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Summary

To estimate the parameter vector A of bivariate Poisson distribution [17], [2]
we would like to calculate maximum likelihood estimator (MLE) 4. This MLE 2
has not a simple expression as X, S? --- etc. We only have information about
MLE 1 by normal equations and its variation forms [3]. Holgate [4] shows the
asymptotic property of MLE 1.

In this paper we would like to show the calculating method of MLE 4. The
method will be constructed by direct calculation of likelihood function and by
a searching routine of MLE 1 which maximizes the function value. A sequence
of random numbers come from a bivariate Poisson distribution P(1) will be shown.
The change of the value of likelihood function varying parameter A in our rule
will be calculated and the work of the searching routine will be discussed in
detail. In the last part of this paper a numerical interpretation of our routine

will be shown.

Section 1. Bivariate Poisson distribution P(1).

If (X, Y) has a bivariate distribution,

s
PX=k, Y=)= 3 BB gty
’ g=r Bly1o!
T+0=1
we shall call (X, Y) has a bivariate Poisson distribution P(1), where &, /, 8, 7
and 0 are nonnegative integers and nonnegative Ay, A, and A;; are called as
parameters and A means a vector of the three parameters (210, Ao, A11)
The moment generating function of the distribution is given by

— o= Q10+ 201+ A1) + 21081+ 20152+ 211518
g(8;, Sy)=e~Arotdort 1D+ &yosi+do1se+Anisisy

And the marginal distribution is given by
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P(X=k)=p(k; Ant+iy) (k=0,1,2, ),
PY=0=pl; ZAu+i) (=0,12 -,

where p(x; 2) is an univariate Poisson density. We will get more information
about the distribution from the equalities :

E(X)=21+ 211, Var(X)=2,0+2,1,
E(XY)=2u+21, Var(Y)=20,+411,
COV(X, Y):le .

If (X, Y) has a bivariate Poisson distribution P(1) then we will get the decom-

position rule
X=X,+X11, Y=Xu+Xu

where X, X, and X;; are mutually independent univariate Poisson distributions
with parameter Ay, 4,; and A,; respectively.

But getting a sample (x, y) of the distribution, we do not know the de-
composed samples xj,, X and x,, satisfying the decomposition rule of the last
two equalities. This is the main reason why it is difficult to estimate the
parameters from the samples of the distribution.

Section 2. MLE of the parameter A.
Practical estimation of the parameter 2=(1,o, d¢1, A11)-

Denote n independent sample variables of a bivariate Poisson distribution
P(4) as
(Xl’ Yl)y (X2; YZ); Ty (Xny Yn)

and denote the practical samples as

(xlr yl)r (x27 yz), T (xny yn)-

The maximum likelihood estimator MLE of 1,,+4;; will be given by 3™ x./n
and MLE of 4,;+4;; by X%,y./n. To estimate the parameters A;, Ao, and Ay
individually we need to discuss the method of the estimation in a more delicate
way.

2-1. Practical estimation of covariance value A;,.
We shall consider the problem how to estimate A,,.

THEOREM 1. From n independent samples (x1, 1), (x2, ¥2), **+, (Xn, ¥5), MLE
of A, Aoy and Ay, 1s given by next three equalities,

12 plxi—1 3
n 721 P(xe, ¥0) :

>
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i_ z p(xh yl—l)
n ; p(xe, y2)
and
_1_2 plxi—1, yi—l)
n

=1
=1 P(xe, ¥o) ’

where plk, )=P(X=*Fk, Y=I0) with parameters A, Ay and A.
We usually call the relations the normal equalities.

Proof of the theorem. To maximize the likelihood function ITi,p(x,, )
with respect to the parameters Ay, 4,; and A;;, we have to differentiate the
logarithm of likelihood function about the parameters and to put its value zero.

az p(xh yt) n

azm 1 (e, 3= b 1T pCx,, 9)=0.,

=1 P(xu L)

where the differential of the probability density is given by a convenient relation

So—plx, Y= plx—1, 2)=p(x, 9).

Because, we have

. Z10201'111 _1 Y Py
azml’(k b= az s prrrar
__..2‘0 Aoy 1y - A0-dor-4y 21010121},« o= A10-Ao1-41
p+a=k({3 Diyra! pfa=e flylatr”
r+o=1
ﬁ 1;0
10201211 —Ain=-Adgi=2 )
,3+5_1z 1‘[9’7”51 g~ A 401 11__‘/)(,@7 [)
r+6=1

=plk—1, D—plk, ).

Therefore, we can verify,

(X, v2)

0
v At L
H p(x/lr y) 2 '"gp(xu yl)

8210 1=1 1=1 7(751., V)

— S p<xi—1’ 3’2)—“13(%, 1)
& P 30 g

p(xe, y2)

AR i .

The equivalent condition of the normal equation
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0 n

mzl;l p(xu yz) O
1s given by

& pai=l, 3a)

El (x40, ¥2) !
By using similar calculations about

axm zl_Ilp(xl’ l):()
and

a/zll J:[p(xly yl) 0
we will be given the equivalent conditions

oo pxy, yi—1)

; (xu 1) -
and

2, plxi—1, 3:—1)

27 Gy "

respectively. W

THEOREM 2. MLE of A, A and i, denoted as 210, Aoy and Ay, Satisfy Aj0+Ay
=% and Ap+in=37.

Proof of the theorem. From the first normal equation

é p(xt_l yz)
=1 (xz; z)
and a relation :
kp(k, D=2p(k—1, )+2Aup(k—1, I—1),
we have

V)= p(x4, 34)

(xz, D)

2 plxi— -0

and
Awp(x—1, y)=x,p(x,, yo)—Aup(xi—1, y;—1).

Then, the first normal equation is expressed as following :

i Awop(xs—1, y.)—Awp(xe, ¥1)
=1 P(xe, ¥4)
_ % X (X0, ¥)—Aup(x;—1, yi—1)—2wp(x., ¥2)
=1 p(xu yz)
= 3 (s py— g PHi—L 3= D)
3 [t ZER 2D |
=3 =l 9=l
—; —nAy— 21121 (%0, 34) =V,
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and by the third normal equation, we have

FZ:I xe—1(A1p+2:,)=0
and a concluding equation
At An= é xJ /n==x.

Similarly, we have another concluding equation from the second and the third
normal equations

Aot A= zéyl/n:y_ .

These two simple relations come only from the normal equations and A, 4,; and
A, must be symbolized by MLE 1,5, i1, and 4,;. ™

Further calculation about 1,5, 4, and 4, is very difficult and we have to
calculate the individual estimator by numerical method. In the next section we
shall treat the practical calculating method showing how to get MLE 1,,, 4,, and
2]1.

2-2. Practical calculation of MLE A=(1,0, 401, 411).

THEOREM 3. MLE 1y, Ao and 2y, satisfy the relations

230+211:fy 201+21l:y and 0§i11§min(fy ¥)
which maximize the logarithm of likelihood function log IT7=p(x,, ).

Proof of the theorem. This theorem 1s a representation of the last theorem
for our calculation of MLE. Denote m=min(%, ¥) for simplicity of notation, 4,
Ao and A, are nonnegative parameters, so that we have 0=<1,<m. To get i,
we have to move A;; in the interval [0, m] which maximize the logarithm of
likelihood function //f. m

To calculate MLE 21,,, 4o and A,, numerically, we have to compare the value
of //f on the scanning space of the three parameters. This theorem states that
we may find MLE which maximizes the value of //f in one dimensional parameter
space, that is, our scanning space of the parameters reduce to one dimensional
subspace ;

Aw=%—2Au, Au=35—2, and A,;€[0, m].

At the begining of computation, we compare the value //f in the rule
21:=0.0, 1.0, 2.0, --- E=m=(%, ) and A, ,=X%X—Au, du=5—4,, that is, A,; moves
on nonnegative integers from 0 to the integer lower than m. We will find one
A1 which maximizes (If or two A;; which maximize the function. Usually we
get only one A;; which maximizes //f and occasionally we look for two 4,, which
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maximize the function. In the first case we have to look for A,, in the interval
of both sides of A,; which maximizes the function and we have adjusted the
scanning step in the reduced parameter space to one quater of preceding scanning
step 1.0.

0 1 2 3 4 :2“ 0 1 2 3 4 72“
T
—200 ~200
1f iy
—210 ~210

Fig. 1

2-3. Automatic reduction rule of 2,; scanning space.
Let us discuss in detail the reduction rule. We put the scanning space of
A1 as D, initially,

D(): {O: ]-y 2: Tty 7710}’,

where m, equals to the maximum integer lower than m=min(Z, ¥)

(case 1) 4;;=0 maximizes //f in the scanning space D,.

(case 2) One of A;;=Fk in 1, 2, -+, m,—]1 maximizes //f in the scanning space
D,.

(case 3) Two of A;y=Fk, k41 in 0, 1, 2, -+, m, maximize //f in the scanning
space D,.

(case 4) 2;;,=m, maximizes //f in the scanning space D,.

Scanning A;;€D, as to maximize [/f, we have four cases (case 1), ---, (case 4).
In every case, to compute MLE 1;; more detail, we have to reduce the scanning
space and the scanning step. We have used the secondary scanning step as one
quater of the preceding one. Then we have a new scanning space D, as
following :

(case 1) Dlz{O, 7‘1:, %, —2—, 1}

(case 2) D,= {/e 1, b l—l—%,fe 1+i,/e—1+3 b k—!—l b+ iy, /e-l—l}
(case 3) D,={k, k+% /e+% p+3 b1}

(case 4) D, {mo 1, my— l-l—i, 710—1+%, mo—l—t—%, Mo, m(,-l—%, e mﬁ—ﬁ-}
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where { is the maximum integer in 0, 1, 2, 3 such that

mo—l—i—§m:min(f, ).

In the primary step, we compare the value of //f by 4,; scanning only the
integral values on [0, m], as to find A;; which maximizes /If. Secondary step,
if we find one A;; maximizing [If as (case 2), we can reduce the scanning
interval [0, m] to [k—1, k+1] where £ is the value of A;; maximizing /If. If
we find one A;;,=0 maximizing [/f as (case 1), we can reduce the scanning
interval to [0, 1] and if we find one A;;=m, maximizing /If as (case 4), we
can reduce the scanning interval to [m,—1, m]. If we find two A,,=k, k+1
(k=0, 1, ---, me—]1) maximizing /If we can reduce the scanning interval to
[k, B+17 as (case 3). Our scanning of A;; is made in the reduced interval and
the scanning step is adjusted to a quater step of preceding scanning step, where
the scanning step of i, in the reduced interval may change under another
reduction rule and the total computing time will change. Then we can reduce
our scanning space D, to D, as denoted above.

Under this inductive routine, if we set 0.001 as the exactness of the calcu-
lation of MLE 1,;, then we will obtain MLE 1, involving the exactness after
high resolution computing method.

Section 3. A sequence of random numbers from P (1) and computation
of MLE 1,, by computer.

In this section a result of computer simulation will be demonstrated, one is
a change of [/f under our reduced linear space, and the other is a computing
process of finding MLE 1.

3-1. Simulation of a sequence of bivariate Poisson distribution P(4).

Given parameters Ay, Ao; and Ay, Xy, Xo; and X;, are independent univariate
Poisson distributions then (X, Y) from a bivariate Poisson distribution is expressed
by

.X=X10+X]1 and Y:X01+X11.

To make a sequence of random numbers of the distribution P(4), we should
make three series of independent univariate Poisson random variables X, X,
and Xi,.

Following figure is our flow-chart of making bivariate Poisson random vari-
ables.
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'1
I‘

Xio; Poisson r.v. parameter A;
Xy ; Poisson r.v. parameter Ay
X, ; Poisson r.v. parameter 2,

If the number of bivariate
Poisson r.v.s equals to »
then the system stops and
proceeds to the next calcu-
lations.

k<n

Poisson random variables
(le Yl); (XZy )fﬂ)y Tty (Xm Yn)

l

—> Table 1.

Histogram of Poisson r.v.s

Computation of statistics X, ¥, S%, S%, Sxr

—> Table 2.

[

Computation of /If on our reduced parameter space

|

—> See 3-2

Automatic computation of MLE 1, —> See 3-3

Fig. 2

Poisson random variables with parameters 1,,=3.0, 1,,=3.0 and 1,,=2.0

6,5 (9,5 (2,4 7,3 (64
6,7 37 3,4 3,3 @5
4,3) (6,2) (5,6) (5 6) (6, 2)
(3,3) (7,5 (6,5 (6,4 (2,3
(1,5) (9,10) (5 6) (4,5) (10, 2)
5,2 7,9 47 44 4,8
(5,3) (6,6) (3,6) (8 11) (7,9
(3, 1) (6,8 (4,5) (12, 10) (2, 2)
5,2 4,9 5,8 47 O
(1,5 (1,6) 3, 1) 4,8 (7,6)

6,4 O7 O0 1,3 46
4,4 5,7 (5,5 (1,6 (6 10
6,6) (3,5 (3,20 (5,7 (1,4
(7,5) (6,3) (3,3) (6,2) (4,6
4,2 (7,4 6,8 44 1,1
(7,4) (5,5 (55 (4,6) (11,13
5,8 4,3 (5,5 2,7 67
B3 89 6,2 O 3,49
63 &4 7.7 G 44D
3,4 (7,4 2,20 (1, 4 3)

Table 1
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Histogram of the Poisson random variables

=0,1,2, -

p 0 0 00 0000000000
802011220000000
; 092 1 1(0 0o/1}0 0 0 0 00
o, 03 133 1 1 110 00 0 0 0
: 01 1 3 433 2 2 1)0 0 0 0
0 olz 2@ 4 3 3 3(0 0 0 0 0
0 o4 1 3 2 2 1 1{o/1)o 0 0
0 0o 0\1 3 2 1 1/oy2(0 0 0 o0
0o 0 ol1/o 0o 0o o olzlo/1)o o
0000 0(®D0®o o\1 o 0 o0
o 0(@®o 00 0 0000 0 0 O
000000000000 0@
000000000 0@@o0O0O0

Statistics based on the Poisson random variables.

where

3-2. The change of /If

X=4.93, S%=5.3251
Y=5.03, S =6.1891
S xy=2.5021

SXY:27=1(X1‘X)(Y1— ?)/71-

Table 2

under our scanning rule.

Our reduced one dimensional parameter space is expressed as

llo:)?‘lzu, 201:7—211 and 1,€[0, m]

219

where m=min(x, ¥). From ¥=4.93, §=5.03, we get m=4.93 so that our reduced
parameter space is expressed ;

/210:4.93_‘211 y

201:4.93_211 and 2116[0, 4.93].

We tried to calculate //f on the space under a scanning step 0.1 of the third
parameter A;;. Next table and graph explain a relation of variable 2, and //f.
And we will find MLE of 2,; close to 4,,=1.9.
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21 1254 A1
0.0 ~—197.25 1.5
0.5 —195.38 1.6
1.0 —194.06 1.7
1.5 —193.25 18
2.0 —193.06 1.9
2.5 —193.79\2.0
3.0 —196.07 2.1
3.5 —201.36 2.2
4.0 —213.58 2.3
4.5  —247.47 2.4
2.5

Table 3

0.0 1.0 2.0

3.0 4.0

uf
—193.2464
—193.1536
—193. 0868
—193.0479
—193.0389
—193. 0625
—193,1216
—193. 2196
—193. 3607
—193.5494
—193.7915

—210F

uf

Fig. 3

3-3. Automatic computing process of MLE ;..
If we would like to know the function of our automatic computing process

of MLE 1,,, we can easily pull out the scanning spaces D,, D, -
Following table and graph explain the function.

on each spaces.

and [If values

Lower limit Upper limit Scan
D, 0—4 1
D, 1—3 1/4
D, 1+3/4——1+5/4 1/16
D, 143/441/16 — 1+-3/4+3/16 1/64
D, 1+3/4+41/164-3/64 —— 1+4-3/44-1/16-+5/64 1/256
Dy 1+3/4+1/164-3/64-+-4/256 — 14-3/4+1/164-3/644-6/256 1/1024

+3/1024

Table 4

1+3/4+1/16+3/64+4/256 —— 1+-3/4+1/16-+3/64-4/256

+5/1024
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Au
4.0
Graph of upper and lower
limits of reduced scanning a0k
spaces D,, Dy, ---.

upper limits

20

lower limits

0.0 |

Fig. 4

"

Dy D D D DD, D,

After our automatic computing process of MLE, we get MLE 1,,=1.879 and
from the assertion of theorem 3, we get MLE 1,,=4.93—1.879=3.051 and MLE
A01=5.03—1.879=3.151. These are the maximum likelihood estimators of the
bivariate Poisson random variables simulated by computer. We have another
estimator for A,

Sxy=21i(Xi— X)Y:—Y)/n=3r,X,Y,/n—XV=2.5021.

The parameter used to the simulation was 4;,,=3.0, 2,,=3.0 and 4,;=2.0. And
our MLE is expressed as 1;,=3.051, 1,;=3.151 and 1,,=1.879. Another estimation
for 2,; is given by Syy=2.5021.

Remark. The aim of the last section is to answer the questions: how to
make the bivariate Poisson random variables (by simulation) and how to calculate
MLE of the parameter A=(4;,, A1, 41;). But the next question to answer would
be how to check the fitness of the bivariate Poisson distribution for given
bivariate data (x;, v1), (xa, ¥s), --+, (x4, ¥,) @s given in table 1.
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