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THE AXIOM OF GENERALIZED HYPERSPHERES

IN RIEMANNIAN GEOMETRY

BY NOBUHIRO INNAMI AND KOICHI SHIGA

0. Introduction.

A characterization of spaces of constant curvature is the most classical and
interesting subject in Riemannian geometry ([1], [2], [3], [9], [10], [11], [12],
[13], [14], [15], etc.). Many axioms which characterize spaces of constant
curvature have been found out. The axiom of n-planes by Cartan [3] and the
axiom of n-spheres by Leung-Nomizu [11] are well-known. In the present note
we shall establish the axiom of generalized hyperspheres and apply it to geodesic
spheres and horospheres to obtain characterizations of spaces of constant curvature.

We prepare the notation for giving our axiom. Let M be a Riemannian
manifold of dimension m ^ 3 and N be a hyper surf ace (at least of class C2) in
M. Suppose that N has a unit normal vector field v. For a characterization of
spaces of constant curvature we may assume without loss of generality that
φ: Nx[0, ε)->M given by φ(q, t):—exptvq is diffeomorphic onto its image for
some positive ε, because curvature properties are local ones. If φt{q) :—φ{q, t)
for any q^N and for each ΐ, then Nt :=φt(N) is a hypersurface in M for each
t. The family {Nt; ί e [ 0 , ε)} will be called the family of generalized hyper sur-
faces associated with φ. Set cq(t) :=exρtvq for each q^N.

We now introduce the axiom.
Axiom of generalized hyperspheres. For every point p<^Mand every (m—1)-

dimensional subspace T'v of TPM, there exists a hypersurface N through p such
that TpN—Tp and Nt is umbilical at cp(t) for each ί e [ 0 , ε).

In this axiom there are many choices of N, since the axiom does not require
that Nt is umbilical at cq{t) for any point qφp in N.

Then we shall prove

THEOREM 1. Let M be α Riemannian manifold of dimension ra^3. // M
satisfies the axiom of generalized hyperspheres, then M is a space of constant
curvature.

Applying Theorem 1 to geodesic spheres, we shall obtain

COROLLARY 2. Let M be a Riemannian manifold of dimension m^3. If all
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small geodesic spheres in M are totally umbilical, then M is a space of constant
curvature.

Tachibana-Kashiwada [15] have proved this corollary in the case where M
is an Einstein manifold.

COROLLARY 3. Let M be a Riemannian manifold of dimension m^3. // all
small concentric geodesic spheres in M are conformal along any geodesic emanating
from the common center, then M is a space of constant curvature.

We shall also have the analogous results for horospheres instead of geodesic
spheres. Let M be a simply connected complete Riemannian manifold without
conjugate points. Then M is diffeomorphic to Rm where ra:=dimM, and all
geodesies are minimizing. Let p ( - o o , oo)-^Mbe a unit speed geodesic. The
Busemann function fr on M is given by fr( .) :=lim{ύί(., γ(t))~t\. Set Hs: =
frKs) for each s^R, which is called the horosphere through γ(s) with central
ray γ. fγ is in general known to be at least of class C1. However, under the
additional condition on M((for example, nonpositive curvature), fγ is of class
C2([5], [8]). We say that a unit speed geodesic a :(—oo, oo)->M is an asymptote
to γ if άOO—— grad/ r(ά(0) for each ίejfj. There passes a unique asymptote
through given point to γ in M.

COROLLARY 4. Let M be a simply connected complete Riemannian manifold
without conjugate points and of dimension m^3. // all horospheres in M are of
class C2 and totally umbilical, then M is a space of constant curvature.

COROLLARY 5. Let M be a simply connected complete Riemannian manifold
without conjugate points and of dimension m^3. // all horospheres are of class
C2 and if all concentric horospheres in M are conformal along any asymptote to
the common central ray, then M is a space of constant curvature.

Of course, our assumption makes no sense if dimM=2. In that case Green
[7] states a characterization of surfaces of negative constant curvature under
the additional conditions on horosperes.

Corollary 2 and 4 are direct consequences of Theorem 1. And, under the
assumption of Corollary 3 and 5, it will turn out that geodesic spheres and
horospheres are totally umbilical (see Lemma 6).

1. Preliminalies.

Our methods of the study will be based on a paper of Eschenburg-O'Sullivan
[6]. The following arguments can be seen in [6]. Let M be a Riemannian
manifold and let N be a hypersurface (at least of class C2) in M. Suppose that
N has a unit normal vector field v. Let φ: Nx[0, ε)-*M be a map given by
φ(qf t) :—exptvq for any {q, t)(=Nx[jd, ε). For each t let φt: N->M be a map
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given by φt{q) -—φ(gf t) for any g^N. Suppose that Nt :=φt(N) is a hypersurface
in M for each t. Define a unit vector field V on φ(Nx[0, s)) by setting
V(φ(q, t)):=cq(t), where cq:[0, ε)-»M is the geodesic with cq(t) :=Qxptvq. Ob-
viously, V \Nt is a unit normal vector field on Nt for each t. Fix a point £eiV
and let c :=cp. For each ί, if D(t) '.—φt+ Pj1 where Pt is the parallel translation
along c from p to c(ί), then D(t) is an isomorphism of TcU)Nt onto itself. For
a vector x<^TpN, if X{t):—Ptx for any ί, then DX(t)—φt+(x) is a Jacobi vector
field along c. Hence

D"X+R{DX, c)c=0.

Thus, if r :=

Also, if i4(ί) is the second fundamental form of Nt relative to V\Nt for each t,

Hence, if U(ΐ) :=DfD'Kt), we have

(2*) ί/(ί)=-i4(ί).

If we differentiate U covariantly and substitute into (*),

UΎ-rU*Y+R(Y, c)c=0.

Therefore, if RcU) is a linear map of Tc(t)Nt into itself given by RcuΛy)- —
R(y, c)c for any vector y^TcU)Nt, then

(3*) U'+U2+Rc=0.

2. Proofs and Lemma.

In this section we shall give the proof of Theorem 1 and Lemma β. Corol-
lary 2 and 4 are direct applications of Theorem 1, so we may omit the proofs
of them. Corollary 3 and 5 will be also reduced to Corollary 2 and 4 by Lemma
6, so it suffices to prove Lemma 6.

Proof of Theorem 1.
From Schur's theorem (see [4], p. 16) it is sufficient to prove that the sec-

tional curvature depends only on the point p^M. Let x<=TpMbe an arbitrary
unit vector and let T'p be the subspace of TPM orthogonal to x. Take a hyper-
surface N and a variation φ along N as in the axiom of generalized hyperspheres.
Set c{t)\—φ{py t)=exptvp. Since the submanifold iVί is umbilical at c(t), t/(ί)=
λ(t)I for some function λ along c(see (2*)). From (3*), 7?C=(-Λ'-Λ2)/. Hence,
if n :=m—l, then

Ric(c, c)=n(-λ'-λ*).

Thus we have
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Re=(l/n)Rίc(d, c)I.

In particular,

R(y, x)x={l/n)Ric(x, x)y

for any vector y e T'v. If y e T P M is a unit vector orthogonal to x,

(4*) Ric(*, *)=n<Λ(:y, * ) * , 3>> = tt<#(;t, y)y9 x>=Ric(;y, y).

This implies that the Ricci curvature at p is independent of the direction. Again,
by the identity (4*), the sectional curvature depends sonly on the point of M.
This completes the proof.

Now we prove the following.

LEMMA 6. Let N be a hypersurface in a Riemannian manifold M and let φ
be a normal geodesic variation along N. If φt: N-*Nt is con formal for each t,
then Nt is totally umbilical for each t.

Proof. Let p^N and c(f):=exptvp for any t. Let Dφi^φfPT1 as in
Section 1. The assumption implies that there exists a positive function p on
iVx[0, ε) such that (φt*(x), φp(y)y=p(q, t)(x9 y> for any q^N and for any
vectors x and y<BTqN. If X(t):—Ptx and Y(ΐ):=Pty for each t and vectors x
and y<=TpN, then

<DX(t),

If we differentiate both side with respect to t,

<D'X(t), DY(t)>+<DX(t), DΎ(φ=p'{p, t)<x, y>

for each t. Therefore, since U :~DfD~ι is symmetric,

2<UDX(t\ DY(φ=p'(p, t)<x, y>=(p\p, t)/p(p, t))φX(t), DY(φ

for each t. Since D(t) is invertible for each t,

U{t)z^{p'{p, t)/2p(p, t))z

for every vector z^Tca)Nt. Therefore Nt is totally umbilical for each t, because
U(t) is the second fundamental form of Nt relative to —c(t) (see (2*)).
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