SELF-HOMOTOPY EQUIVALENCES OF THE TOTAL SPACES OF A SPHERE BUNDLE OVER A SPHERE

Dedicated to Professor Minoru Nakaoka on his 60th birthday

By Seiya Sasao

§ 1. Introduction.

In this paper we study the group of homotopy classes of self-homotopy equivalences, $\mathcal{E}(X)$, for the total space of a S^{m}-bundle over S^{n} with the condition:

$$
3<m+1<n<2 m-2 .
$$

J. W. Rutter determined this group for the case of $m=3$ and $n=7$ in [3], and also some generalizations of Rutter's result are given in [4] and [6]. Moreover Y. Nomura computed $\mathcal{E}(X)$ for real and complex Stiefel manifolds in [5]. Then our purpose is to obtain a generalization of these results in a some sense. Let H be the natural representation:

$$
H: \mathcal{E}(X) \longrightarrow \text { Aut } H_{*}(X)
$$

which is defined by $H(f)=f_{*}$ and we denote by $\mathcal{E}_{+}(X)$ the kernel of H. Then we have an exact sequence

$$
\{1\} \longrightarrow \mathcal{E}_{+}(X) \longrightarrow \mathcal{E}(X) \underset{H}{\longrightarrow} \text { Aut } H_{*}(X) \text {. }
$$

Hence it is almost sufficient for us to determine $\mathcal{E}_{+}(X)$ and H-image.
Let $q: X \rightarrow S^{n}$ be the S^{m}-bundle with the characteristic class $\xi\left(\in \pi_{n-1}(S O(m+1))\right)$. James-Whitehead showed in [2] that X has a $C W$-decomposition:

$$
X=S^{m} \bigcup_{\beta} e^{n} \bigcup_{\alpha} e^{m+n},
$$

where $\beta=p_{*}(\xi)$ for the usual projection $p: S O(m+1) \rightarrow S^{m}$.
Let $P_{n}^{m}(\beta)$ be the subgroup of $\pi_{n}\left(S^{m}\right)$,

$$
\left\{x \mid\left[\iota_{n}, x\right] \in \beta \circ \pi_{m+n-1}\left(S^{n-1}\right)\right\},
$$

and we denote by η the generator of $\pi_{N+1}\left(S^{N}\right)$. We will prove

Theorem 1. Suppose that $\left[\iota_{m+1}, E \beta\right] \circ \eta \equiv 0 \bmod E \beta \circ \pi_{m+n+1}\left(S^{n}\right)$. Then there exists an exact sequence

$$
\{0\} \longrightarrow H_{\dot{\xi}} \longrightarrow \mathcal{E}_{+}(X) \longrightarrow G_{\dot{\xi}} \longrightarrow\{0\}
$$

where

$$
H_{\xi}=\pi_{m+n}(X) /\left[\iota_{m}, \pi_{n+1}(X)\right] \cup\left\{\pi_{m+1}(X) \circ J(\hat{\xi})\right\}
$$

and

$$
G_{\xi}=P_{n}^{m}(\beta)\left[\{\beta \circ \gamma\} \subset \pi_{n}\left(S^{m}\right) /\{\beta \circ \gamma\} .\right.
$$

Remark. For example, the assumption is always satisfied if $m=2 \bmod 4$ and $m \geqq 9$.

Theorem 2. Suppose $2 \beta=0$.

$$
\begin{aligned}
& H-\text { ımage }=Z_{2} \times Z_{2} \quad \text { if } 2 J(\xi) \equiv 0 \text { and }\left[\iota_{m+1}, E \beta\right] \equiv 0 \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right) \\
& H-\iota m a g e=Z_{2} \quad \text { if eıther }\left[\iota_{m+1}, E \beta\right] \equiv 0,2 J(\xi) \not \equiv 0 \text { or }\left[\iota_{m+1}, E \beta\right] \equiv 0, \\
& 2 J(\xi) \equiv 0 \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right) \\
& H-\text {-ımage }=Z_{2} \quad \text { if }\left[\iota_{m+1}, E \beta\right]+2 J(\xi) \equiv 0 \text { and } 2 J(\xi) \not \equiv 0 \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right), \\
& H-\text { - mage }=\{0\} \quad \text { otheruıse. }
\end{aligned}
$$

Theorem 3. Suppose that the order of β is odd. Then

$$
H \text {-ımage }=Z_{2} \quad \text { if }\left[\iota_{m+1}, E \beta\right]+2 J(\xi) \equiv 0 \bmod E \beta \cdot \pi_{m+n}\left(S^{n}\right)
$$

and

$$
\text { H-image }=\{0\} \quad \text { otherwise. }
$$

Our method is based on Barcus-Barratt theory [1]. Let $A=S^{m} \bigcup_{\beta} e^{n}$ be the subcomplex of X and consider the fibring

$$
r_{A}:\left(X^{X}, 1_{X}\right) \longrightarrow\left(X^{A}, i\right) \quad\left(i=1_{X} \mid A\right)
$$

defined by restricting maps on A. Then we have an exact sequence

$$
\pi_{1}\left(X^{A}, i\right) \xrightarrow[\partial_{X, A}]{\longrightarrow} \pi_{n}\left(r_{A}^{-1}(i), 1_{X}\right) \longrightarrow \pi_{0}\left(X^{X}, 1_{X}\right) \longrightarrow \pi_{0}\left(X^{A}, i\right) .
$$

Using an identification of $\pi_{0}\left(r_{A}^{-1}(i), 1_{X}\right)$ with $\pi_{m+n}\left(X, x_{0}\right)$, the above sequence can be transformed into the exact sequence

$$
\{0\} \longrightarrow G_{X, A} \longrightarrow \mathcal{E}(X) \longrightarrow \mathcal{E}(A),
$$

where $G_{X, A}$ denotes the group $i_{*} \pi_{m+n}(A) /\left\{i_{*} \pi_{m+n}(A) \cup \partial_{X, A}\left(\pi_{1}\left(X^{A}, i\right)\right\}_{\text {. }}\right.$.
Since $\mathcal{E}(A)$ can be determined by Barcus-Barratt Theorem our work is to describe the group $G_{X, A}$ and the image $\mathcal{E}(X) \rightarrow \mathcal{E}(A)$. In $\S 2$ the operation $\partial_{X, A}$ is investigated and $\S 3 \partial_{X, A}$ is considered again from the view of Suspension-
version. $\S 4$ contains some homotopy groups, and the image $\mathcal{E}(X) \rightarrow \mathcal{E}(A)$ is discussed in $\S 5$. At last, in $\S 6$, we give some examples.

§ 2. Barcus-Barratt Operation.

LEMMA 2.1. $i_{*}\left(\pi_{m+n}(A)\right)=\pi_{m+n}(X), \pi_{m+n-1}(A) \cong Z\{\alpha\}+G(\beta)$ and the sequence

$$
\{0\} \longrightarrow i_{m^{*}}\left\{\pi_{m+n-1}\left(S^{m}\right)\right\} \longrightarrow G(\beta) \longrightarrow \beta_{*}^{-1}(0) \longrightarrow\{0\}
$$

is exact where $\beta_{*}: \pi_{m+n-2}\left(S^{n-1}\right) \rightarrow \pi_{m+n-1}\left(S^{m}\right)$ is induced by β. Especiallly we have

$$
G_{X, A}=\pi_{m+n}(X) / \partial_{X, A} \pi_{1}\left(X^{A}, i\right) .
$$

Proof. The proof follows from the homotopy exact sequence and the homotopy excision theorem.

Let $r_{S m}:\left(X^{A}, i\right) \rightarrow\left(X^{S^{m}}, \imath_{m}\right)$ be the fibring $\left(i_{m}=\imath \mid S^{m}: S^{m} \rightarrow X\right)$ and let $\Lambda_{A, X}$ be the fibre $r_{S^{m}}^{-1}\left(i_{m}\right)$, i.e.

$$
\Lambda_{A, x}=\left\{f: A \longrightarrow X|f| S^{m}=\imath_{m}\right\}
$$

Consider the exact sequence

$$
\pi_{1}\left(\Lambda_{A, X}, i\right) \longrightarrow \pi_{1}\left(X^{A}, i\right) \longrightarrow \pi_{1}\left(X^{S^{m}}, \imath_{m}\right) \longrightarrow \pi_{0}\left(\Lambda_{A, X}, i\right)
$$

and identifications
given by

$$
\pi_{1}\left(X^{s m}, i_{m}\right) \underset{d_{1}}{\longleftrightarrow} \pi_{m+1}\left(X, x_{0}\right) \quad \text { and } \quad \pi_{1}\left(\Lambda_{A, X}, i\right) \underset{d_{2}}{\longleftrightarrow} \pi_{n+1}\left(X, x_{0}\right)
$$

and

$$
S^{1} \times S^{m} \underset{f}{\longrightarrow} X, \quad d_{1}(f)=d\left(f, \imath_{m} \circ p r\right)
$$

and

$$
S^{1} \times A \underset{g}{\longrightarrow} X, \quad d_{2}(g)=d(g, \stackrel{p r}{ },
$$

where d denotes the separation elemen (see Appendix).
Lemma 2.2. By the composition

$$
\pi_{n+1}\left(X, x_{0}\right) \underset{d_{2}}{\longleftrightarrow} \pi_{1}\left(\Lambda_{A, X}, i\right) \longrightarrow \pi_{1}\left(X^{4}, i\right) \xrightarrow[\partial_{X, A}]{\longrightarrow} \pi_{m+n}\left(X, x_{0}\right)
$$

any element z is mapped to Whitehead product $\left[\iota_{m}, z\right]$.
For the proof we need some preparations. Let ϕ be a map $A \rightarrow-\mathbb{V} \vee S^{n}$ ($A=S^{m} \cup e^{n} \rightarrow\left(S^{m} \cup e^{n}\right) \vee S^{n}$) which is obtained from shrinking the equator of e^{n} to a point.

LEMMA 2.3. $\phi_{*}(\alpha)=\alpha+\left[\iota_{m}, \iota_{n}\right]\left(\in \pi_{m+n-1}\left(A \vee S^{n}\right)\right)$
Proof. From the assumption on m, n we have the decomposition

$$
\pi_{m+n-1}\left(A \vee S^{n}\right)=\pi_{m+n-1}(A) \oplus \pi_{m+n-1}\left(S^{n}\right) \oplus Z\left[\iota_{m}, \iota_{n}\right] .
$$

Clearly the first factor of $\phi_{*}(\alpha)$ is α and the second factor is zero by the existence of the projection $X \rightarrow S^{n}$. Since the third factor is determined by the cohomology ring of X we may think that it is just $\left[\iota_{m}, \iota_{n}\right]$. These complete the proof.

Let us define three spaces $X_{\imath}(i=0,1,2)$ as follows:

$$
X_{0}=\left(A \vee S^{n}\right) \bigcup_{\phi *(\alpha)} e^{m+n}, \quad X_{1}=X \vee S^{n} \quad \text { and } \quad X_{2}=S^{m} \times S^{n} \cup\left(A \vee S^{n}\right) .
$$

Then three Barcus-Barratt operations are obtained from fibrings:

$$
\left(X^{X_{\imath}}, v_{\imath}\right) \longrightarrow\left(X^{A \vee S^{n}}, \imath \vee\left(x_{0}\right)\right) \quad(i=0,1,2),
$$

where $\left(x_{0}\right)$ denotes the constant map $S^{n} \rightarrow x_{0}(\in X)$ and v_{2} is an appropriate extension of $i \vee\left(x_{0}\right)$ over X. We denote them by

$$
\partial_{i}=\partial_{X_{\imath}, A \vee S n}: \pi_{1}\left(X^{A \vee S n}, \imath \vee\left(x_{0}\right)\right) \longrightarrow \pi_{m+n}\left(X, x_{0}\right), \quad(\imath=0,1,2) .
$$

Now, applying the additive theorem of Barcus-Barratt we have
LEMMA 2.4. $\partial_{0}=\partial_{1}+\partial_{2}$
Since $\pi_{1}\left(X^{A \vee S^{n}}, \imath \vee\left(x_{0}\right)\right)$ has a decomposition

$$
\pi_{1}\left(X^{A \vee S^{n}}, i \vee\left(\pi_{0}\right)\right)=\pi_{1}\left(X^{4}, i\right) \oplus \pi_{1}\left(X^{S^{n}},\left(x_{0}\right)\right)
$$

we may regard $\pi_{1}\left(X^{S^{n}},\left(x_{0}\right)\right)$ as a subgroup of $\pi_{1}\left(X^{A \vee S^{n}}, \imath \vee\left(x_{0}\right)\right)$.
Lemma 2.5. The restruction $\partial_{1} \mid \pi_{1}\left(X^{S^{n}},\left(x_{0}\right)\right)=0$.
Proof. It is sufficient from definitions to show that the image of the homomorphism

$$
\pi_{1}\left(X^{X_{1}}, v_{1}\right) \longrightarrow \pi_{1}\left(X^{A \vee S^{n}}, i \vee\left(x_{0}\right)\right)
$$

contains $\pi_{1}\left(X^{S^{n}},\left(x_{0}\right)\right)$ for the map $v_{1}: X_{1}=X \vee S^{n} \rightarrow X,\left(1_{X} \vee\left(x_{0}\right)\right)$, and then this means that any map: $S^{1} \times\left(A \vee S^{n}\right) \rightarrow X$ is extendable over $S^{1} \times\left(X \vee S^{n}\right)$ if $f \mid S^{1} \times A$ $=i \circ \operatorname{proj}_{A}$ and $f \mid * \times S^{n}=\left(x_{0}\right)$. Since the map $\tilde{f}: S^{1} \times\left(X \vee S^{n}\right) \rightarrow X$ defined by

$$
\tilde{f} \mid S^{1} \times X=1_{X}{ }^{\circ} \operatorname{proj}_{X} \quad \text { and } \quad \tilde{f}\left|S^{1} \times S^{n}=f\right| S^{1} \times S^{n}
$$

satisfies the conditions the proof is completed.
Lemma 2.6. The restriction $\partial_{2} \mid \pi_{1}\left(X^{s^{n}},\left(x_{0}\right)\right)$ can be identified with the homomorphism

$$
\pi_{1}\left(X^{S n},\left(x_{0}\right)\right)=\pi_{n+1}\left(X, x_{0}\right) \longrightarrow \pi_{m+n}\left(X, x_{0}\right)
$$

defined by Whitehead product [$\left.\iota_{m},\right]$.
Proof. Consider the commutative diagram

where ∂ on the left hand is the boundary operator derived from the fibring
 completed.

Now, using the following diagram, the proof of lemma 2.2 is completed from lemma 2.3, 2.4, 2.5 and 2.6.

here we identify the space A with $A \vee S^{n}!S^{n}$ and the map $\imath: A \rightarrow X$ with the $\operatorname{map} A \underset{\phi}{\longrightarrow} A \vee S^{n} \xrightarrow[\imath \vee\left(x_{0}\right)]{ } X$.

§ 3. Suspension of Barcus-Barratt Operation.

In this section our purpose is to describe the group $E\left\{\partial_{X, A}\left(X^{4}, i\right)\right\}$ as a subgroup of $\pi_{m+n+1}\left(E X, x_{0}\right)$ with other terms. First we consider the general case. For any spaces Y and K, the map $\Sigma: Y^{K} \rightarrow E Y^{E K}$ which assigns each map $f: K \rightarrow Y$ to the map $E f: E K \rightarrow E Y$ induces the homomorphism

$$
\Sigma^{*}: \pi_{1}\left(Y^{K}, u\right) \longrightarrow \pi_{1}\left(E Y^{E K}, E u\right), \quad(u: K \rightarrow Y),
$$

i. e. for $f: S^{1} \times K \rightarrow Y, \Sigma(f)(s,(t, x))=(t, f(s, x))(x \in K)$.

Since, for a map $h: L \rightarrow K$, it holds

$$
\Sigma^{*} h^{*}(f)(s,(t, y))=\left\langle t, f\left(s, h\left(y_{i}\right)\right.\right.
$$

and

$$
(E h)^{*} \Sigma^{*}(f)(s,(t, y))=(\Sigma f)(s,(t, h(y))=(t, f(s, h(v)) \quad . y \equiv L)
$$

we have the following commutative diagram:

$$
\begin{gather*}
\pi_{1}\left(Y^{K}, u\right) \xrightarrow[\Sigma^{*}]{\downarrow} h^{*} \tag{3.1}\\
\pi_{1}\left(Y^{-}, u h\right) \xrightarrow[\Sigma^{*}]{ } \pi_{1}\left(E Y^{E K}, E u\right) \\
\downarrow E h^{*}
\end{gather*}
$$

Now, applying the diagram 3.1 to our case $Y=X, K=A$ and $h=\beta$, we have
Lemma 3.2. There exists a commutatwe diagram

In the above diagram if we identify $\pi_{1}\left(E X^{s m+1}, \imath_{m+1}\right)$ with $\pi_{m+2}\left(E X, x_{0}\right)$ we have

Lemma 3.3. $\hat{o}_{E, 1, S m+1}$ may be considered as the composition $\circ E J(\hat{\xi})$, where $\hat{\xi}$ denotes the characteristic class of the bundle.

Proof. We note that there exists a map: $T(\xi)=S_{J(\xi)}^{m+1} e^{m+n+1} \rightarrow E X$ of degree ± 1. Then the proof completed by applying the sphere theorem of [1] to the diagram

which is obtaned from using lemma 3.2.
Lemma 3.4. $E \hat{o}_{X, 1}\left\{\pi_{1}\left(X^{A}, i\right)\right\}=\pi_{m+2}(E X) \circ E J(\xi)$.
Proof. Consider the sequence associated with the fibring $r: X^{1} \rightarrow X^{S^{m}}$

Since $\partial . \pi_{n+1}\left(S^{n}\right) \rightarrow \pi_{n}\left(S^{m}\right)$ is given by $\partial(\eta)=\beta \circ \eta$ and we have $\beta \circ \eta=\eta \circ E_{\beta} \beta$, by
the assumption $n \leqq 2 m-2 r_{*}$ is onto. Thus the proof follows from lemma 3.2 and 3.3.

§ 4. The suspension $\pi_{k}(X) \rightarrow \pi_{k+1}(E X)$

Now we are interested in the kernel of the suspension

$$
E_{k}: \pi_{k}(X) \longrightarrow \pi_{k+1}(E X) \quad(k=m+n, m-n-1) .
$$

Let ν be the attaching map for a cell of a $C W$-complex, then we denote by E the characteristic map for the cell. By the homotopy excision we know

Lemma 4.1. For $\imath=1,2$ there exists a decomposion

$$
\begin{aligned}
& \pi_{k+i}\left(E X, S^{m+1}\right) \cong \overline{J(\xi)} \bullet \pi_{k+i}\left(D^{m+n+1}, S^{m+n}\right)+\overline{E \beta} \cdot \pi_{k+i}\left(D^{n-+} . S^{n}\right) \\
&+\left[\iota_{m+1}, \overline{E \beta} \circ \pi_{n+2}\left(D^{n+1}, S^{n}\right)\right]_{r},
\end{aligned}
$$

where $[,]_{r}$ denotes relative Whitehead product.
Consider the following ladder:

First we note that the homomorphism

$$
\pi_{k+i}\left(X, S^{m}\right) \longrightarrow \pi_{k+\imath+1}\left(E X, S^{m+1}\right) \quad(\imath=0,=1)
$$

is injective because we have a commutative diagram

$$
\begin{array}{cc}
\pi_{k+i}\left(X, S^{m}\right) \xrightarrow{\cong} & \pi_{k+i}\left(S^{n}\right) \\
\downarrow_{*} E & \cong \nmid E \\
\pi_{k+\imath+1}\left(E X, S^{m+1}\right) \xrightarrow[E q_{*}]{ } & \pi_{k+\imath+1}\left(S^{m+1}\right) .
\end{array}
$$

Hence we have

$$
\begin{equation*}
E_{k}^{-1}(0)=i_{m *}\left(E^{-1} \partial \pi_{k+1}\left(E X, S^{m+1}\right)\right) \tag{4.2}
\end{equation*}
$$

On the other hand, from lemma 4.1, we have

$$
\begin{equation*}
\partial \pi_{k+2}\left(E X, S^{m+1}\right)=J(\xi) \circ \pi_{k+1}\left(S^{m+1}\right) \cup E \beta \cdot \pi_{k+1}\left(S^{n}\right) \cup\left[\iota_{m+1}, E, \tilde{i}-_{k-m-1}\left(S^{n}\right)\right] \tag{4.3}
\end{equation*}
$$

Lemma 4.4. For $x \in \pi_{s}\left(S^{n-1}\right)(s \leqq 2 m-2), J(\xi) \cdot E^{m+1} x$ is contained in the $E-$ mage if and only if $\beta \circ x=0$.

Proof. Take Hopf invariant of the element, i.e.

$$
H\left(J\left(\xi ; E^{m-1} x\right)= \pm H J(\xi) \circ E^{m+1} x= \pm E^{m+1} \beta E^{m+1} x= \pm E^{m+1}(\beta \circ x) .\right.
$$

Then the proof follows from $s \leqq 2 m-2$.
Now, suppose that $\beta \circ x=0$. Then there exists $\sigma_{x} \in \pi_{s+1}(X)$ such that $q_{*}\left(\sigma_{n}\right)$ $=E x$. Lemma 4.4 is more exactly stated as follows:

Lemma 4.5. There exists an element $\xi_{x} \in \pi_{s}(S O(m))$ satisfying
(1) $E J\left(\xi_{x}\right)=J(\xi) \cdot E^{m+1} x$
(2) $i_{m^{*}}\left(J\left(\xi_{X}, "\right)=\left[\ell_{m}, \sigma_{x}\right]\right.$

Proof. Let ξ^{\prime} be the induced bundle over S^{s+1} by the map Ex. Since $p_{*}\left(\xi^{\prime}\right)=p_{*}(\xi) \circ x=\beta \circ x=0$ there exists an element ξ_{X} of $\pi_{s}(S O(m))$ which is mapped to ξ by the inclusion $S O(m) \rightarrow S O(m+1)$. Then we have

$$
E J\left(\xi_{x}\right)=-J\left(\xi^{\prime}\right)=-J(\xi \circ x)= \pm J(\xi) \circ E^{m+1} x .
$$

Next, consider the commutative diagram

then By [2] we have, in $\pi_{s-m}(Y)$,

$$
i_{m^{*}}\left(J\left(\xi_{X}\right)\right)+\left[\iota_{m}, \iota_{s+1}\right]=0
$$

for a cross-section ℓ_{0-1} of q^{\prime}. Clearly this shows (2).
Now, we know that there exists an element u_{\S} of $\pi_{m+n-1}\left(S^{m}\right)$ such that
if $2 \beta=0$ then $E u ;=\left[c_{m+1}, \iota_{m+1}\right] \cdot E^{m+1} \beta$
if m is odd ${ }^{n}$ and $2 \beta=0$ then $E w_{\xi}=J(2 \xi) \pm\left[\epsilon_{m+1}, \iota_{m+1}\right] \cdot E \beta$.
Then from (4.2), (4.3), and lemma 4.5 we obtain
Lemma 4.6. $\quad E_{m-n}^{-1}(0)=\left[\iota_{m}, \pi_{n+1}(X)\right] \cup\left\{\imath_{m} *\left(u_{\xi} \circ \eta\right)\right\}$

$$
E_{m-n-1}^{-1}(0)=\left[\iota_{m}, \pi_{n}(X)\right] \cup\left\{i_{m} *\left(u_{;}\right)\right\} .
$$

Lemma 4.7. Suppose that $\left[\epsilon_{m+1}, E \beta\right] \circ \eta \equiv 0 \bmod E \beta \cdot \pi_{m+n+1}\left(S^{n}\right)$. Then we have

Proof. By lemma 3.4 there exists an element $\gamma_{;}$of $\pi_{1}\left(X^{A}, i\right)$ satisfying
(1) $E \partial_{x, A}\left(\gamma_{\xi}\right)=i_{m+2} \cdot(\eta) \cdot E J(\xi)$
(2) r_{\S} is mapped to the generator of $\pi_{1}\left(X^{s m}, i_{m}\right)=Z_{2}$ by r_{*}.

Since $\pi_{1}\left(X^{A}, i\right)$ is the sum of $\left\{\gamma_{\xi}\right\}$ and the image $\pi_{1}\left(\Lambda_{X, A}, i\right) \rightarrow \pi_{1}\left(X^{A}, i\right)$ the proof is completed by lemma 2.6 and 4.6 .

§ 5. Proof of theorems.

Recall the sequence in $\S 1$

$$
0 \longrightarrow G_{X, A} \longrightarrow \mathcal{E}(X) \longrightarrow \mathcal{C}(A),
$$

and imbed this one in a diagram as follows:

Then, if $\left[\iota_{m+1}, E \beta \circ \eta\right] \in E \beta \circ \pi_{m+n+1}\left(S^{n}\right)$, we have from lemma 2.1 and 4.7
Lemma 5.1. $H_{\hat{\xi}}=\pi_{m+n}(X) /\left\{\left[\iota_{m}, \pi_{n+1}(X)\right]\right\} \cup\left\{\pi_{m+1}(X) \circ J(\xi)\right\}$
Next, consider the exact sequence

$$
\pi_{n}\left(S^{m}\right) \xrightarrow[t]{\longrightarrow} \mathcal{E}(A) \longrightarrow Z_{2} \times Z_{2}
$$

which is defined by

$$
t(f): A \longrightarrow \underset{\phi}{\longrightarrow} A \vee S^{n} \xrightarrow[1 \vee f]{ } A \vee S^{n} \xrightarrow[1 \vee \imath_{m}]{ } A \quad\left(f \in \pi_{n}\left(S^{m}\right)\right)
$$

and $d(h)=\left(\right.$ degree on e^{m} of h, degree on e^{n} of h).
Clearly d is equivalent to the representation H and moreover the kernel of t is determined by the sphere theorem of [1] as follows:

$$
t^{-1}\left(1_{x}\right)=\{\eta \circ E \beta\}=\{\beta \circ \eta\} .
$$

Since the definition of t and lemma 2.3 imply

$$
t(f)_{*}(\alpha)=\alpha+\left[\iota_{m}, f\right] \quad\left(X=A \bigcup_{\alpha} e^{m+n}\right)
$$

the element $t(f)$ is contained in the image $\varepsilon(X) \rightarrow \varepsilon(A)$ if and only if $\left[c_{m}, f\right] \in$ $\partial \pi_{m+n}\left(S^{n}\right)=\beta \circ \pi_{m+n-1}\left(S^{n-1}\right)$.

Thus, noting $r H_{X}=H_{A} r$, we have
Lemma 5.2. $G_{\xi}=P_{n}^{m}(\beta) /\{\beta \circ \eta\}$ if $\left[\iota_{m+1}, E \beta \circ \eta\right] \in E \beta \circ \pi_{m+n+1}\left(S^{n}\right)$
Now we proced to study of the representation H_{X}. First we note

Lemma 5.3. The kernel $(q \mid A)_{*}: \pi_{m+n-1}(A) \rightarrow \pi_{m+n-1}\left(S^{n}\right)$ is generated by α and the $\imath_{m}+$-image $\left(i_{m}: S^{m} \rightarrow A\right)$.

Proof. This is easily obtained from the diagram ($k=m+n-1$)

$$
\pi_{k}\left(S^{m}\right) \xrightarrow[i_{m^{*}}]{ } \overbrace{k}(A) \leftarrow \partial — \pi_{k+1}(X, A) \simeq Z_{2}
$$

Let f be a map: $A \rightarrow A$ satisfying

$$
f_{*}\left(e^{m}\right)=a e^{m} \quad \text { and } \quad f_{*}\left(e^{n}\right)=b e^{n}
$$

which we call a map of type (a, b) and denote by f_{a}^{b}. Then the following lemma is easy.

Lemma 5.4. There exists a map of type (a, b) if and only if $(b-a) \beta=0$.
Let g_{a}^{b} be another map. Clearly there exists a map $g: S^{n} \rightarrow S^{m}$ by which g_{a}^{b} is represented as the composition of maps

$$
g_{a}^{b}=\left(f_{a}^{b} \vee g\right)^{\circ} \phi: A \xrightarrow[\phi]{\longrightarrow} A \vee S^{n} \xrightarrow[f_{a}^{b} \vee g]{ } A \vee S^{m} \longrightarrow A
$$

Now we are interested in the element $f_{a}^{b} \cdot(\alpha)$. Then lemma 2.3 gives

$$
g_{a *}^{b}(\alpha)=f_{a}^{b}(\alpha)+a\left[\iota_{m}, g\right] .
$$

On the other hand, since we have

$$
(q \mid A)_{*} f_{a^{*}}^{b}(\alpha)=\left(b c_{n}\right)_{*}(q \mid A)_{*}(\alpha)=0
$$

lemma 5.3 gives, for some $\sigma_{a}^{b} \in \pi_{m+n-1}\left(S^{m}\right)$,

$$
f_{a}^{b} *(\alpha)=a b \alpha+\imath_{m} *\left(\sigma_{a}^{b}\right) .
$$

Thus we have from these lemmas
Lemma. 5.5. There exists a map $f: X \rightarrow X$ whose restriction $f \mid A$ is of type (a, b) if and only if there exists a map f_{a}^{b} such that

$$
f_{a}^{b} *(\alpha)=a b \alpha+\imath_{m^{*}}\left(\sigma_{a}^{b}\right), \quad \sigma_{a}^{b} \in a\left[\iota_{m}, \pi_{n}\left(S^{m}\right)\right] \cup \beta \circ \pi_{m+n-1}\left(S^{n-1}\right) .
$$

Especially if $a= \pm 1$ the condition is equivalent to $E \phi_{a}^{b} \in E \beta \circ \pi_{m+n}\left(S^{n}\right)$.
Next, for the reason of our dimensional assumption, the space A is desuspendable, so there exists a co- H-map $\nu: A \rightarrow A \vee A$ and the addition of two maps is defined as usal. Then we want to get some formula on $\left(f_{a}^{b}+f_{c}^{d}\right)_{*}(\alpha)$. For the
purpose we must investigate the group $\pi_{k}(A \vee A)$ for $k=m+n-1$. First, by the well-known decomposition of this group it holds

$$
\nu_{*}(\alpha)=\alpha+\alpha+\chi \quad\left(\chi \in \partial \pi_{k+1}(A \times A, A \vee A)\right) .
$$

Next- since the order of β is finite there exists a map $\tau: S^{n} \rightarrow A$ of degree $o(\beta)$ and we have the element $\left[\epsilon_{m}^{1}, \tau^{2}\right]$ of $\pi_{k}(A \vee A)$ where each upper index denotes the order of A imbedded in $A \vee A$ and $o(\beta)$ is the order of the element. Let $Q: A=S^{m} \cup e^{n} \rightarrow S^{n}=A / S^{m}$ be the collapsing map, then for maps $Q \vee 1_{A}: A \vee A$ $\rightarrow S^{n} \vee A$ and $1_{A} \vee Q: A \vee A \rightarrow A \vee S^{n}$ we have

Lemma 5.6. $\left(1_{A} \vee Q\right)_{*}(\chi)=\left[\iota_{m}^{1}, \iota_{n}\right], \quad\left(Q \vee 1_{A}\right) *(\chi)=(-1)^{m n}\left[\iota_{n}, \iota_{m}^{2}\right]$,

$$
\left(1_{\Lambda} \vee Q\right)_{*}\left(\left[\iota_{m}^{1}, \tau^{2}\right]\right)=0(\beta)\left[\iota_{m}^{1}, \iota_{n}\right] \quad \text { and } \quad\left(Q \vee 1_{A}\right) *\left(\left[\iota^{1}, \tau_{m}^{2}\right]\right)=0(\beta)\left[\iota_{n}, \iota_{m}^{2}\right] .
$$

Proof. The third and fourth are clear and the others follows from the diagram

$$
\pi_{k}(A) \xrightarrow[\nu_{*}]{\longrightarrow} \pi_{k}(A \bigvee A)=\pi_{k}(A)+\pi_{k}(A)+\partial \pi_{k+1}(A \times A, A \vee A)
$$

Lemma 5.7. There exists an isomorphism

$$
\pi_{k}(A \vee A)=\pi_{k}(A)+\pi_{k}(A)+Z\{\chi\}+Z\left[\tau^{1}, \iota_{m}^{2}\right]+\left[\iota_{m}^{1}, \iota_{m}^{2}\right] \circ \pi_{k}\left(S^{2 m-1}\right)
$$

Proof. Noting the assumption $m+1<n<2 m-1$, consider the following diagram which is naturally obtained:

, where denotes the reduced join operator.

Then the proof follows from lemma 5.6.
Now, consider the map $f_{a}^{b} \vee f_{c}^{d}: A \vee A \rightarrow A \vee A$, then we prove
LEMMA 5.8. $\left(f_{a}^{b} \vee f_{c}^{d}\right)_{*}\left(\left[\tau^{1}, \iota_{m}^{2}\right]\right) \equiv b c\left[\tau^{1}, \iota_{m}^{2}\right] \bmod \left[\iota_{m}^{1} \circ \pi_{n}\left(S^{m}\right), \iota_{m}^{2}\right]$
and

$$
\left(f_{a}^{b} \vee f_{c}^{d}\right)_{*}(\chi) \equiv a d\{\chi\}+\left\{(-1)^{m n}(b c-a d) / 0(\beta)\right\}\left[\tau^{1}, \iota_{m}^{2}\right] \quad \bmod \left[\iota_{m}^{1}, \iota_{m}^{2}\right] \circ \pi_{k}\left(S^{2 m-1}\right\rangle
$$

Remark. $b c-a d$ is divisible by $o(\beta)$ because we have $b-c \equiv 0 \equiv d-a \bmod o(\beta)$ (lemma 5.4).

Proof. By lemma 5.7 we can put

$$
\left(f_{a}^{b} \vee f_{c}^{d}\right)_{*}(\chi) \equiv r\{\chi\}+s\left[\tau^{1}, \iota_{m}^{2}\right] \quad \bmod \left[\iota_{m}^{1}, \iota_{m}^{2}\right] \cdot \pi_{k}\left(S^{2 m-1}\right)
$$

for some integers r and s. Then from lemma 5.6 it follows that $r=a d$ and $o(\beta) s=(-1)^{m n}(b c-r)=(-1)^{m n}(b c-a d)$. Hence the proof is completed.

Let μ be the folding map $A \vee A \rightarrow A$. We note that there exists an element $\lambda=\pi_{n-1}(S O(m))$ such that

$$
o(\beta) \alpha=\imath_{m}(J(\lambda))+\left[\iota_{m}, \tau\right]
$$

where $i_{*}(\lambda)=o(\beta) \xi$ for $\imath: S O(m) \rightarrow S O(m+1)$.
LEMMA 5.9. $\mu_{*}(\chi)=2 \alpha+\imath_{m^{*}}\left(\sigma_{2}^{2}\right)$ and $\mu_{*}\left(\left[\tau^{1}, \iota_{n}^{2}\right]\right)=(-1)^{m n}\left\{o(\beta) \alpha-\imath_{m} *(J(\lambda))\right\}$
Proof. By definition $\nu_{*}(\alpha)=\alpha+\alpha+\chi$, then we have

$$
\mu_{*} \nu_{*}(\alpha)=\left(2 \cdot 1_{A}\right)_{*}(\alpha) \quad \text { i. e. } \quad 4 \alpha+i_{m} \cdot\left(\sigma_{2}^{2}\right)=2 \alpha+\mu_{*}(\chi) .
$$

Since $\mu_{*}\left(\left[\tau^{1}, \iota_{m}^{2}\right]\right)=\left[\tau, \iota_{m}\right]$ the second follows from the above note.
LEMMA 5.10. $\quad \sigma_{a+c}^{b+d} \equiv \sigma_{a}^{b}+\sigma_{c}^{d}+a d\left(\sigma_{2}^{2}\right)+\{(a d-b c) / o(\beta)\} J(\lambda)$

$$
\bmod \left[\epsilon_{m}, \pi_{n}\left(S^{m}\right)\right] \cup\left\{\beta \circ \pi_{m+n-1}\left(S^{n-1}\right)\right\}
$$

Proof. Apply above lemmas to the identity

$$
\left(f_{a+c}^{b+d}\right)_{*}(\alpha)=\left(f_{a}^{b}+f_{c}^{d}\right)_{*}(\alpha)=\mu_{*}\left(f_{a}^{b} \vee f_{c}^{d}\right)_{* \nu *}(\alpha) .
$$

Then the proof easily follows.
Now, let $\hat{\sigma}_{a}^{b}$ be the suspension of σ_{a}^{b}, then lemma 5.10 gives rise

$$
\hat{\sigma}_{a+c}^{b+d} \equiv \hat{\sigma}_{a}^{b}+\hat{\sigma}_{c}^{d}+a d\left(\hat{\sigma}_{2}^{2}\right)-(a b-c d) J(\xi) \quad \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right) .
$$

LEMMA 5.11. $\quad \hat{\sigma}_{a}^{b}=\{a(a--1) / 2\}\left(\hat{\sigma}_{-1}^{-1}\right)+a(b-a) J(\xi) \quad \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right)$
Proof. By lemma $5.4 b=a+k o(\beta)$ for some integer k. Hence we have

$$
\hat{\sigma}_{a}^{b}=\hat{\sigma}_{0+a}^{k o(\beta)+a}=\hat{\sigma}_{0}^{k o(\beta)}+\hat{\sigma}_{a}^{a}+k o(\beta) J(\xi)=\hat{\sigma}_{a}^{a}+a(b-a) J(\xi) \bmod E \beta \cdot \pi_{m+n}\left(S^{n}\right)
$$

On the other hand, lemma 5.10 implies $\widehat{\sigma}_{a+1}^{a+1} \equiv \hat{\sigma}_{a}^{a}+a\left(\hat{\sigma}_{2}^{2}\right)$, i. e. we have

$$
\hat{\sigma}_{a}^{a}=\{a(a-1) / 2\}\left(\hat{\sigma}_{-1}^{-1}\right) .
$$

Thus the proof is completed.
Since lemma 5.11 shows that it is important for our purpose to determine $\hat{\sigma}_{-1}^{-1}$, so here we recall the definition of σ_{-1}^{-1}, which is given by

$$
\left(-1_{A}\right) *(\alpha)=\alpha+i_{m} \cdot\left(\sigma_{-1}^{-1}\right) .
$$

Then, applying the suspension operator, we have

$$
\left(-1_{E A}\right)_{*}(E \alpha)=E \alpha+i_{m+1^{*}}\left(\hat{\sigma}_{-1}^{-1}\right), \quad \text { i. e. } \quad i_{m+1^{*}}\left(\hat{\sigma}_{-1}^{-1}\right)=-2 E \alpha .
$$

On the other hand, since we may regard the mapping cone of the projection $q: X \rightarrow S^{n}$ as the Thom space of the vector bundle characterized by ξ we can put

$$
E \alpha=\imath_{m+1}\left(\lambda_{\xi} J(\xi)\right), \quad \lambda_{\xi}=1 \quad \text { or } \quad-1
$$

Hence, using $\imath_{m+1}^{-1}(0)=\left\{\left[\iota_{m+1}, E \beta\right]\right\} \cup E \beta \circ \pi_{m+n}\left(S^{n}\right)$, we know that

$$
\begin{equation*}
\hat{\sigma}_{-1}^{-1} \equiv-2 \lambda_{\xi} J(\xi)+c_{\xi}\left[\iota_{m+1}, E \beta\right] \quad \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right) \tag{5.12}
\end{equation*}
$$

for some integer $c_{\hat{\xi}}$. For example, if ξ has a cross-section then we may take $\lambda_{\bar{\xi}}=-1$ ([2]), but, in general, it is not easy to determine λ_{ξ}.

Lemma 5.13. $o(\beta)\left(1+\lambda_{\xi}\right) J(\xi)=0$
Proof. Consider the following diagrams ($a=0(\beta)$):

and

Then we can obtain

$$
a \equiv a \lambda_{\xi^{\prime}} \lambda_{\xi^{\prime}} \quad \bmod o(J(\xi)) \text { and }-\lambda_{\xi^{\prime}} J\left(\xi^{\prime}\right)=J\left(\xi^{\prime}\right) \text {, i. e. } \quad-\lambda_{\xi^{\prime}} a J(\xi)=a J\left(\xi^{\prime}\right) \text {. }
$$

Clearly these give the proof. Now we prove

Lemma 5.14 In (5.12) we can take
(1) $\lambda_{\bar{\xi}}=-1$ and $c_{\xi}=1$ if $2 \beta=0$
(2) $c_{\xi}=-\lambda_{亏}$ or $-\lambda_{\bar{\xi}}+o(\beta) / 2$ otheruise

Proof. (1) the case : $2 \beta=0$.
By lemma 5.13 and 5.11 we have

$$
2 J(\xi)=-2 \lambda_{\xi} J(\xi) \quad \text { and } \quad \hat{\sigma}_{2}^{0} \equiv \hat{\sigma}_{-1}^{-1}-4 J(\xi) . \quad \text { On the other hand, } \quad f_{2}^{0} \cdot(\alpha)=\sigma_{2}^{0}
$$

implies that

$$
\hat{\sigma}_{2}^{0}=\left(E f_{2}^{\prime}\right) *(E \alpha)=2 \lambda_{z} J(\xi)+\left[\iota_{m+1}, \iota_{m+1}\right] H J(\xi)=2 \lambda_{\xi} J(\xi)+\left[\iota_{m+1}, E \beta\right]
$$

Hence we obtain

$$
\hat{\sigma}_{-1}^{-1} \equiv 4 J(\xi)+2 \lambda_{\xi} J(\xi)+\left[\iota_{m+1}, E \beta\right] \equiv 2 J(\xi)+\left[\iota_{m+1}, E \beta\right] .
$$

(2) the other case. Note that this occurs only in the case of $m=$ odd.

Take Hopf-invariant on the both side of (5.12), then we have, from the formula $H(J(\xi))=-E^{m+1}(\xi)$ and $H\left(\left[\iota_{m+1}, E \beta\right]\right)=2 E^{m+1} \beta$,

$$
2 \lambda_{\bar{\xi}} E^{m+1}+2 c_{\xi} E^{m+1} \beta=0 .
$$

Then, in our dimensional restriction, this means $2\left(\lambda_{\xi}+c_{\xi}\right)=0$ and then the proof is completed.

Now the proof of theorem 2 and 3 are completed by the following lemma which is a consequence of lemma 5.11 and 5.14.

Lemma 5.15. If $2 \beta=0$ we have

$$
\begin{aligned}
& \hat{\sigma}_{-1}^{-1} \equiv 2 J(\hat{\xi})+\left[\iota_{m+1}, E \beta\right] \\
& \hat{\sigma}_{1}^{-1} \equiv-2 J(\xi) \\
& \hat{\sigma}_{-1}^{-1} \equiv\left[\iota_{m+1}, E \beta\right] \quad \bmod E \beta \circ \pi_{m+n}\left(S^{n}\right)
\end{aligned}
$$

and if the order of β is odd

$$
-\lambda_{\xi} \hat{\sigma}_{-1}^{-1} \equiv 2 J(\xi)+\left[\iota_{m+1}, E \beta\right] .
$$

Remark. Since the second case of lemma 5.15 can be shown to be true in the case $o(\beta)=2 \cdot$ odd Theorem 3 also holds in this case.

§ 6. Some Examples

(I) The case of having a cross section.

$$
\begin{aligned}
& H_{\xi}=\pi_{m+n}\left(S^{m}\right) /\left\{\eta \circ J(\xi) \cup\left[\epsilon_{m}, \pi_{n+1}\left(S^{m}\right)\right]\right\}+\pi_{m+n}\left(S^{n}\right) . \\
& G_{\hat{\xi}}=\left\{x \mid x \in \pi_{n}\left(S^{m}\right),\left[\iota_{m}, x\right]=0\right\}
\end{aligned}
$$

$$
\mathcal{E}(X) \longrightarrow Z_{2} \quad \text { is onto if } 2 J(\hat{\xi}) \neq 0
$$

and

$$
\mathcal{E}(X) \longrightarrow Z_{2} \times Z_{2} \text { is onto if } 2 J(\xi)=0
$$

（II）Complex Stiefel manifolds $W_{n, 2}(n \geqq 5)$ ．
Let ξ_{n} be the standard sphere bundle

$$
S^{2 n-3} \longrightarrow W_{n, 2} \longrightarrow S^{2 n-1}, \quad \beta_{n}=n \eta .
$$

Since $\left[\iota_{2 n-2}, \eta^{\circ} \eta\right]=\eta^{\circ}\left[\iota_{2 n-1}, \iota_{2 n-1}\right]$ the assumption is satisfied．If n is even the case reduces to（I）and for odd n we have
if $n \equiv 1 \bmod 4$ ，then $H_{\tilde{亏}_{n}}=\pi_{⿺ n-4}\left(W_{n, 2}\right), \quad G_{\tilde{亏}_{n}}=\{0\}$ and $\mathcal{E}\left(W_{n, 2}\right) \longrightarrow Z_{2}$ is onto． and
if $n \equiv 3 \bmod 4$ ，then $H_{\bar{\xi}_{n}}=\pi_{4 n-4}\left(W_{n, 2}\right) / \iota_{*}\left\{\left[\epsilon_{2 n-3}, \pi_{2 n}\left(S^{2 n-3}\right)\right]\right\}$ ，

$$
G_{\hat{\Sigma}_{n}}=\{0\}, \quad \varepsilon\left(W_{n, 2}\right) \longrightarrow Z_{2} \text { is onto. }
$$

（III）Quaternion Stiefel manifolds $X_{n, \text { ，}}$
Let τ_{n} be the standard bundle

$$
S^{4 n-5} \longrightarrow X_{n, 2} \longrightarrow S^{1 n-1}, \quad \tau_{n}=n \nu
$$

Since $\left[\epsilon_{n-4}, \nu \circ \eta\right]=0$ the assumption is satisfied．Then if $n \geqq 3$ we have

$$
H_{\tau_{n}}=\pi_{8 n-6}\left(X_{n, 2}\right) /\left[\epsilon_{4 n-5}, \pi_{4 n}\left(X_{n, 2}\right)\right] \cup_{2 *}\left\{\eta \circ J\left(\tau_{n}\right)\right\}, \quad \text { and } \quad G_{-n}=\{0\} .
$$

The 1mage $\varepsilon\left(X_{n, 2}\right) \rightarrow Z_{2} \times Z_{2}$ is more complicated，so we omit it．

APPENDIX：Separation elements

$$
\begin{array}{ll}
K \cup e^{n}-f \longrightarrow X \longrightarrow & f|K=g| K \Rightarrow d(f, g) \Subset \pi_{n}(X) . \\
K \cup e_{\imath}^{n}=K \cup e^{n}, & \hat{K}=e_{1}^{n} \cup K \cup e_{2}^{n}, \\
k: \hat{K} \longrightarrow K \cup e^{n}, & k \mid K \cup e_{2}^{m}=\text { identity. }
\end{array}
$$

1．The sequence ： $0 \rightarrow \pi_{n}(\hat{K}) \rightarrow \pi_{n}(\hat{K}, K) \times \pi_{n}\left(K \cup e^{n}\right)$ is exact．
For，

$$
\begin{aligned}
\pi_{n}(K) & \\
& k_{*} \downharpoonright \hat{Y}(\hat{K}) \longrightarrow \pi \\
& \pi_{n}\left(K \cup e^{n}\right)
\end{aligned}
$$

where $\imath: K \cup e^{n} \rightarrow e_{1}^{n} \cup K \subset \hat{K}$ ．

$$
\begin{aligned}
& \xi: S^{n}=E^{n} \cup E^{n} \longrightarrow D^{n}-\chi_{1} \longrightarrow \chi_{2} K . \\
& \mapsto k_{*}(\xi)=0, \quad \chi_{1}-\chi_{2} \in \pi_{n}(K, K) .
\end{aligned}
$$

Then $d(f, g)=h_{*}(\xi)$, where $h: \hat{K} \rightarrow X, h\left|e_{1}^{n} \cup K=f, h\right| K \cup e_{2}^{n}=g$.
2. $K \cup e^{n} \underset{H}{\longrightarrow} e_{1}^{n} \bigcup_{\lambda_{1}} L \bigcup_{i_{2}} e_{2}^{n}<\underset{G}{F} \longrightarrow X$,

$$
H(K) \subset L, H\left(e^{n}\right)=e_{1}^{n}+e_{2}^{n}, \quad F|L=G| L .
$$

Then $d(F H, G H)=d\left(f_{1}, g_{1}\right)+d\left(f_{2}, g_{2}\right)$, where $f_{2}=F \mid e_{2}^{n} \cup L$ and $g_{2}=G \mid e_{\imath}^{n} \cup L$.
Proof.

And consider the diagram :

where

$$
\hat{L}_{\imath}=e_{\imath, 1}^{n} \bigcup_{\lambda_{\imath, 1}} L \bigcup_{\lambda_{\imath, 2}} e_{\imath, 2}^{n} \longrightarrow \jmath_{\imath}
$$

Then

$$
\begin{aligned}
& H_{*}(\xi) \longrightarrow\left(\lambda_{1,1}+\lambda_{2,1}-\lambda_{1,2}-\lambda_{2,2}\right) \times 0 \\
& \jmath_{1_{*}}\left(\xi_{1}\right)+\jmath_{2 *}\left(\xi_{2}\right) \longrightarrow\left(\lambda_{1,1}-\lambda_{1,2}+\lambda_{2,1}-\lambda_{2,2}\right) \times 0
\end{aligned}
$$

Hence $\hat{H}_{*}(\xi)=\jmath_{1_{*}}\left(\xi_{1}\right)+\jmath_{2 *}\left(\xi_{2}\right)$ (from the injectivity). And then we have

$$
\begin{aligned}
d(F H, F G) & =(F \cup G)_{*} H_{*}(\xi) \\
& =(F \cup G)_{*}\left(\jmath_{1 *}\left(\xi_{1}\right)\right)+(F \cup G)_{*}\left(J_{2}\left(\xi_{2}\right)\right) \\
& =d\left(f_{1}, g_{1}\right)+d\left(f_{2}, g_{2}\right) .
\end{aligned}
$$

References

[1] Barcus. W.D. and M. G. Barratt, On the homotopy classification of the extension of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57-74.
[2] I. M. James and J.H.C. Whitehead, The homotopy of sphere bundles over spheres (I), Proc. Lond. Math. Soc., 4 (1954), 196-218.
[3] J. W. Rutter, The group of self-homotopy equivalences of principal three sphere bundles over the seven sphere, Math. Proc. Camb. Phil. Soc., 84 (1978), 303-311.
[4] S. Sasao, On self-homotopy equivalences of S^{3}-principal bundles over S^{n}. (to appear)
[5] Y. Nomura, Self-homotopy equivalences of Stiefel manifolds $W_{n, 2}$ and $V_{n, 2}$, Osaka J. Math., 20 (1983), 79-93.
[6] M. Mimura and N. Sawashita, On the group of self-homotopy equivalences of principal S^{3}-bundles over spheres. (to appear in Hiroshima Math. J.)

Dept. of Math.
Tokyo Inst. Tecii.
Oh-okayama Meguro-ku
Tokyo Japan

