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AN INTRINSIC FIBRE METRIC ON THE »-TH SYMMETRIC
TENSOR POWER OF THE TANGENT BUNDLE

By KAzuo Azukawa

0. Introduction. Let H(M) be the Hilbert space consisting of all square-
integrable holomorphic m-forms on an m-dimensional complex manifold M. The
Bergman form K is defined as a specific holomorphic 2m-form on the product
manifold MXM, where M is the conjugate complex manifold of M. Let z=
(2%, -+, z™) be a coordinate system with defining domain U,, and %, be the Berg-
man function relative to z, i.e. K(p, p)=Fk.(p)(dz* N~ ANdz™)p, A(dZ* N+~ ANdZ™)5,
peU,. In general, £,=0. In Kobayashi [4], the following conditions are con-
sidered :

(A.1) For every peM, there exists a= H(M) such that a(p)=0.

(A.2) For every non-zero tangent vector X at p< M, there exists ac H(M)
such that a(p)=0 and X.a(p)+0.

Suppose (A.1) holds. Then k,>0 for every z, and the Bergman pseudo-metric
g, with components g.;=040,.l0g 2,, is defined. Furthermore, the following is
known ([4]):

(K;) g is a metric if and only if (A.2) holds.

If M satisfies (A.1) and (A.2), and if Rg;.g are the components of the hermitian
curvature tensor of the Bergman metric, then the following are known ([4]):

(Ko) Set Rusa=Rascatgasgeatgaiges. Then X R,gqvv0*5?=0 for every
@, -, vmeC™

(KS) Racﬁzk—l(kacﬁ“k_lkackﬁ)__k-22gis(kacl—k—lkackl)(ksﬁ'k—lkﬁks);
where k=Fk,, koe=040..%, etc., and (g%*)=(gas) "

In the preceding joint paper [2] with Burbea, conditions (C,) are defined so that
(C,) (resp. (Cy)) coincides with (A.1) (resp. (A.2)). Furthermore, under assump-
tion (C,), non-negative functions g, ,, which are biholomorphic invariants, on
the tangent bundle are introduced.

In the present paper, we first note (Proposition 1.2) that the functions g,
on the tangent bundle are, in general, upper semi-continuous, and show (Theo-
rem 2.1) that when M satisfies condition (C,) there exists a unique fibre pseudo-
metric g™ on the n-th symmetric tensor power S™®T(M) of the tangent bundle
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T(M) for ne N such that
(D)2 (X)=g™ (X", X, XeT(M);

in particular, the pseudo-metric g¥ coincides with the Bergman one stated before.
In addition, if M satisfies also (C,), -+, (C,-1), then g™ is differentiable (Theorem
2.5), and assertion (K,) is generalized as follows (Theorem 2.6): g™ is a metric
if and only if (C,) holds. Finally, we consider the curvature of the hermitian
connection of the hermitian vector bundle (S*T(M), g™) in the sense of
Kobayashi and Nomizu [6]. In view of Fuks [3], the component g%z coincides
with Rguzz/4 given in (K,), and (K,) gives a relationship between the curvature
of g™ and the metric g®. We generalize this relationship to the one between
the curvature of g and the metric g®*? (Theorem 3.1). The proof of Theo-
rem 3.1 is done by observing formula (K;) and by the use of a recurrence
formula (Proposition 3.5) for the components of g™.

1. Preliminaries. Throughout this paper, we are concerned with a fixed
paracompact connected complex manifold M of dimension m. The term “coordi-
nate z” stands for a local holomorphic coordinate system z=(z%, -+, z™) of M
with defining domain U,. For simplicity, we set 032=0/0z% (a=1, ---, m), and
dz=dz'*N---Adz™ For a multi-index A=(a,, -+, a,)eMI(n)={1, ---, m}*, set
04=03, --- 0%. In particular, MI(0)={¢}, and 05 means the identity operator
acting on functions on U, For a constant vector v=(?, ---, v™) in C™, set
0:=31" 1v%%. The powers (02)" (n=0, 1, ---) are naturally defined. We denote
by M the conjugate complex manifold of M, and denote by p: M>p—peM the

conjugation. For a coordinate z with defining domain U,, we denote by Z the

conjugate coordinate of z with defining domain U,, i.e. 2(p)=2z(p) for peU,.
We denote by H(M) the separable Hilbert space consisting of all holomorphic

m-forms a on M which satisfy ||a]>=(+ —_1"‘2/2’")SMa/\d<+00, and denote by

(,) the hermitian inner product on H(M) corresponding to the norm |-||. There
exists a unique (2m, 0)-form K, called the Bergman form, on the product manifold
MxM such that K(-, p)/dzzeHM) and a(p)/dz,=(a, K(-, p)/dZ;5) for every
pEM and asH(M), where z is a coordinate around p (cf., e.g., [2; Corollary
2.6]). Thus, (1, p)*K is an (m, m)-form on M. For every coordinate z, we
call the function k,=(1y, p)*K/ dzAdz on U, the Bergman function of M relative
to z. That is
K(p, p)=rk.(p)dz,NdZ;5, pel,.

The Bergman functions are non-negative (cf., e.g., [2; Proposition 2.7]). It
holds (cf., e.g., [2; Proposition 2.5]) that for every multi-index A, the m-form
Ki(p)=0%.K(-, p)/dZ; belongs to H(M), and that for every a=H(M),

1.1 05.a(p)=(a, Kip)dz,.
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In particular, if A and B are multi-indices, then
(1.2) (Ki(p), KH(p)=050%. k(D).
Let n=Z, be a non-negative integer. For every peM, set
Hoy(p)={Ki(p); A\ Ui MIG) +CH(M),

where z is a coordinate around p. The subspace H,(p) does not depend on the
choice of z. Let XeT,(M) be a tangent vector at p. For a coordinate z
around p, represent X as (03), for some veC™. Then (07)" is a differential

operator on U;=U,, and Ki.(p)=(0%)".K(-, p)/dZ; belongs to H(M). Set
pa(X)=max {|(Kix(p), @)|?; acH,(p), lla|=1}(dzAdz), .

Then the (m, m)-form g,(X) does not depend on the representation of X=(d3),
in terms of z ([2; Proposition 3.7]).

We recall a lemma on a pre-Hilbert space H over C. We denote by
G(%y, -+ x,) the Gramian of a system (x,, ---, x,) in H (especially G(¢)=1).

LEMMA 1.1 ([2; Lemma 3.9]). Let (x4, -+, x,) (nEZ,) be a linearly inde-
pendent system in H, and let x,.,€H. Then the maximum of the set
{1(3, xae)|?5 yE {2, -+, xab %, lyl[=1} coincides with G(xy, -+, X741)/ G(x4, 5 Xa)-

Set MH(”):{(QI, Yy an)EMI(n), U= QS - §an} We denote by Q=
(m;ll—n) the cardinality of the set \U™,MI(j), and fix a numbering @ of

U=oMII(y) such that MII(n)={@(¢n-1+1), -+, P(p,)}. For a sequence (jy, ---,
Ju, S, t) of positive integers, set

L s Ju)=[0w00 . R JIZI0 e
(1.3) L.(jy, -, ju)=det L,(J1, =+, Ju)  (LAg)=1)
LGy -, Jus s, )=det[0p w00, - k.1 iZhmm et .

By (1.2), £.(31, =+, 7u)(p) is the transpose of the Gram matrix of the system
(KaGp(D), 5 Kagp(), and L,(ji, =+, ju)(p) is its Gramian.
Now, let f, . be the function on U,XC™ defined by

La(05)p)=Fn..(p, V(dzNd2)p, (P, V)EUXC™

If {Kb,p(0), -, Kby, )(Pp)} is a maximal linearly independent subset of
{K4(p); Ae\UrtMIL(y)}, then Lemma 1.1, together with (1.2), implies that

fn,z(py v):Lz(]'ly tty ]u)(p>_1

(1.4)
XZgon_1<s,tst/:nCG)(s)C@(t)vqj(S)ﬁ(D(”Lz(]ly oy Jus S, f)(P) .
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Here Cy=n!/n,! - ny! and v4=v% - 1% (A=(ay, -, ay) EMIl(n), v=0"4 -, v™)
eC™), where n, is the cardinality of the set {f {1, ---, n}; a;=v} (v=1, ---, m).

PROPOSITION 1.2. The function f, , is upper semi-continuous on U,XC™,
Proof. The proof is reduced to the following lemma.

LEMMA 1.3. Let f be the function on the power H™*' of a pre-Hilbert space
H over C given by

f(xy, 0, Xpr)=max{|(y, xa:)|%; v {x1, -, 2} 4 lyl=1}.

Then f is upper semi-continuous on H™™,

Proof. Let x°=(x9, -+, x4y, )EH"* be fixed, and let {x3q, =+, x5} be a
maximal linearly independent subset of {x{, ---, x%}. Then G(x,w, ) Xocw)
is positive in a neighborhood of x°. So, by Lemma 1.1 we have

limStolp f(x)=limsup max {|(y, Xa40|%; yE{Xsw, =, Kol I¥I=1}

> -z

=limsup G(*sqy, ***» Xowy Xas)/G(Xawy, 5 Xow)

I-’.Zo

=f(x,

as desired.

2. An intrinsic fibre pseudo-metric on the holomorphic vector bundle
S*T(M). For neZ, and p= M, we consider the following condition :

(Cn)p For every non-zero vector (&4)emmn Of dimension (m-}-:—l)
exists a= H,(p) such that >},&40%.a(p)+0.

, there

Condition (C,) stands for that (C,), hold for all peM. From (1.1), we reduce
the following ([2; Lemma 3.4]):

Conditions (C;), (f=0, -+, n) hold if and only if the
2.1) set {K4(p); A=\ U MII(y)} is linearly independent,
or .L,(1, -+, @z)(p) is positive definite.

Now, suppose M satisfies condition (C,). Then (1.4) implies that p(X)=
k(p)dzNdz), for every XeT (M), and that k,>0 on U,. So, [0, -oo)-valued
functions gy ,=pa/tte (€ N) on the holomorphic tangent bundle T(M) are well
defined. Every function g, , is upper semi-continuous on T(M) (by Proposition
1.2) and satisfies the following: gy, o(6X)=[&|* o (X) for XeT(M) and £€C ;
therefore (g, ,)"/*® is an upper semi-continuous Finsler pseudo-metric on M.
Moreover, ¢, are biholomorphic invariants, i.e. gy, o(X)=p, (fxX), XeT(M)
for every biholomorphic mapping f from M onto another complex manifold ([2;
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Proposition 3.2]).

We denote by S™T ,(M) (resp. S"T(M)) the n-th symmetric tensor power of
T,(M) (resp. T(M)). S*T(M) is a holomorphic vector bundle over M, and
{04 ; A=sMIl(n)} forms its local frame on U,.

We shall show the following assertion.

THEOREM 2.1. If a complex manifold M satisfies condition (C,), then for
every neN and peM there exists a unique hermitian pseudo-inner-product
g™(-, %) on the space S™T (M) such that

(2.2) (n )2ty o(X)=g™ (X", X™), XeT,(M),

where X'=X, X'=X-X’"' (the symmetric tensor product). Furthermore, the
fibre pseudo-metric g™ on S*T(M) is biholomorphic invariant, i.e. g™ (Y, ¥)=
g™ (f+Y, FxY) for YES"T(M) and for any biholomorphic mapping f from M
onto another complex manifold.

Remark 2.2. The constant (n!)~% in the formula (2.2) is chosen so that when
M is the unit disk {{=C; || <1} in C the inner product g™(-, ~) on S*T (M)
at the origin 0 M has the simplest form, g(X", X™=n-1 for X=(3/0¢),<
To(M) (cf. [1]).

Proof of Theorem 2.1 (Existence). Let {K%q,(p), -, Kb, (p)} be a maxi-
mal linearly independent subset of {K%(p); A\ U/*MII(j)}. By (1.4) we have

Lo, 1((09)p)=L:(73, -+, 7.)(P) e (p)?
X Zpp-1<s.t59,C00 Cowv? PTP O L (51, -, Jus s, D).
So, the function g™(-, ~) defined by sesqui-bilinearity and by the requirement
2.3) 270 w)p, o))
= DLy, s 1)B) T RA(P) Ly s Jus S, D(P)

has the desired property. Thus, the existence is proved.
To complete the proof, we prepare two lemmas.

LEMMA 2.3. Let R=X5-0R, be a commutative, associative, graded algebra
over C. For every neN, there exists a linear form F,(t, t;, -+, l3n-1) on C3"
such that

(x™, ya=Fa(f (D), f(p), -, fp**)

for x, yeR, and for any sesqui-bilinear form (,), on R,, where p=c¢
FE)=fz ,E)=((x+EN", (x+E)™)n, E€C.

2xv/=1/3n and

Proof. Since
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Fe=2,0 7 ) ), wmrypteon,

and since
n, nlj

271:—1 sjl:{
N N

for every j=Z, it follows that
2 f(eh=n(G+1+0)
13 (p ) =n(7 "™ +0)
I (o) =n(7 07"+ 90"+0),

2 . . .
where 7=(x%, 3% C=Spo( ) (P, 20 S0 i FOUy -, )=

SPdtse, =0, 1, 2), and @=p"=e>*V"1/3, then the form F,=(F©®+oF® +@*F®)
/3n has the desired property.
Given n, j€N with j<n, denote by P7 the linear operator from C[t,, ---, ¢,]

into C[tlr tty tn]’ given by P,?(f(tly Ty tj))=2062(j, n)f(td(l)y ) tv(j))y f(tly Ty t])
eC[ty, -, t,], where X(j, n) means the family of all strictly increasing mappings
from {1, ---, 7} into {1, ---, n}.

LEMMA 2.4. For every neN it holds that
nlty - =20 (=P (i - )™ .

Proof. Let f(t,, ---, t,) be the right hand side of the desired formula, and
set

fj(tly ) tn):ZdEZ(n—;,n)(ta(1)+ +ta(n—j))n
for y=0, 1, ---, n—1; thus f=X7(—1)f,. For every j,

fj((): t27 Yy tn):gj(tZ) Ty tn)+hj(t2> Tty tn);
where

{ gj(tz, t, tn>:2062(n—1,n),a‘(l):l(to(z)+ +to‘(n—j))n
llj(fm Tty tn>:20€2(n—1,n),d(l)zz(tu(l)+ +t¢r(n—j))n-

It is easily seen that g,-,=0, h,=0, and g;=h;s; (=0, 1, ---, n—2). From these
we get f(0, f,, ---, t,)=0; therefore, the symmetry of f implies f(t;, -+, t,-1, 0,
tir1, =0, t)=0 for any j. It follows from the remainder theorem that f (¢, ---, ;)
=ct, -+ t, for some constant c¢. Among expansions of f, into monomials the
term ¢, -+ t, appears only in f,=(¢ -+ --- +£,)", for which the coefficient of ¢, --- ¢,
is nl. So, the above constant must be n!, as desired.

Proof of Theorem 2.1 (Uniqueness). Lemmas 2.3 and 2.4 imply that every
g™ (0% p, (5%?1)) (A, BeMI(n)) can be written as a linear combination of terms
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g™ (X", X" (XeT,(M)). From this we obtain the uniqueness of g™. The
invariant property of g™ follows from the uniqueness and the invariant prop-
erty of y, , stated before. The proof is now complete.

THEOREM 2.5. Suppose M satisfies conditions (Cy), -+, (Cp-y) with n=1. Then
g™ is a differential pseudo-metric, and its components g{™z=g™ (0%, 03) (A, B
MI(n)) relative to a coordinate z satisfy

gz(?d))(s)W:Lz(]-; tty Op-1; S, D/ A{n Dk, L1, -, Qn—l)}

on U, for s, t€{pna+1, -, @a}. In particular, gé}il,;:afﬁ}log by e g% s
the usual Bergman pseudo-metric on M ([4; pp. 271-272]).

Proof. By (2.1) the hypothesis implies that the system {K3,(p), ---,
Kb,_p(p)} itself is linearly independent for every peU,. So, all the assertions
follow from (2.3).

THEOREM 2.6. Suppose M satisfies conditions (Cy), -+, (Cp-1) with n=1. Then
the pseudo-inner-product g™ (-, =) on S*T (M) is an inner product 1f and only if
condition (C,)p holds. In particular, the fibre pseudo-metric g™ s a metric of
and only 1f condition (C,) holds.

Proof. Let z be a coordinate around p. It follows from Theorem 2.5 that
g™(-, *) is an inner product if and only if the following holds:

The matrix [L.(1, =, @n-1; s, DIEE21ELER(D) is
positive definite.

2.4) {

If jeZ with j>@,-1, applying Sylvester’s theorem to the (5, j)-matrix .£,(1, -,
@n-1, -, 7) and its minnor determinants L.(1, -, @n-1; S, 1) (@n-1<5, t=]), we
have

det[L.(1, -, n-15 s, DIEZHRIHLTS

:LZ(]-; R ])L2<ly U @n—l)]_w""l—l.

Thereby, employing (2.1), one can see that the following four statements are
mutually equivalent :

(i) Condition (C,), holds.

(ii) L.@Q, -, N(p)>0 for any j=Z with ¢,1<j=¢s.

(iil) det[L,(1,, @n-1;s,)]izpn=1214(p)>0 for any €2 with 0,1 <j=Z 5.
(iv) Condition (2.4) holds.

This completes the proof of Theorem 2.6.

3. Connection of the hermitian vector bundle (S*T(M), g™). If M satis-
fies conditions (C,), -+, (C,) for some n< N, then, as we have seen in Theorems
2.5 and 2.6, g™ is a usual hermitian fibre metric on the holomorphic vector
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bundle S*T(M). We shall investigate the curvature of the hermitian connection
of the hermitian vector bundle (S*T(M), g) in the sense of Kobayashi and
Nomizu [6; pp. 178-185] (also cf. [5; pp. 37-39]). Let z be a coordinate in
U,CcM. We denote by (g{54), pemucny the inverse matrix of (g{™5)4 pemirm
in the sense that

@.1 Spemum giTisgiM =0y, A, CeMll(n).

Let R™ be the curvature of the hermitian connection of (S*T(M), g™), and let
R ca=g™(R™ (0%, 02)0%, 0%) for A, BeMI(n) and ¢, de {1, -, m} =MI(1). It
is known ([5, 6, 7]) that

(3.2) Rz AB\cd—a a—iz—-gz‘,"AE—Z)p,Qewumgz‘”)é”(ai gé"ﬁg)(aa gz "2g) .

We shall show the following.
THEOREM 3.1. Suppose M satisfies conditions (Cy), -+, (C,) with neN. Then

— 2 1
R{Mpiea=n+1)12g " g —gagitis

(n-1QP 5(n) _ (n)__
Qg B8:Aua

—n® Xp, geMit(n-1 &1 PcB

on U, for A, BEMI(n) and ¢, deMI(1), where g®$%=1.

Taking n=1 in the above theorem we obtain the following result of Fuks
[3; p. 525].

COROLLARY 3.2. Suppose M satisfies conditions (Cy) and (C,). Let HSC(X)
be the holomorphic sectional curvature of the Bergman metric g on M in the
direction X&T ,(M)— {0}, i.e.

HSC(X)=—3a,0,c,a R usicalpvdvo?/g (X, X)?,
where z 15 a coordinate around p and X=(03),. Then it holds that

2o, e=(2—HSC)(pto,1)* on T(M)-{the zero section}.

Remark 3.3. Theorem 3.1, combined with (3.2), says that when M satisfies
conditions (Cy), -++, (C,) with n= N every component of the fibre (pseudo-) metrics
g®, -, g™+ is written as a rational function of the derivatives of the compo-
nents of the Bergman metric g.

The remainder of this section is devoted to prove Theorem 3.1. From now
on, we suppose that M satisfies conditions (C,), ---, (C,) for some fixed n= V.
We also fix a coordinate z in UCM, and suppress the dependence on z, i.e.
aA:afb k:kzy L(jl; ) ju):Lz<]1; Tty ]u)y (n) gz(nz)iB, etc.

For every pair of multi-indices A and B, we shall inductively define func-
tions LY, on U (=0, 1, ---, n+1) as follows:
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LO=08,55.k
{ Lfg” :Lf{%_ZC,DEMII(j) L (j)BCLé]%L(A% s
where (L¥2°) is the inverse matrix of (L) 4 semm(, in the same sense as in

(3.1). Non-singularity of the latter matrix is guaranteed by Lemma 3.4 below.
Notice that

3.3) L{3*=0 when A or B belongs to MI(j).
For a sequence (jy, -, Ju, S, t) of positive integers, set
LOGy, -, Ju)=[Lebyam liZihinie
L9y, -, ju)=det LO(Gy, =, o) (LV(P)=1)
L9y, =, Jus s, h=det[Lehhpmlizitiniet,
where @ is the numbering of \ U5, MII(j) given in §1. By (1.3) we have
LOGy -y J)=LGw vy Ju)
(3.4) LOGy, -y ju)=L{y =, Ju)
LGy =y Jus s, 0=LQy, =, Jus s, 1).

LEMMA 3.4. If le{l, -, nd1}; s, te{pi+1, -, o} and ¢_,=0, the nthe
following hold :

(1) LDg,.i+1, -, @;) is positwve-defimte for every ;€ {0, -, [—1}.
(ii) L, 2, -, o-)=IDLP(@,-1+1, -, ¢j).
(iii) L(l’ 2’ ) 901—1; S, t):L<1) 2) R @l—l)Lé)l()S)m‘

Proof. We first recall the following well-known fact: If A, B, C, and D
are complex matrices of type (s, 7), (2, 7), (J, 7), and (Jj, j), respectively, and if
A is non-singular, then it holds that

3.5) det[A B]zdetAdet(D—CA"B).
CD
By induction on ;= {0, 1, ---, [—1}, we can show the triple assertions
3.6), LPp,141, -+, 1)>0 for every re{p,-1+1, -, 0i-1},
(3-7)] L(ly 2: Tty ¢l—1):L(])(€DJ—1+17 ) 951—1)
XHi;éL(”(@»—l'i—l, ) @v) » and
(3'8)1 L(ly 2) ) §01—1§ S, t):L(j)(QD]—1+1y ty Qr-15 S, t)

XHf;éLM(SDv—l"{_l, ) SDV) .

In fact, assertions (3.6),, (3.7),, and (3.8), follow from (3.4). Next, assume (3.6),,
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(3.7),, and (3.8), hold for some j= {0, ---, /—2}. Assumption (3.6), implies that
LP(p,-1+1, -, ¢;)>0; therefore L{F® can be defined. So, by (3.5) we have

LO(gystl, o, V=L, -, @)L (o], e, 7).

Thus, (3.6);+; and (3.7);4; hold. Furthermore, if we apply (3.5) to the first
matrix in the right hand side of (3.8),, we obtain (3.8);;;,. The assertion (i) of
Lemma 3.4 follows from (3.6), for ;=0, 1, ---, [—1, while the assertion (ii) coin-
cides with (3.7);-;. Since L (p;_s+1, -+, ¢;-1)>0, the assertion (iii) follows
from (3.8),_; and (3.5).

PropoOSITION 3.5. For j€{1, 2, -, n+1}, and A, BEMI()), it holds that
£H=LG/ (G V).
Proof. Lemma 3.4 (iii) and Theorem 2.5 imply the assertion.

LEmMA 3.6. If je{l, -, n}, A, B are multi-indices, and c=MI(1), then the
following identities hold:

: HN— T G-DRPT G=1) [ ()
(1) 0. LD=LP~>p gevu-n LY VLGV L,

1 a9, — U G-DRP[ ()_[ =D
(i) ac-Ly%—LAjg—c_EP,QeMH(j—nLj ¢ LAJQ‘CLPJE .

Proof. ldentity (i) is easily shown by the definition and by induction on ;.
By taking the complex conjugation of (i), we get (ii).

Proof of Theorem 3.1. Let A, BeMI(n) and ¢, d=eMI(1). By applying Prop-
osition 3.5 to the right hand side of (3.2), we get
1

Py — T Ty
(IR 2= L LS

k2
1 - — _ _
+ 7 {0:00. L3 —3p, qemminy L™ F(@: . L{B)(0a. LI} .

Lemma 3.6, together with (3.3), implies that the term in the braces coincides
with )
L) — 35 gemuin-n Le=0ePL L.

So, the desired formula follows again from Proposition 3.5.
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