in [5], so we omit the proof.

2. Proof of Theorem 1.

Let f(z) satisfy the assumptions (2) and (3). Then as we saw in the intro-
duction T(r, f)=rpL{r) holds with a very long set Gλ and a function L(r)
varying slowly on Glf and further Theorems 1 and 2 in [4] are applicable to
f(z) with any increasing unbounded sequence {rm}aG2, where G2 (CG^ is a
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suitable very long set. Hence we deduce

T*(rpiθ f)
- ^ ' J } ->cos p(β-θ) (r->oo, r e G 2 ; uniformly for 0e[O, /3]),

and

where G2=\Jm=i[0-Vm, erTO]. A suitable choice of {rm}ciG2 implies that G2dG2.
This completes the proof of Theorem 1.

3. Proof of Theorem 2.

3.1. Construction of G3 and Jx. We write G2=UΓ=i[flί> # ] (6ί<αί+i»
Λ^ ->oo, ^->oo, bj/a'j-+oo as y->oo). Dropping, if necessary, a finite number of
intervals and renumbering the remaining intervals [αj, 6J] we may assume that
* ί / f l ί ^ β 0 = 1 , 2, 3, •••). Let {εn}Π0 be given. Choose σ n e(0, 1) ( n = l , 2, 3, •••)
small enough to imply

(3.1) p cos βp(8e2?+1+2γ \og-^-)(e2σ^-e"σnP)<εj^ (γ=π/β).

For each σn ( n = l , 2, 3, •••), define a sequence {m }̂̂  (0=m o <m 1 <m 2 < ; w<7=
m^(σn)) of integers such that b'J/a'j:=e(mj~mj-1+aj}'n (ccj=aj(σn)^ί0, 1)), and then
{(rn)m}m=i by

(3.2) ( r n ) w , _ 1 + 1 = α ί ( ; = 1 , 2, 3, •••),

1 ; ; = 1 , 2, •••)»

If /(^) satisfies the assumptions (2) and (3), Theorem 1 is valid. Hence we
are able to find sequences {(i?X}°°m=1, {(Rn)m}Z=i ( n = l , 2, 3, •••) such that

(3.3) {l+tfn)m} -1 {t/(rn)J '<T(f)/n<χn)m)< {l+(ξn)J {ί/(rn)m} >,

(3.4) {̂  cos βp-(ηn)m} {t/{rn)m}P<n{t, oo)/T((rn)J

< {̂  cos fto+0?»)m} {ί/(rn)m} ̂ ,
and

(3.5) {cos βp-(ζn)m} {t/(rn)m}o<N(t, oo)/T((r»)m)

hold for (/?n)^^ί^(Λn)£, where

as m-^oz. Now, for each επ and σn (n = l, 2, 3, •••) we select a positive integer
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-! (I^k1<k2< '<kn< ") such that m^m^n_1+l implies

tξn)mπp cos βp tan-

(3.7) ( j ? π

(3.8) \l+(ξn)J {((RnYJir^y+r^Per^JiR^γ-P} <εn/5 ,

and

(3.9) (ζn)md-cos βp)(πp/sm πp)<en/5 .

We then define G3 by

G.= 0 {( U

To construct Jx we proceed as follows: Let {bj} be the poles of f(z) and put

where

H(t, u)=log . , .γ —.

Using Cartan's lemma, it is possible to exclude, from the interval ι
an exceptional set εn(m) such that

(3.10) measεn(m)<(rn)mσl

and such that, for MG[(rΛ)m, (^n)mβσnl—εn(m)y

(3.11) Έi(u)^(Se2r+1+2γ log—){n((rn)me2 σ n, oo)—n{{rn)me-σ^y oo)}.

Using εn(m)f we define /i by

Λ= 0 {( U en{m))r\(n\j \a'Jf &;

By the construction of G3 and /j, it is easily verified that G3 (cG 2 ) is a very
long set and /α has density zero.

3.2. A further consequence of the assumptions (2) and (3). Let f(z) be
a meromorphic function satisfying the assumptions (2) and (3). Assume that the
quantities σn, (r n ) m , (Rn)m, (Rn)m, (ξn)m, (y}n)m, (ζn)m have been selected as in
3.1.. The aim of this section is to show that we[(rΛ)m, (rn)meσn~]— εn{m)
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(m^mkn-i+l) implies

(3.12) (Qn)m(u)= f Σ βH(\bj\,u)^:

where {bj} denote the poles of f(z). Note that if ΣO(M), Σ2(W) are given by

Σ t \. VΛ

Q\U J / i

2\U)— Zu

then (ζ?n)m(M)=Σo(M)+Σi(M)+Σ2(M) holds.
First, we prove that

(3.13) Έo(u)+Έ2(u)£T(u)(πp cos ^^ t a n - ^ - +e n /δ)

From (3.4) we deduce

(3.14) n(t, π>)-p cos βpT{{rn)J{t/(rn)my

with |(ΐn)
we obtain

(3.15)

» ) U ^ ( W ί ) . Using Stieltjes integrals and (3.14),

n)m

2 H(t, u)dn(t, oo)

e2σn+H(t, u)t'-ιdt

\(n)m,a H{t,u)d{ηn)m{t).

An integration by parts yields

(3.16)

Since

we have

Hence

m

2σ H(t, u)d(rjn

irn)me2an
(t/(rn)my

n)m, U)

dH
fit

dt
J

dH

3ί
(tΦu),

dH

dt
zί



(3.17)
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(
(rn)me2σn+

(t/(rn)mY
3t

dt

2γ

Taking into account the obvious estimates

we deduce from (3.16) and (3.17) that

n)m

2σ H(t, U)d{fjn)m{t)\

Returning to (3.15), we obtain

(3.18) Έz(u)^p2 cos βpL(irn)m)^Jl{t,

In the same way, we have

(3.19) Σo(u)^p2 cos

Since

Soo

H(t,
o

(3.13) follows from (3.18), (3.19), (3.3) and (3.6).
Next, we estimate ΣiU) for w e [ ( r j w , {rn)mea^-en{m)~Mn{jn\ By (3.4)

n((rn)me2σn, o o ) - n ( ( r n ) m e - ^ , oo)

<p cos βp(e2σ*t>-e-σ"P)T((rn)m

< jo cos / 3 ^ 2 σ ^ - ^ - σ ^ ) T ( w ) + ( ) 7 J m (

Then from (3.11), (3.1) and (3.7) we deduce that

(3.20)
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Thus (3.12) follows from (3.13) and (3.20).

3.3. Completion of proof. If f(z) satisfies (2) and (3), then as we saw in
the introduction, f{z) is a meromorphic function of lower order p satisfying the
hypotheses ES at a sequence {rm} (, where {rm\ is any increasing unbounded
sequence in G2)) of Pόlya peaks of order p of T(r, /) . Applying Lemma 15.1
in [4] to f{z)f we obtain

(3.21) πp sin /fy^lim m f - ^ ^ ( r ' / }

On the other hand, using the same reasoning as in [4, § 16], we deduce from
(3.8), (3.9) and (3.12) that

(3.22) log M(u, /)+K lZ(u) + K2p(u)^ {πp sin βp+en] T(u, f)

where Ku K2 are positive constants depending only on s (>0), γ and η (>0).
Hence the proofs of (iii) and (vi) follow at once from (3.21) and (3.22). Finally,
assertion (v) is derived easily from (vi).

4. Proof of Theorem 3.

We write G 8 = U ϊ - i [ < W] (b'i<a»+1; a'ί-+oo, b'ί/a'^oo as n->oo). Drop-
ping, if necessary, a finite number of intervals and renumbering the remaining
intervals [α£, brή~\ we may assume that h'-i/a^e2 (n-=l, 2, 3, •••). Define a
sequence {m^ (0=mo<m1<m2<"') of integers such that bZ/a%=e*imn-m*-i+Pn)

(j8ne[0, 1)), and then {rm\ by fmn_1+1=ea^f rm+ι/rm=e2 ( m ^ - i + l ^ m ^ m ^ - l ) .
Now, we define G4 by

It is easily verified that G4 (cG 3 ) is a very long set. Next, choose a sequence
{z/m}Γ such that um^\β'1fm,, erm~]— Jx and let {εJΓlO be given. Then by
Theorem 4 in [5] we are able to find sets ffm(εn)c[^"1fm, erm] such that

(4.1)

and such that for M G ^ 1 ^ , efm]-£Γm(en) ( w ^ + 1 ; l^/i</2</3< )

log I f(uex<θ+*iu*") I ^ ε n

Further by Theorem 2 (v) we may assume that for
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(4.2; \
\log\ f(ueuβ+l?<u»)\-πp sin p(β-\θ\)T(u)\^εnT(u)

Using (4.1), it is easy to check that the set

Λ=U{ 0 3 »(e

has density zero, and the assertion (ii) follows from (4.2)

5. Proof of the principal lemma.

5.1. Preliminaries.

LEMMA 1. ([7]) Let H(r) be given by

where φ{t) is nonnegative, nondecreasing, and unbounded. Then there exists a
function φ(t) (£Ξ>1) satisfying the following conditions (i)-(iv).

(*i) φ(t) is a continuous function which is continuously differentiable off a discrete
set D {where D has no finite accumulation points.).
(ii) φ(t) is strictly increasing and unbounded.
(iii)

(iv) H1(r)=^iφ(t)r1dt=H(r) + O(\ogr) (r->oo).

LEMMA 2. Let p (0<p<oo) and L(r) be given, where L(r) is a slowly vary-
ing function on a very long set G such that H{r)=rpL(r)Φθ (logr) is a convex,
increasing function of logr. Corresponding to H(r), define φ(t) ( ί^ l ) and Hλ(r)
( r ^ l ) as in Lemma 1. Then

Proof. Put

(5.2) Hλ{r)

Then L2(r) is a slowly varying function on G such that Hλ{r)Φθ (logr) is a
convex, increasing function of logr. Define h(r) by

(5.3) - λ(r)=p-\-h(r).

By the definition of λ{r) and the properties of φ(r), λ(r) is a positive, continuous
function for r > l , which is continuously differentiate off a discrete set D, where
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D has no finite accumulation points. By (5.1), (5.2) and (5.3)

(5.4)

Since Hx{r) is a convex, increasing function of log r, we deduce from (5.3) and
(5.4) that

(5.5) W(r))2+rA'(r)^0 (r$f l ) .

First, we prove {/i(r)}+^max{/z(r), 0}->0 (r->oo, Γ G G ) . Suppose that there
exists a sequence {rj (CG) t °° such that h(rn)—δ for some <5>0. Since Lλ{r)
is a slowly varying function on G, (5.4) implies

(5.6) \σrh(f)t-ιdt-*Q (r->oo,

Thus for any fixed σ>l there is an s n e ( r n , σrn) such that h(sn)~δ/2 (n^no(σ)).
Now, for each r n (n^n0) we define rή by rή=inf {s>rn Λ(s)=5/2}. By

the continuity of Λ(r), we easily see that h{r'n)=δ/2 and h(r)>δ/2 {rn^r<rf

n).
It follows from this and (5.6) that

(5.7) r i / r n - > l (n->oo).

Using the mean value theorem to ^(r), we deduce from (5.5) and (5.3) that

(5.8) -3/2=λ(r ; )-^( r n )=A(r ; )-A(r n )^

By (5.7) and (5.8), λ(r'n)->oo (n-^ oo), which implies

(5.9) A(rϊ)>23 (n

(5.9) and the fact that h{r'n)—δ/2 yield the existence of Mne(r2, rή) satisfying
h(un)—δ. Here, define r£° by r£3)=sup{w<r^ h(u)=δ}. Then it is easily seen
that h(r(

n

2))=δ and

(5.10) <V2</z(r)<3 (r™<r<r'n; n^n^δ)).

On the other hand, as we stated above, the mean value theorem gives the
existence of r44 )e(r43 ), r'n) such that h(r(

n

4))>2δ for n^nx. This contradiction
gives

(5.11) {/ι(r)}+->0 (r->oo

Next, we prove

(5.12) {/ι(r)}-Ξmax(-«r), 0}->0 (r->cχ^, r e G ) .

Suppose that there exists a sequence {i?n} ( G Ξ G ) ? 0 0 such that h{Rn)——δf for
some δ ^ O . Using (5.6), we see that In= {s<Rn A(s)=— 572} is not empty
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for n^n 2 (δ'). Then, if we put # ; = s u p / n , h(R'n)=-δ'/2 and Rn/R'n->1 (n->oo).
It follows from these and (5.5) that for some Rr^{R'n, Rn)

(5.13) {XUl'ίVXδ'mRJR'n-ir1-*™ (w-oo).

Since λ(r)>0 (r>l), λ(R^)=p + h(Rίi)->oo (n->oo) by (5.13). However, the defi-
nition of R'n implies that h(r)<—ό'/2 for R'n<r^Rn. This contradiction proves
(5.12). Combining (5.11) and (5.12), we have the desired result.

5.2. Completion of proof. We write G=\Jn=i[^»> bn~] (bn<an+1, an-+o3,
bn/an-*co)} and put a'n—λnan, b'n—bn/λn} where Λn=min(αjJ*, (bn/an)

δn) with a
positive sequence {dn} satisfying <5n (<l/2)—>0, a%n-+co, (bn/an)

δn-+co (n—>oo).
Then G /=Uϊ-i[flή, %] (CG) is a very long set. Now, let { r J c G ' be any in-
creasing, unbounded sequence. We prove that {rm} is a sequence of Pόlya peaks of
order p for Hχ{r)+1. To do this, we follow Bearnstein's procedure in [1, p. 94].

If h(t)=Q for all sufficiently large ί eG, this assertion is trivial. Otherwise,
δ(x)=s\ipt*x\h(eι)\ (h(u)^λ(u)—p) is strictly positive and nonincreasing for x^O.

Further, by Lemma 2, δ(x)-*0 as x->oo. Define sequences {5m} and {6m} by

logrm-i

r m δ{x)-ι'*dx, ~ l o g r w ) .
| r m - l Z /

It is easily verified that

lim bm=0, lim £ m = l i m bmrm

For each m, define n by an^rmSbn, then n-^oo as 7?z->oo. Assume that

m, an^r^bn. Then

If AW

ΓBmrmδ(t)dt, f111"-
log r m J log b mr m

Bm)δ(\og rm), (-log bm)δ{\og bmrm))

Hence
ί/.Mθ-1

- = ( r / r m ) '
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which is the defining inequality for Pόlya peaks of order p for H^ή+l. How-

ever, since i/(r)=i/1(r)+O(logr)=(l+(?(l))(i/1(r)+l) (r->oo), {rm} is also a sequ-

ence of Pόlya peaks of order p for H(r). This completes the proof of our

principal lemma.
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