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Summary

To estimate the parameter vector λ of bivariate Poisson distribution [1], [2]
we would like to calculate maximum likelihood estimator (MLE) 1. This MLE 1
has not a simple expression as Xy S2, ••• etc. We only have information about
MLE 1 by normal equations and its variation forms [3], Holgate [4] shows the
asymptotic property of MLE 1.

In this paper we would like to show the calculating method of MLE 1. The
method will be constructed by direct calculation of likelihood function and by
a searching routine of MLE 1 which maximizes the function value. A sequence
of random numbers come from a bivariate Poisson distribution P(λ) will be shown.
The change of the value of likelihood function varying parameter λ in our rule
will be calculated and the work of the searching routine will be discussed in
detail. In the last part of this paper a numerical interpretation of our routine
will be shown.

Section 1. Bivariate Poisson distribution P(λ).

If (X, Y) has a bivariate distribution,

Λ v n' Λ ~UJ βtt-kβ\γ\δr
r+δ=ι Γ

we shall call (X, Y) has a bivariate Poisson distribution P(λ), where k, I, β, γ
and δ are nonnegative integers and nonnegative λ10, λ01 and λn are called as
parameters and λ means a vector of the three parameters (λ10, λ01, λn).

The moment generating function of the distribution is given by

And the marginal distribution is given by
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P(X=k) = p(k; λlo+λn) {k=0, 1,2, •••),

P(Y=l)=p(l; λol+λ11) ( / = 0 , 1, 2, •-•),

where £(* Λ) is an univariate Poisson density. We will get more information
about the distribution from the equalities:

E(X)=λlo+λn , V3.r{X)=λί0+λn,

E(Y)=λQ1+λ11, Var(Y)=λOί+λn,

Cov(Z, Y)=λu.

If (Z, Y) has a bivariate Poisson distribution P(λ) then we will get the decom-
position rule

where Xlo, Xol and Xn are mutually independent univariate Poisson distributions
with parameter λ10, λ01 and λn respectively.

But getting a sample (x, y) of the distribution, we do not know the de-
composed samples x10, xQ1 and xn satisfying the decomposition rule of the last
two equalities. This is the main reason why it is difficult to estimate the
parameters from the samples of the distribution.

Section 2. MLE of the parameter λ.

Practical estimation of the parameter λ = (λi0, λ0L, λn).

Denote n independent sample variables of a bivariate Poisson distribution
P(λ) as

(XuYJΛXtoY*), ~ ΛXn,Yn)

and denote the practical samples as

(χi> yi), (xz, y*), ••- y (xn, y n ) .

The maximum likelihood estimator MLE of λlo+λn will be given by Σ£=i#ι/ft
and MLE of λOi+λn by Σ?=i3^/w. To estimate the parameters λ10, λQ1 and λn

individually we need to discuss the method of the estimation in a more delicate
way.

2-1. Practical estimation of covariance value Λn.
We shall consider the problem how to estimate λn.

T H E O R E M 1. From n independent samples {x1} yx), (x2, y2), •••, (xn, yn), MLE

of vίio, ^oi and λn is given by next three equalities,

n ι=i p(xlf yτ)
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n ι=ι p(χt, yt)

and

where p{k, l)—P{X—k, Y—l) with parameters λ1Q, λoι and λn.

We usually call the relations the normal equalities.

Proof of the theorem. To maximize the likelihood function Π?=i./>Uι, y%)
with respect to the parameters λ10, λ01 and λn, we have to differentiate the
logarithm of likelihood function about the parameters and to put its value zero,

~~πp(χr, yι)=Σ-^r-( r Π ί U , yθ=θ>

σ/lO 1=1 1 = 1 P\X%y yi) 1 = 1

where the differential of the probability density is given by a convenient relation

3 _

Because, we have

3

(/3-1)! γ Ϊ a! ^ ^ 0 ! r! <
r+δ=Ί

2/3 }Γ ί<5
/lo/ol/^g-^io-^oi-^ii-,y?(fe Λ

= p(k-l,l)-p(k, I).

Therefore, we can verify,

i, yύ ι=i

— ι — Π ρ{χι> y%)
t, 3 ; ^

Γ « p(Xi — l, yι) 1 " . , v

The equivalent condition of the normal equation
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4rliρ{χr, yτ)=0
oA10 1=1

1$ given by
n p{χt-l, yτ)

*=i P(χι, yτ)

By using similar calculations about

and
d n

gj- Tlρ(χι, y

we will be given the equivalent conditions

and

» ί(xi—1, ̂ i—1)

respectively. •

THEOREM 2. MLE o/ ^ 1 0 , λOι and λn denoted as λ10, λ01 and λn satisfy Xw

— x and ̂ o]+ίn=J7-

Proof of the theorem. From the first normal equation

and a relation:
^ί(ft, l)=λ1Qp(k-l, l)+λnp(k-l, / - I ) ,

we have

and
Λoί(^ι—1, yι)=Xιp(χι, yι)—Λnp(χi—l, yt

Then, the first normal equation is expressed as following:

^ χtp(χι, yiϊ—λnpjxj—l, yi—l)—λ1<iρ{xι, yt)



DIRECT CALCULATION OF MAXIMUM LIKELIHOOD ESTIMATOR 215

and by the third normal equation, we have

Σ x i - n W 1 0 + ω = 0
1 = 1

and a concluding equation

n

1̂0 + ^11= Σ xJΠ — X .
1 = 1

Similarly, we have another concluding equation from the second and the third
normal equations

n

Λoi+Λu= Σ yι/n = y .
t = l

These two simple relations come only from the normal equations and λ10, λ01 and
λu must be symbolized by MLE λ10, λ01 and λn. •

Further calculation about λί0, λOi and λn is very difficult and we have to
calculate the individual estimator by numerical method. In the next section we
shall treat the practical calculating method showing how to get MLE λlιh λin and

In.

2-2. Practical calculation of MLE l~(λ10, λQ1, ln).

THEOREM 3. MLE λί0, hi and λn satisfy the relations

^10+^11 = £ , Λ01+Λ11—y and 0 ^ ί n ^ m i n ( f , y)

which maximize the logarithm of likelihood function logΠ?=iί(#ι, y%).

Proof of the theorem. This theorem is a representation of the last theorem
for our calculation of MLE. Denote m=min(f, y) for simplicity of notation, λ10,
λ01 and λn are nonnegative parameters, so that we have 0^λn^m. To get λn

we have to move λn in the interval [0, m] which maximize the logarithm of
likelihood function ///. •

To calculate MLE λ10, λ01 and λn numerically, we have to compare the value
of /// on the scanning space of the three parameters. This theorem states that
we may find MLE which maximizes the value of /// in one dimensional parameter
space, that is, our scanning space of the parameters reduce to one dimensional
subspace

îo = Λ—^ii, ^ 0 1=5—^ii and Λ ne[0, m ] .

At the begining of computation, we compare the value /// in the rule
ytn=0.0, 1.0, 2.0, ••• ^ m = (Jc, y) and λ1Q=x—λllf λol = y—λn, that is, λn moves
on nonnegative integers from 0 to the integer lower than m. We will find one
λn which maximizes /// or two λn which maximize the function. Usually we
get only one λn which maximizes /// and occasionally we look for two λn which
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maximize the function. In the first case we have to look for λrι in the interval
of both sides of λn which maximizes the function and we have adjusted the
scanning step in the reduced parameter space to one quater of preceding scanning
step 1.0.

-190

- 2 0 0

-210

-190

- 2 0 0

-210

u

llf

Fig. 1

2-3. Automatic reduction rule of λn scanning space..
Let us discuss in detail the reduction rule. We put the scanning space of

λ1L as Do initially,

D0={0, 1, 2, - , m0},

where m0 equals to the maximum integer lower than m=min(jc, y),

(case 1) λn=0 maximizes /// in the scanning space Do.
(case 2) One of λn = k in 1, 2, •••, mo—l maximizes /// in the scanning space

Do.
(case 3) Two of λlλ—k, &-f-l in 0, 1, 2, •••, m0 maximize ίίf in the scanning

space IV
(case 4) λn=?n0 maximizes /// in the scanning space Do-

Scanning λn<=D0 as to maximize ///, we have four cases (case 1), •••, (case 4).

In every case, to compute MLE λn more detail, we have to reduce the scanning

space and the scanning step. We have used the secondary scanning step as one

quater of the preceding one. Then we have a new scanning space DL as

following:

(case 1) D^{θ, \, \, f, l

(case 2) ^ = {^-1, k- j , k-l+j, k-ί+j, k, k+j, k+j, k + j ,

(case 3) D^{k, k + j , k+j, k+j, k+l

(case 4) Dί — γn,, — 1, m0 — 1 + γ , m0 —1+—, mo—l+—, m0, m o 4-j ,
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where ί is the maximum integer in 0, 1, 2, 3 such that

m o + τ - ^ ^ r = m i n ( i : , y).

In the primary step, we compare the value of /// by λn scanning only the
integral values on [0, rrί], as to find λn which maximizes ///. Secondary step,
if we find one λn maximizing /// as (case 2), we can reduce the scanning
interval [0, m] to [&—1, k+l~] where k is the value of λn maximizing ///. If
we find one Λn=0 maximizing /// as (case 1), we can reduce the scanning
interval to [0, 1] and if we find one λu—mQ maximizing /// as (case 4), we
can reduce the scanning interval to [m0—1, m]. If we find two λn=k, k+1
(k=0f 1, •••, m0—1) maximizing /// we can reduce the scanning interval to
[>, k+Γ\ as (case 3). Our scanning of λn is made in the reduced interval and
the scanning step is adjusted to a quater step of preceding scanning step, where
the scanning step of λn in the reduced interval may change under another
reduction rule and the total computing time will change. Then we can reduce
our scanning space Do to Dx as denoted above.

Under this inductive routine, if we set 0.001 as the exactness of the calcu-
lation of MLE λn, then we will obtain MLE λu involving the exactness after
high resolution computing method.

Section 3. A sequence of random numbers from P(λ) and computation
of MLE In by computer.

In this section a result of computer simulation will be demonstrated, one is
a change of /// under our reduced linear space, and the other is a computing
process of finding MLE Xn.

3-1. Simulation of a sequence of bivariate Poisson distribution P(λ).
Given parameters λ10, λOι and λllf Xlo, Xol and Xn are independent univariate

Poisson distributions then (X, Y) from a bivariate Poisson distribution is expressed
by

X=X10-\-Xn and y = ^01+^11.

To make a sequence of random numbers of the distribution P{λ), we should
make three series of independent univariate Poisson random variables X10, Xol

and Xn.
Following figure is our flow-chart of making bivariate Poisson random vari-

ables.
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-XΊ0; Poisson

Xύι Poisson

Xn Poisson

r.

r.

r.

V.

V.

V.

parameter

parameter

parameter

ΛQX

hi

If the number of bivariate

Poisson r.v.s equals to n

then the system stops and

proceeds to the next calcu-

lations.

Poisson random variables

(Xlf YJΛX*, Y.\-ΛXn,
Table 1.

Histogram of Poisson r.v.s

Computation of statistics X, 7, S2

X, S2

r, Sxr

Table 2.

Computation of /// on our reduced parameter space

Automatic computation of M L E j?u

See 3-2

See 3-3

Fig. 2

Poisson random variables with parameters Λ10 = 3.0, λol=3.O and λλl=2Λ
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Histogram of the Poisson random variables
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Statistics based on the Poisson random variables.

1=4.93,

F=5.03,

S2*=5.3251

SI-=6.1891

where

Table 2

3-2. The change of /// under our scanning rule.
Our reduced one dimensional parameter space is expressed as

λlo=X—λn, λol=Y—λn and i n £ [ 0 , ?n]

where m=mm(x, y). From x=4.93, 5=5.03, we get m=4.93 so that our reduced
parameter space is expressed;

oi=4.93-Λn and , 4.93].

We tried to calculate /// on the space under a scanning step 0.1 of the third
parameter λn. Next table and graph explain a relation of variable λn and ///.
And we will find MLE of λn close to Λn=1.9.
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llf

-193.2464

-193.1536

-193.0868

-193.0479

-193.0389

-193.0625

-193.1216

-193.2196

-193.3607

-193.5494

-193.7915

0.0 1.0 2.0 3.0 4.0

Fig. 3

3-3. Automatic computing process of MLE λn.

If we would like to know the function of our automatic computing process

of MLE λn, we can easily pull out the scanning spaces DQ, Du ••• and /// values

on each spaces. Following table and graph explain the function.

Lower limit

Do 0-

A. 1-

D2 1+3/4-

Dz 1+3/4+1/16-

D4 1+3/4+1/16+3/64-

D 5 1 + 3/4+1/16+3/64+4/256 -

D6 1 + 3/4+1/16+3/64+4/256-
+ 3/1024

Upper limit Scan

-4 1

-3 1/4

-1+5/4 1/16

-1+3/4+3/16 1/64

-1+3/4+1/16+5/64 1/256

-1+3/4+1/16+3/64+6/256 1/1024

• 1+3/4+1/16+3/64+4/256
+5/1024

Table 4
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Graph of upper and lower
limits of reduced scanning
spaces Do, Dlf ••-.

Fig. 4

D, A A A A A

After our automatic computing process of MLE, we get MLE Xn=1.879 and
from the assertion of theorem 3, we get MLE ίlo=4.93—1.879=3.051 and MLE
3oi=5.03—1.879=3.151. These are the maximum likelihood estimators of the
bivariate Poisson random variables simulated by computer. We have another
estimator for λn,

The parameter used to the simulation was Λ10=3.0, Λ01=3.0 and Λn=2.0. And
our MLE is expressed as ί lo=3.O51, ί0i=3.151 and ίn=1.879. Another estimation
for λn is given by Sjrr=2.5021.

Remark. The aim of the last section is to answer the questions: how to
make the bivariate Poisson random variables (by simulation) and how to calculate
MLE of the parameter λ=(A10, 201, 2n). But the next question to answer would
be how to check the fitness of the bivariate Poisson distribution for given
bivariate data (xlf yj, (x2, y2), •••, (xn, yn)

 a s given in table 1.
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