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AN EXTREMAL PROBLEM ASSOCIATED
WITH THE SPREAD RELATION II

By HiDEHARU UEDA AND YOJI NODA

Introduction. One of the authors published in 1982 a paper with the same
title [6], in which the following result was proved :

THEOREM A. Let f(z) be meromorphic in the plane of order p&(0, o).
Further, suppose that T(r, f) varies regularly in the sense of Karamata, 1i.e.,

Tk, f)
(1) I =

holds uniformly for k in any interval A7'<k=<A, A>1. Let A(r) be a nonneg-
ative function satisfying A@@)=o(T(r, f)) (r—o0). Then, if

(2) d(o0, £)>0

ke (0< k<o)

and

(3) limﬂsup meas {0 ; log| f(ret?)| > A(r)} §%sin'1\/é(ioz’i =2B<2rm,

there exist a very long set G and a function L(r) varying slowly on (0, o) such

that T(r, f)=r°L(r) (0<r<oo) and

T*(rett, f)
T(r, 1)

where T*(z) denotes the Baernstein characteristic of f(z).

(4) ~—cos p(f—8) (r—oo, r&G ; uniformly for 0€[0, 1),

In the present paper we first discuss an improvement of Theorem A. The
assumption (1) can be rewritten as T'(r, f)=r"L,(r) (0<r<oo) with a function
L,(») varying slowly on (0, o). Baernstein [3] proved that all the assumptions
of Theorem A except (1) imply the existence of a very long set G and a func-
tion L(r) varying slowly on G such that T(r, f)=r*L(r) (0<r<oo) and

N(r, o, f)
(r, )

We prove that in Theorem A the assumption (1) is unnecessary. (Therefore the

—cos Bp  (r—oo, relG).

(5)
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above conclusion (5) is contained in (4).) Next, we determine under the assump-
tions (2) and (3) the asymptotic behavior of log|f(z)| for values of z whose
absolute values lie in a suitable set G, having logarithmic density 1 and of the
arguments of almost all the zeros and the poles of f(z) in {z;|z|=G,}. The
clue to our investigation is the following fact:

A PRINCIPAL LEMMA. Let p&(0, o) and L(r) be given, where L(r) is a slowly
varying function on a very long set G, such that Hrr)=r?L(r)#0 (logr) (r—o0)
S a convex, increasing function of logr. Then there exists a very long set G,
(CG,) with the property that any increasing unbounded sequence in G, is a
sequence of Pdlya peaks of order p of H(r).

Let f(z) satisfy the assumptions (2) and (3). Then the spread relation [2]
implies that f(z) has regular growth and Theorem 2 in [3] yields that T'(r, f)
=r?L(r) with a very long set G, and a function L(r) varying slowly on G,.
Using our principal lemma, we find a very long set G, (CG,) with the property
that any increasing unbounded sequence {r,}CG, is a sequence of Pdlya peaks
of order p of T(r, f). Here we use the spread relation again to obtain

}im meas {0 ; log| f(rme'®)| > A(rn)} =28.
Hence f(z) is a meromorphic function of lower order pe&(0, o) satisfying the
hypotheses ES at a sequence {r,} of Pélya peaks of order p of T(r, f) (For
the definition of the hypotheses ES, see [4, p. 69.]), and so we conclude that
all the results in [4] and [5] are applicable to our f(z) with any increasing
unbounded sequence {r,}CG..

1. Statement of our theorems.

THEOREM 1. Suppose f(z) is meromorphic in the plane of order p<(0, o).
Let A(r) be a nonnegative function satisfying A(r)=o(T(r, f)) (r—o0). Then, if
the assumptions (2) and (3) are fulfilled, there exist two very long sets G,, G,
(G.CG,) and a function L(r) varying slowly on G such that T(r, f)=r°L(r)
(0<r<o0),

T*(rei?) o
T ) —cos p(f—0) (r—oo, r&G,; uniformly for §<[0, B1),
and

THEOREM 2. Let the assumptions and notations of Theorem 1 be unchanged.
It is then possible to find two sets Gs, J1 on the positive real axis and a real-
valued function ¢(u) satisfying the following conditions (i)-(vi).
(i) Gs (CGy) is a very long set.
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(ii) J, has density zero.

(iii) log M(u, f)={mpsin Bp+o(L)} u?L(u) (u—co, ucGy—J,).

(iv) | flue*™)|=M(u, f) (wEGs—]).

(v) ,I,l.g} Loku)—p(u)]=0 (0< k<o) holds uniformly for k in any interval
ku,u€Gg—J1

AlZk=A, A>L

(vi) Let s>0 and 7 (0<9<pP) be given. Denote by p(u)=p(u;s, 7, ¢(u)) the

number of poles of f(z) in the sector

{te'?; e ust=e'u, n=|0—op(u)| <n}
and by z(u)=z(u;s, 5, (u)) the number of zeros of f(z) in the sector

{te? ; e ust=e’u, |[0—pu)|<p—n}.
Then
pw)+z(w)=o(ufL(u))  (u—oo, ueG,—J,).

THEOREM 3. Let the assumptions and notations of Theorems 1 and 2 be
unchanged. It is then possible to find two sets G, and ], on the positive real axis
satisfying the following properties (i)-(iii).

(1) G. (CGy) is a very long set.
(ii) [, has density zero.
(iii) Let 5 (0<9<(1/2)min(B, #—P)) be given. If usG,—],—];, then

log| f(ue* ¢ )| <o(T(u, f))

(u—co; uniformly for 0, B+n=10|=m),
and
[log| f(ue*®+¢®)| —z o sin p(B— 0T (u, f)|=0(T(u, f))

(u—oco; uniformly for 6, n=10|=—79).

THEQREM 4. Let the assumptions and notations of Theorems 1 and 2 be
unchanged, and assume that #—B>n/2p. Then it is possible to find four sets Gs,
Ge, J5 and [, on the positive real axis satisfying the following properties (i)-(iv).

(i) Gs and G¢ (GeCGsCGs) are very long sets.

(ii) Js and J, have density zero.

(iii) Let 7 (0<9<(1/2)min(B, #—p)) and s>0 be given. Denote by Z(u)=
Zu; s, n, (u) the number of zeros of f(z) in the sector

{te’? ; e ust=e'u, p+n=10—0p(u)| =x}.
Then
Zu)=o(T(u, f)) (u—oco, ucGs—Js).

(iv) Let n (0<9<(1/2)min(B, #—p)) be given. Then, 1f ueGe—Js—],,
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log| f(ue*?+¢ @) | = —o(T (u, f))
(u—oco; umiformly for 6, B+n=|0|<=).

THEOREM 5. Let the assumptions and notations of Theorem 4 be unchanged.

Then

. n(r, 0, f)
W76, 7)
(ii) Given 5 (0<n<P), denote by z*(z) the number of zeros of f(z) in the sector

—p (r—oo, reGe—Ji—Jo).

0<lzl=u, ¢)+p—n=argz=eu)+p+y
and denote by z~(u) the number of zeros of f(z) in the sector

0<lz|=u, ou)—p—y=argz=e(u)—p+y.
Then we have for t<(0, sin %)

2 u(l+)—z*wld—1) _p —(1—
T(u, f) 5 1L —(1—1)°)

(u—oo; u(l4t), u(l—1t), usGe—Js—J.).

This relation still holds if z* 1s replaced by z~.

In §§2-4 we assume and use the assertion of our principal lemma.

In §2 we deduce Theorem 1 from Theorems 1 and 2 in [4].

In §3 we prove Theorem 2 using Theorem 1 and the same reasoning as in
the proof of Theorem 3 in [4].

In §4 we deduce Theorem 3 from Theorem 2 (v) and the first part of
Theorem 4 in [5].

Finally, in §5 we prove our principal lemma,

Remarks. (i) If the hypotheses of Theorem 3 are satisfied and #—pB==r/2p
holds, then the conclusions (iii) and (iv) of Theorem 4 need not be true. (See [5,
p. 144].)

(ii) Theorem 4 is proved using Theorem 5 in [5] and the similar arguments
as in §§2-3, so we omit the proof.
(iii) Theorem 5 is derived from Theorems 1, 3, 4 and the same reasoning as in
§13 in [5], so we omit the proof.

2. Proof of Theorem 1.

Let f(z) satisfy the assumptions (2) and (3). Then as we saw in the intro-
duction T'(r, f)=r°L(r) holds with a very long set G, and a function L(r)
varying slowly on G,, and further Theorems 1 and 2 in [4] are applicable to
f(z) with any increasing unbounded sequence {r,}CG, where G, (CG,) is a
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suitable very long set. Hence we deduce

T*re'’, ) | _ . X
o, ) cos p(B—40) (r—o0, r&€G,; uniformly for [0, 8]),

and
n(r, oo, f)

T, )

where 52=U‘;‘;,=1[e“rm, ern]. A suitable choice of {r,} CG, implies that G,C 52.
This completes the proof of Theorem 1.

—pcos Bp (r—co, reég),

3. Proof of Theorem 2.

3.1. Construction of G; and J,. We write G,=\U7il[a), bj] (bj<aj;
aj—00, bj—oo, bi/aj—oo as j—oo). Dropping, if necessary, a finite number of
intervals and renumbering the remaining intervals [a}, b}] we may assume that
bi/ajze (=1, 2,3, ). Let {e,}¥ 10 be given. Choose ¢,<(0, 1) (n=1, 2, 3, ---)
small enough to imply

@.1) o cos Bo(8e7+2y 1og0i)(e”w—e-w)<en/5 (r=n/B).

For each ¢, (n=1, 2, 3, -++), define a sequence {m;}y O=mo<m,<my< ++; m,=
my(o,)) of integers such that b}/aj=e™i~™-1**0%n (@,=a(g,)<[0, 1)), and then
{(rn)m} m=1 DY

3.2) (ra)m,-y+1=0; (7=1,23, -,
(rn)m+1/(rn)m=ean (m1—1+1§m§mj'—1; ]-:1’ 2: )-

If f(z) satisfies the assumptions (2) and (3), Theorem 1 is valid. Hence we
are able to find sequences {(R.)m}“m=1, {{(Ra)m}m=1 (n=1, 2, 3, ---) such that

3.3) {1+Epnt 7t/ (ra)nt ¢ <T@/ T(rn)m) < {1+ (En)m} £/ r)m} ©,

(3.4 {p cos Bo—(nn)m} {t/(ra)m} # <n(t, o)/ T((ra)m)

< {p cos /3.0+(7/n)m} {t/(ra)ml?,
and

(35) {COS .Bp—(Cn)m} {t/(rn)m} e <N(t; OO)/T«rn)m)

< {COS ﬁp‘l"(Cn)m} {t/(rn)m} e
hold for (R,)n=t=(R,)m, where

(R)m—0, (ra)n/(Ra)m—00, (Ru)n/(ra)n—o0,
En(>0-0, )a(>0-0, En(>0-0

as m—oo, Now, for each ¢, and ¢, (n=1, 2, 3, ---) we select a positive integer
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Mpp-1 1Sk <ky<---<kn,<-) such that m=m,,.,+1 implies

T
(Enmmp cos Bp tan%’i +(77n)m{4e7+(e2ﬂ+1)1og—2;— 4

(3.6)
et log - +2r(;2f; + ;;;) e} <ea/5,
3.7) (pa)mle+1)(8er 427 1ogoin) <eal5,
(3.8 {14+E)mt {RIR/ () m) T +22e(ra)m/(Ra)m) "} <ea/5,
and
(3.9) (Ca)m(l—cos Bo)(p/sin 7p)<en/5.

We then define G; by

G=U{( U [, (rn>meﬂn1)m(kf§§:[a;, b))}

n=1 \\mzm g, _1+1
To construct J; we proceed as follows: Let {b;} be the poles of f(z) and put

2a(u)= > H(|b;l, v)  (u>0),

rpdme” In<IbjIS (1) me?9n
where
[t +u’

H(l‘, u)=logw.

Using Cartan’s lemma, it is possible to exclude, from the interval () S u=<(r,)ne’®,
an exceptional set £,(m) such that
(3.10) meas &,(m)<#,)mod

and such that, for uS[(ra)m, (ra)me’»]—Ex(m),
G1) D= (807427 log—-) (n((ra)ne™™™, oo)—nl(rame~7r, o)}
Using &,(m), we define J; by

co Fr+1—1
1= OGN0 e o)}
By the construction of G; and J,, it is easily verified that G, (CG,) is a very
long set and J; has density zero.

3.2. A further consequence of the assumptions (2) and (3). Let f(z) be
a meromorphic function satisfying the assumptions (2) and (3). Assume that the
quantities on, ("n)m, (Ro)m, (Ra)my En)ms (9)m, (Ca)m have been selected as in
3.1.. The aim of this section is to show that uE[(r3)m, z)me®?]—En(m)
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(m=my,-,+1) implies

(B.12)  (Qu)n(w)= X H(]b;1, u)<T(u)<7cp Cos 7 p tan-— Be +—s)

(Rp) 1y <1bj15 (Rp)

where {b;} denote the poles of f(z). Note that if X,(u), >.(u) are given by
2o(u)= = H(|b,l, ),

(Rp) 1y <1018 (rp) e~ 77

2e(u)= > H(1b;l, u),

(rn) me2T n<Ibjis (Rp) Y,

then (Qn)m(u)=20(u)+2:(u)+25(u) holds.
First, we prove that

(3.13) Solw)+2(w)= T(u)(np cos Bp tan%p— —I—-en/S)

Welram, (ra)me’»], m=my,-1+1).
From (3.4) we deduce

(3.19) n(t, ©0)—p cos BoT((ra)n)t/(rn)m)*
=) mOT (7 n)m)E/ (7 2)m)* = n)m(D)

with [(92)n®) | <r)m (Ra)n=t=(R,)m). Using Stieltjes integrals and (3.14),
we obtain

B
3.15) Sw={ """ HE, wdnt, )

B,
=0 cos Bo L((rn)m)s(r H(, wie-dt

) me2ons

(Rp)p , B
o HE 0 ).

) me?®

An integration by parts yields

@16) [ B 0d60 0] <G TR/ ) H(Ra, )

(rp) me29n

e H (e, |, a0 S di).

D medin
Since
we have

‘ U (u=ste 7).

—1 e-zanr L

Hence
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Ry, oH
317 Jmen /e |5
2Tu7 (e 27' ezT"'p
<~ e\ po-r-igp< 20 7
= 1—e%ont (ro)m Sut iz 7—p etni—1"

Taking into account the obvious estimates

0<H(Ru)m, w=4u/(R)n)  (u=(R.)n/2),

0< H{(t, u)glogT +10nge (uste 7n),

we deduce from (3.16) and (3.17) that

[ HE, 0dG a0

(rp) me2on+

1. ro2 e
<OnT ({4 +e% log - et log—Z—re~ o i)

Returning to (3.15), we obtain
(3.18) Suw) = p* cos Bo Lrw)| Het, wyee=1ds

T 2r+p
+(77n)m{427+e“ logai +etr log27e + _2}.,,6.*1}

In the same way, we have

(3.19) Su(u)= 0" cos Bp L)) Hlt, wite=dt

2e” 2r er’=e }T(u)-

1
+(77n)m{4+10g;n-+log ; +?—-l—?—e42""’ i

Since

S:H(t, wiedi=""" tan(Bp/2) ,

(3.13) follows from (3.18), (3.19), (3.3) and (3.6).
Next, we estimate >;(u) for uE[(rn)m, Fa)me’r]—E,(M)=%H,(m). By (3.4)

n((rn)me®’?, 0)—n(rz)me™ ", )
<pcos Bp(e?nt—e )T ((rn)m) +(Na)m(e* n0 477 nO) T (7 a)m)
<pcos Bp(e*'nf—e n)T (u)+(a)m(e® +1)T (u) .

Then from (3.11), (3.1) and (3.7) we deduce that

(3.20) B0< L 6T (uesam).
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Thus (3.12) follows from (3.13) and (3.20).

3.3. Completion of proof. If f(z) satisfies (2) and (3), then as we saw in
the introduction, f(z) is a meromorphic function of lower order p satisfying the
hypotheses ES at a sequence {r,} (, where {r,} is any increasing unbounded
sequence in G,,) of Pdlya peaks of order p of T(r, f). Applying Lemma 15.1
in [4] to f(z), we obtain

. . . . log M@, 1)

< e PNy J T

(3.21) mp sin ,Bp=1u£1§%r21f v,
On the other hand, using the same reasoning as in [4, § 16], we deduce from

(3.8), (3.9) and (3.12) that
(3.22) log M(u, f)+Kiz(u)+K.p(u)< {wp sin Bo+en} T(u, f)
(ueddn(m), mzm,1+1),

where K, K, are positive constants depending only on s (>0), y and 5 (>0).
Hence the proofs of (iii) and (vi) follow at once from (3.21) and (3.22). Finally,
assertion (v) is derived easily from (vi).

4. Proof of Theorem 3.

We write G;=\Uz-:[a7, b7] (bn<anii; ag—o, br/az—oo0 as n—oo). Drop-
ping, if necessary, a finite number of intervals and renumbering the remaining
intervals [a”, b/] we may assume that bf/an=e® (n=1, 2, 3, ---). Define a
sequence {m;} ¥ (0=mo<m,<m,<---) of integers such that by/aj=e* ™z -mn-1+fn
(B.€[0, 1)), and then {7} by 7m,_,s1=€a%, rm+1/Tmn=0" My +1=m=m,—1).
Now, we define G, by

Gi=\UJ e 7, enl.
m=1
It is easily verified that G, (CG,) is a very long set. Next, choose a sequence

{un}y such that u,c[e'#,, eFfn]l—J, and let {e,}7 10 be given. Then by
Theorem 4 in [5] we are able to find sets T ,(e,)C[e #n, e#n] such that

4.1) meas I p(en) < ene
and such that for u€[e 7, eFnl—I m(en) mzm, 1 +1; 1L < <hs<oe)
log| fluer@+e®@m)| <, T(u)  (B—7/2=|0|=7),
[log| f(ue*@+e®@m?)| —zp sin p(B— 0 )T (w)| e, T(u)
(n/2=101=B—2/2).

Further by Theorem 2 (v) we may assume that for u€[e 7, e#n]1—Tnlen)—/1
(mzmy, 1+1)
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log| f(ue*?+¢ @) <, T(u) B—n=|0|=n),
4.2) {

llog| f(ue*@+¢®) | —mpsin p(B— |0 NT(u)| e T (u)
p=101=6—1).

Using (4.1), it is easy to check that the set

F=U{ O ),

n=1\myy y+lsmsmy, -1

has density zero, and the assertion (ii) follows from (4.2).

5. Proof of the principal lemma.
5.1. Preliminaries.

LeMMA 1. ([7]) Let H(r) be given by
H(r)=const. +ST¢(t)t‘1dt rza>0),

where ¢(t) is nonnegative, nondecreasing, and unbounded. Then there exists a
Sfunction @¢(t) (t=1) satisfying the following conditions (i)-(iv).

Gi) @@ is a continuous function which is continuously differentiable off a discrete
set D (where D has no finite accumulation points.).

(ii) @) is strictly increasing and unbounded.

(iii) @(1)=0.

(iv) Hl(r)ES:gS(t)t"dt:H(r)—l—O(log r) (r—oo).

LEMMA 2. Let p (0<p<oo) and L(r) be given, where L(r) s a slowly vary-
ing function on a very long set G such that H(r)=r°L(r)#0O (logr) is a convex,
increasing function of logr. Corresponding to H(r), define ¢(t) (t=1) and H,(r)
(r=1) as in Lemma 1. Then

_ dlog(Hi(n+1) _ ¢@)
6.1 A== gy = H+l

-0 (r—co, reG).

Proof. Put
(5.2) Hy(r)=r?Ly(r).

Then L,(r) is a slowly varying function on G such that H,(»)#O (logr) is a
convex, increasing function of log». Define hA(») by

(5.3) : Ar)=p+h(r).

By the definition of A(») and the properties of ¢(#), A(r) is a positive, continuous
function for »>1, which is continuously differentiable off a discrete set D, where
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D has no finite accumulation points. By (5.1), (5.2) and (5.3)
(5.4) Hl(r)-i—l:rf’Ll(r)—f—l:exp(S:X(t)t“dt)=r” exp(S:h(t)rldt).

Since H,(r) is a convex, increasing function of log», we deduce from (5.3) and
(5.4) that

(5.5) Ar)*+rh'(r)2z0  (reD).

First, we prove {h(»)}*=max{h(r), 0} -0 (r—oo, rG). Suppose that there
exists a sequence {r,} (CG)1 oo such that hA(r,)=d for some 0>0. Since L,(»)
is a slowly varying function on G, (5.4) implies

(5.6) S:rh(t)t‘ldtao (r—c0, rEG, 0<g<00).

Thus for any fixed ¢ >1 there is an s,<(r,, or,) such that A(s,)=0/2 (n=n(a)).

Now, for each r, (n=n, we define r, by rp,=inf{s>r,; h(s)=0/2}. By
the continuity of A(r), we easily see that A(»7)=0d/2 and h(r)>0/2 (r.,=r<r}).
It follows from this and (5.6) that

6.7 ro/ra—1 (n—00).
Using the mean value theorem to A(r), we deduce from (5.5) and (5.3) that

(5.8) —0/2=Arn)—Ar)=h(rn)—h(r)=— {200} 0 ra—7rs)

(ra<rn<rn).
By (5.7) and (5.8), A(ri)— oo (n—o0), which implies

(5.9) h(ri)>20  (n=ny(0)).

(5.9) and the fact that A(r;)=4/2 yield the existence of u,=(%, r;) satisfying
h(u,)=6. Here, define r¥ by r®=sup{u<r;; h(u)=0}. Then it is easily seen
that A(»»)=0 and

(5.10) 0/2<h(r)<d  (rP<r<ry; nzny(0)).

On the other hand, as we stated above, the mean value theorem gives the
existence of r$¥ =(r®, r;) such that A(»$)>20 for n=n,. This contradiction
gives

(5.11) {h(¥)}*—0 (r—oc, reG).
Next, we prove
(5.12) {h()} "=max{—h@), 0} =0 r—oo, reG).

Suppose that there exists a sequence {R,} (£G) 1 oo such that A(R,)=—0d" for
some 0’>0. Using (5.6), we see that [,={s<R,; h(s)=—0"/2} is not empty
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for n=n,(0"). Then, if we put Ry,=sup [,, h(Rp)=—0"/2 and R,/R,—1 (n— o0).
It follows from these and (5.5) that for some R, <(R7, R,)

(5.13) {ARD}*>(0"/2)(Ra/Ry—1)">0c0 (n—00).

Since A(r)>0 (r>1), A(Ry)=p+h(R;)—c0 (n—o0) by (5.13). However, the defi-
nition of Rj implies that h(r)<—d’/2 for R, <r=<R,. This contradiction proves
(5.12). Combining (5.11) and (5.12), we have the desired result.

5.2. Completion of proof. We write G=\5-:[a., b,] (b.<ani1, Apn— 0,
b./a,—0), and put ah=2,a,, b,=b,/2,, where A,=min(al?, (b,/a,)’*) with a
positive sequence {d,} satisfying d, (<1/2)—0, aln—o0, (b,/a,)’n— 0o (n—>00).
Then G’'=\Us-ilan, br] (CG) is a very long set. Now, let {r,} CG’ be any in-
creasing, unbounded sequence. We prove that {r,} is a sequence of Pélya peaks of
order p for Hy(r)-+1. To do this, we follow Bearnstein’s procedure in [1, p. 94].

If A(t)=0 for all sufficiently large t=G, this assertion is trivial. Otherwise,
5(x)=sup:tzgal h(e®)| (h(u)=2A(u)—p) is strictly positive and nonincreasing for x=0.
Further, by Lemma 2, d(x)—0 as x—oo. Define sequences {B,} and {b,} by

log 7
log B,,,:S 3(x)dx

log Ty -1

1 -
7 log 74

log bp=— min(S1

glogTp-1

1
-1/2
o(x)"dx, 5 log rm).
It is easily verified that

lim b,=0, lim B,=lim b,r,=-.

m=—+0

For each m, define n by a,=<r,=b,, then n—oo as m—oco. Assume that b,7,,

<r<Bnrm, a,=<r=b,. Then
ST »h(“)d ‘_ S“’gr h(e)d ]§ S” 5(t)dti
Tm log log
émax(g =PI dt, § T a(d)
log 74y log by 7o

<max((log Bm)a(IOg rm), (—log bm)a(l()g b m))

Smax(w—(bLg}—m)J(log ¥m), \/ tog—: 5(; log rm))
2 m

_ \/@)gjm) =log(l+en).

Hence
Hy(r)+1

Trarr = /rrexp()] Ao du) <Atenr/rar
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bt n=r=Bntrm, a,=<r=b,),

which is the defining inequality for Pdlya peaks of order e for Hi(r)+1. How-
ever, since H(r)=H,(r)+0(log r)=1+o(1))(H,(r)+1) (r—0), {rn,} is also a sequ-
ence of Pélya peaks of order p for H(r). This completes the proof of our
principal lemma.

L1l

2]
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