N.[#]INNAMI AND K. SHIGA KODAI MATH. J. 8 (1985), 259-263

THE AXIOM OF GENERALIZED HYPERSPHERES IN RIEMANNIAN GEOMETRY

By Nobuhiro Innami and Koichi Shiga

0. Introduction.

A characterization of spaces of constant curvature is the most classical and interesting subject in Riemannian geometry ([1], [2], [3], [9], [10], [11], [12], [13], [14], [15], etc.). Many axioms which characterize spaces of constant curvature have been found out. The axiom of *n*-planes by Cartan [3] and the axiom of *n*-spheres by Leung-Nomizu [11] are well-known. In the present note we shall establish the *axiom of generalized hyperspheres* and apply it to geodesic spheres and horospheres to obtain characterizations of spaces of constant curvature.

We prepare the notation for giving our axiom. Let M be a Riemannian manifold of dimension $m \ge 3$ and N be a hypersurface (at least of class C^2) in M. Suppose that N has a unit normal vector field v. For a characterization of spaces of constant curvature we may assume without loss of generality that $\phi: N \times [0, \varepsilon) \to M$ given by $\phi(q, t) := \exp tv_q$ is diffeomorphic onto its image for some positive ε , because curvature properties are local ones. If $\phi_t(q) := \phi(q, t)$ for any $q \in N$ and for each t, then $N_t := \phi_t(N)$ is a hypersurface in M for each t. The family $\{N_t; t \in [0, \varepsilon)\}$ will be called the family of generalized hypersurfaces associated with ϕ . Set $c_q(t) := \exp tv_q$ for each $q \in N$.

We now introduce the axiom.

Axiom of generalized hyperspheres. For every point $p \in M$ and every (m-1)dimensional subspace T'_p of T_pM , there exists a hypersurface N through p such that $T_pN=T'_p$ and N_t is umbilical at $c_p(t)$ for each $t \in [0, \varepsilon)$.

In this axiom there are many choices of N, since the axiom does not require that N_t is umbilical at $c_q(t)$ for any point $q \neq p$ in N.

Then we shall prove

THEOREM 1. Let M be a Riemannian manifold of dimension $m \ge 3$. If M satisfies the axiom of generalized hyperspheres, then M is a space of constant curvature.

Applying Theorem 1 to geodesic spheres, we shall obtain

COROLLARY 2. Let M be a Riemannian manifold of dimension $m \ge 3$. If all

Received July 20, 1984

small geodesic spheres in M are totally umbilical, then M is a space of constant curvature.

Tachibana-Kashiwada [15] have proved this corollary in the case where M is an Einstein manifold.

COROLLARY 3. Let M be a Riemannian manifold of dimension $m \ge 3$. If all small concentric geodesic spheres in M are conformal along any geodesic emanating from the common center, then M is a space of constant curvature.

We shall also have the analogous results for horospheres instead of geodesic spheres. Let M be a simply connected complete Riemannian manifold without conjugate points. Then M is diffeomorphic to \mathbf{R}^m where $m := \dim M$, and all geodesics are minimizing. Let $\gamma : (-\infty, \infty) \to M$ be a unit speed geodesic. The Busemann function f_{γ} on M is given by $f_{\gamma}(.) := \lim \{d(., \gamma(t)) - t\}$. Set $H_s := f_r^{-1}(s)$ for each $s \in \mathbf{R}$, which is called the *horosphere* through $\gamma(s)$ with central ray γ . f_{γ} is in general known to be at least of class C^1 . However, under the additional condition on $M((\text{for example, nonpositive curvature}), f_{\gamma}$ is of class $C^2([5], [8])$. We say that a unit speed geodesic $\alpha : (-\infty, \infty) \to M$ is an asymptote to γ if $\dot{\alpha}(t) = -\text{grad } f_{\gamma}(\dot{\alpha}(t))$ for each $t \in \mathbf{R}$. There passes a unique asymptote through given point to γ in M.

COROLLARY 4. Let M be a simply connected complete Riemannian manifold without conjugate points and of dimension $m \ge 3$. If all horospheres in M are of class C^2 and totally umbilical, then M is a space of constant curvature.

COROLLARY 5. Let M be a simply connected complete Riemannian manifold without conjugate points and of dimension $m \ge 3$. If all horospheres are of class C^2 and if all concentric horospheres in M are conformal along any asymptote to the common central ray, then M is a space of constant curvature.

Of course, our assumption makes no sense if dim M=2. In that case Green [7] states a characterization of surfaces of negative constant curvature under the additional conditions on horosperes.

Corollary 2 and 4 are direct consequences of Theorem 1. And, under the assumption of Corollary 3 and 5, it will turn out that geodesic spheres and horospheres are totally umbilical (see Lemma 6).

1. Preliminalies.

Our methods of the study will be based on a paper of Eschenburg-O'Sullivan [6]. The following arguments can be seen in [6]. Let M be a Riemannian manifold and let N be a hypersurface (at least of class C^2) in M. Suppose that N has a unit normal vector field v. Let $\phi: N \times [0, \varepsilon) \rightarrow M$ be a map given by $\phi(q, t) := \exp tv_q$ for any $(q, t) \in N \times [0, \varepsilon)$. For each t let $\phi_t: N \rightarrow M$ be a map

260

given by $\phi_t(q) := \phi(q, t)$ for any $q \in N$. Suppose that $N_t := \phi_t(N)$ is a hypersurface in M for each t. Define a unit vector field V on $\phi(N \times [0, \varepsilon))$ by setting $V(\phi(q, t)) := \dot{c}_q(t)$, where $c_q : [0, \varepsilon) \to M$ is the geodesic with $c_q(t) := \exp tv_q$. Obviously, $V | N_t$ is a unit normal vector field on N_t for each t. Fix a point $p \in N$ and let $c := c_p$. For each t, if $D(t) := \phi_{t^*} \cdot P_t^{-1}$ where P_t is the parallel translation along c from p to c(t), then D(t) is an isomorphism of $T_{c(t)}N_t$ onto itself. For a vector $x \in T_pN$, if $X(t) := P_t x$ for any t, then $DX(t) = \phi_{t^*}(x)$ is a Jacobi vector field along c. Hence

$$D''X + R(DX, \dot{c})c = 0.$$

Thus, if Y := DX,

(*)
$$(D''D^{-1})Y + R(Y, \dot{c})c = 0.$$

Also, if A(t) is the second fundamental form of N_t relative to $V | N_t$ for each t,

$$D'X(t) = \nabla_{c(t)} DX(t) = \nabla_{DX(t)} V(\phi(p, t)) = -A(t)(DX(t))$$

Hence, if $U(t) := D'D^{-1}(t)$, we have

$$(2^*) U(t) = -A(t).$$

If we differentiate U covariantly and substitute into (*),

$$U'Y + U^2Y + R(Y, \dot{c})c = 0.$$

Therefore, if $R_{c(t)}$ is a linear map of $T_{c(t)}N_t$ into itself given by $R_{c(t)}(y) := R(y, \dot{c})\dot{c}$ for any vector $y \in T_{c(t)}N_t$, then

(3*) $U' + U^2 + R_c = 0.$

2. Proofs and Lemma.

In this section we shall give the proof of Theorem 1 and Lemma 6. Corollary 2 and 4 are direct applications of Theorem 1, so we may omit the proofs of them. Corollary 3 and 5 will be also reduced to Corollary 2 and 4 by Lemma 6, so it suffices to prove Lemma 6.

Proof of Theorem 1.

From Schur's theorem (see [4], p. 16) it is sufficient to prove that the sectional curvature depends only on the point $p \in M$. Let $x \in T_p M$ be an arbitrary unit vector and let T'_p be the subspace of $T_p M$ orthogonal to x. Take a hypersurface N and a variation ϕ along N as in the axiom of generalized hyperspheres. Set $c(t) := \phi(p, t) = \exp tv_p$. Since the submanifold N_t is umbilical at c(t), U(t) = $\lambda(t)I$ for some function λ along c(see (2*)). From (3*), $R_c = (-\lambda' - \lambda^2)I$. Hence, if n := m-1, then

 $\operatorname{Ric}(\dot{c}, \dot{c}) = n(-\lambda' - \lambda^2).$

Thus we have

 $R_c = (1/n) \operatorname{Ric}(\dot{c}, \dot{c}) I$.

In particular,

$$R(y, x)x = (1/n)\operatorname{Ric}(x, x)y$$

for any vector $y \in T'_p$. If $y \in T_pM$ is a unit vector orthogonal to x,

(4*)
$$\operatorname{Ric}(x, x) = n \langle R(y, x)x, y \rangle = n \langle R(x, y)y, x \rangle = \operatorname{Ric}(y, y).$$

This implies that the Ricci curvature at p is independent of the direction. Again, by the identity (4*), the sectional curvature depends sonly on the point of M. This completes the proof.

Now we prove the following.

LEMMA 6. Let N be a hypersurface in a Riemannian manifold M and let ϕ be a normal geodesic variation along N. If $\phi_t: N \to N_t$ is conformal for each t, then N_t is totally umbilical for each t.

Proof. Let $p \in N$ and $c(t) := \exp tv_p$ for any t. Let $D(t) := \phi_{t} \cdot \cdot P_t^{-1}$ as in Section 1. The assumption implies that there exists a positive function ρ on $N \times [0, \varepsilon)$ such that $\langle \phi_{t} \cdot (x), \phi_{t} \cdot (y) \rangle = \rho(q, t) \langle x, y \rangle$ for any $q \in N$ and for any vectors x and $y \in T_q N$. If $X(t) := P_t x$ and $Y(t) := P_t y$ for each t and vectors x and $y \in T_p N$, then

$$\langle DX(t), DY(t) \rangle = \rho(p, t) \langle x, y \rangle.$$

If we differentiate both side with respect to t,

 $\langle D'X(t), DY(t) \rangle + \langle DX(t), D'Y(t) \rangle = \rho'(p, t) \langle x, y \rangle$

for each t. Therefore, since $U := D'D^{-1}$ is symmetric,

$$2\langle UDX(t), DY(t)\rangle = \rho'(p, t)\langle x, y\rangle = (\rho'(p, t)/\rho(p, t))\langle DX(t), DY(t)\rangle$$

for each t. Since D(t) is invertible for each t,

$$U(t)z = (\rho'(p, t)/2\rho(p, t))z$$

for every vector $z \in T_{c(t)}N_t$. Therefore N_t is totally umbilical for each t, because U(t) is the second fundamental form of N_t relative to $-\dot{c}(t)$ (see (2*)).

References

- BELTRAMI, E., Teoria degli spazii di curvatura costante, Annali di Matem., (2) 2 (1868-69), 232-255.
- [2] BUSEMANN, H., The geometry of geodesics, Academic Press, New York, 1955.
- [3] CARTAN, É., Leçons sur la geometrie des espaces de Riemann, Gauthier-Villars, 1928.
- [4] CHEN, B-y., Geometry of submanifolds, Marcel Dekker, New York, 1973.

262

- [5] ESCHENBURG, J.-H., Horospheres and the stable part of the geodesic flow, Math. Z., 153 (1977), 237-251.
- [6] ESCHENBURG, J.-H. AND O'SULLIVAN, J.J., Jacobi tensors and Ricci curvature, Math. Ann., 252 (1980), 1-26.
- GREEN, L.W., Remarks on uniformly expanding horocycle parameterizations, J. Differential Geometry, 13 (1978), 263-271.
- [8] HEINTZE, E. AND H.C. IMHOF, On the geometry of horospheres, J. Differential Geometry, 12 (1977), 481-491.
- [9] INNAMI, N., The axiom of n-planes and convexity in Riemannian manifolds, J. Math. Soc. Japan, 35 (1983), 85-91.
- [10] KLEIN, F., Über die sogenannte nicht-euklidische Geometrie, Math. Ann., 6 (1873), 112-145.
- [11] LEUNG, D. S. AND K. NOMIZU, The axiom of spheres in Riemannian geometry, J. Differential Geometry, 5 (1971), 487-489.
- [12] SCHLAEFLI, L., Nota alla Memoria del sig. Beltrami, (Sugli spazii di curvatura costante), Annali di Matem., (2) 5 (1871-73).
- [13] SCHUR, F., Über den Zusammenhang der Räume constanten Riemann'schen Krümmungsmasses mit den projectiven Räumen, Math. Ann., 27 (1886), 537-567.
- [14] TACHIBANA, S., The mean curvature for p-plane, J. Differential Geometry, 8 (1973), 47-52.
- [15] TACHIBANA, S. AND T. KASHIWADA, On a characterization of spaces of constant holomorphic curvature in terms of geodesic hypersphere, Kyungpook Math. J., 13 (1973), 109-119.

Faculty of Integrated Arts and Sciences Hiroshima University Hiroshima 730 Japan

AND

Institute of Mathematics University of Tsukuba Sakura-mura, Ibaraki 305 Japan Fujitsu Limited 140 Miyamoto Numazu 410-03 Japan